
DS n°3

TD et TP

T1. let points main = Array.fold_left

 (fun acc carte -> acc + (points_carte carte))

 0

 main

;;

T2. let creer_fileb capacite init = {

 taille = 0;

 tete = 0;

 queue = 0;

 donnees = Array.make capacite init

};;

let enfiler_fileb f x =

 let capacite = Array.length f.donnees in

 if f.taille = capacite then

 failwith "File pleine"

 else

 f.donnees.(f.queue) <- x;

 f.queue <- (f.queue + 1) mod capacite;

 f.taille <- f.taille + 1

;;

let defiler_fileb f =

 let capacite = Array.length f.donnees in

 if f.taille = 0 then

 failwith "File vide"

 else

 let x = f.donnees.(f.tete) in

 f.tete <- (f.tete + 1) mod capacite;

 f.taille <- f.taille - 1;

 x

;;

let est_vide_fileb f = f.taille = 0;;

T3. let rec map func l = match l with

 | [] -> []

 | x::q -> (func x)::map func q

;;

T4. void tri_denombrement(int t[], int taille, int k) {

 int *counts = malloc((k+1)*sizeof(int));

 for (int i=0; i<k+1; i+=1) {

 counts[i] = 0;

 }

 for (int i=0; i<taille; i+=1) {

 counts[t[i]] += 1;

 }

 int i = 0;

 for (int j=0; j<k+1 && i < taille; j+=1) {

 while (counts[j] > 0) {

 t[i] = j;

 i += 1;

 counts[j] -= 1;

 }

 }

}

Exercices

Exercice 1

Première fonction :

let rec somme l = match l with

 | [] | _::[] -> l

 | (x,a)::(y,b)::q ->

 if x = y then

 (x,a+.b)::somme q

 else

 (x,a)::somme ((y,b)::q)

;;

let func1 l = somme (List.fast_sort compare l);;

Deuxième fonction :

(* On suppose que l est une liste de Hashtbl *)

let rec func2 l = match l with

 | [] -> Hashtbl.create 0

 | ht::q ->

 let ht2 = func2 q in

 Hashtbl.iter

 (fun cle x ->

 Hashtbl.replace ht2 cle (

 match Hashtbl.find_opt ht2 cle with

 | None -> x

 | Some x2 -> x+.x2

)

)

 ht;

 ht2

;;

Troisième fonction :

struct couple {

 int cle;

 double val;

};

typedef cpl;

void sort(cpl t[], int taille) {

 if (taille <= 1) {

 return;

 }

 int pivot = t[taille-1].cle;

 int i = 0;

 int j = taille-1;

 while (i<j) {

 while (t[i].cle<=p && i<j) i+=1;

 while (t[j].cle>=p && i<j) j-=1;

 cpl temp = t[i];

 t[i] = t[j];

 t[j] = temp;

 }

 sort(t, i+1);

 sort(t+i+1, taille-i-1);

}

// Renvoie la nouvelle taille du tableau

int func3(cpl t[], int taille) {

 sort(t, taille);

 int i=0;

 for (int j=0; j<taille-1; j+=1) {

 t[i] = t[j];

 while (j<taille-1 && t[j].cle == t[j+1].cle) {

 t[i] += t[j+1].val;

 j+=1;

 }

 i+=1;

 }

 if (taille > 1 && t[taille-2].cle != t[taille-1].cle) {

 t[i] = t[taille-1];

 i+=1;

 }

 return i;

}

	DS n°3
	TD et TP
	Exercices
	Exercice 1

