td3 pas finis
This commit is contained in:
parent
22bd97df1f
commit
f91821c946
58
td3/td3.md
Normal file
58
td3/td3.md
Normal file
@ -0,0 +1,58 @@
|
||||
# Récursivité
|
||||
|
||||
## Exercice 1
|
||||
|
||||
Formules naïves :
|
||||
|
||||
- $x\times y = \begin{cases}
|
||||
0 & \text{si $y=0$}\\
|
||||
x & \text{si $y=1$}\\
|
||||
x + (x \times (y-1)) & \text{si $y>1$}
|
||||
\end{cases}$
|
||||
|
||||
- $a^n = \begin{cases}
|
||||
1 & \text{si $a=0$}\\
|
||||
a\times a^{n-1} & \text{si $n>0$}
|
||||
\end{cases}$
|
||||
|
||||
Formules dichotomiques :
|
||||
|
||||
- $x\times y = \begin{cases}
|
||||
0 & \text{si $y=0$}\\
|
||||
x & \text{si $y=1$}\\
|
||||
2\times (x \times {y \over 2}) & \text{si $y>1$ et $y$ pair}\\
|
||||
x + 2\times (x \times {y - 1 \over 2}) & \text{si $y>1$ et $y$ impair}
|
||||
\end{cases}$
|
||||
|
||||
- $a^n = \begin{cases}
|
||||
1 & \text{si $a=0$}\\
|
||||
(a^{n \over 2})^2 & \text{si $n>0$ et $n$ pair}\\
|
||||
a\times (a^{n-1 \over 2})^2 & \text{si $n>0$ et $n$ impair}
|
||||
\end{cases}$
|
||||
|
||||
Les formules naïves sont de complexité $O(y)$ et $O(n)$ alors que les formules dichotomiques sont de complexité $O(\log_2(y))$ et $O(\log_2(n))$, ce qui est plus efficace.
|
||||
|
||||
## Exercice 2
|
||||
|
||||
$\operatorname{pgcd}(a, b) = \begin{cases}
|
||||
\operatorname{pgcd}(b, a) & \text{si $b>a$}\\
|
||||
\operatorname{pgcd}(b, a \mod b) & \text{si $a \mod b > 0$}\\
|
||||
b & \text{si $a \mod b = 0$}
|
||||
\end{cases}$
|
||||
|
||||
## Exercice 3
|
||||
|
||||
<!--$\operatorname{bézout}(a, b) = \begin{cases}\end{cases}$-->
|
||||
|
||||
```ocaml
|
||||
let rec bezout a b = match a mod b with
|
||||
| 1 -> 1, (a/b)
|
||||
| r ->
|
||||
let c, d = bezout b r in
|
||||
let () = print_int c in
|
||||
let () = print_newline () in
|
||||
let () = print_int d in
|
||||
let () = print_newline () in
|
||||
c+(d*r), d
|
||||
;;
|
||||
```
|
||||
BIN
td3/td3.pdf
Normal file
BIN
td3/td3.pdf
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user