
Récursivité
Exercice 1
Formules naïves :

• x × y =


0 si y = 0
x si y = 1
x + (x × (y − 1)) si y > 1

• an =
{

1 si a = 0
a × an−1 si n > 0

Formules dichotomiques :

• x × y =


0 si y = 0
x si y = 1
2 × (x × y

2 ) si y > 1 et y pair
x + 2 × (x × y−1

2 ) si y > 1 et y impair

• an =


1 si a = 0
(a n

2 )2 si n > 0 et n pair
a × (a n−1

2 )2 si n > 0 et n impair

Les formules naïves sont de complexité O(y) et O(n) alors que les formules
dichotomiques sont de complexité O(log2(y)) et O(log2(n)), ce qui est plus
efficace.

Exercice 2

pgcd(a, b) =


pgcd(b, a) si b > a

pgcd(b, a mod b) si a mod b > 0
b si a mod b = 0

Exercice 3
let rec bezout a b = match a mod b with

| 1 -> 1, (a/b)
| r ->

let c, d = bezout b r in
let () = print_int c in
let () = print_newline () in
let () = print_int d in
let () = print_newline () in
c+(d*r), d

;;

1



Exercice 4
let rec ligne n = if n > 0 then (

print_string "*";
ligne (n-1)

)
;;

let rec escalier n = if n > 0 then (
escalier (n-1);
ligne n;
print_newline ()

)
;;

Exercice 5
let rec ligne n s = if n > 0 then (

print_string s;
ligne (n-1) s

)
;;

let rec triangle_h n m = if m > 0 then (
triangle_h n (m-1);
ligne (n-m) " ";
ligne ((2*m)-1) "*";
ligne (n-m) " ";
print_newline ()

)
;;

2


	Récursivité
	Exercice 1
	Exercice 2
	Exercice 3
	Exercice 4
	Exercice 5


