Merge branch 'main' into proper-json-schema

This commit is contained in:
MevLyshkin 2025-07-06 11:30:54 +02:00 committed by GitHub
commit 02ed81c75f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
34 changed files with 1094 additions and 1008 deletions

View File

@ -41,7 +41,7 @@ derive_more = { version = "2", default-features = false, features = ["from"] }
either = "1.13"
thread_local = "1"
uuid = { version = "1.13.1", features = ["v4"] }
smallvec = "1"
smallvec = { version = "1", default-features = false }
tracing = { version = "0.1", default-features = false, features = ["std"] }
[target.'cfg(target_arch = "wasm32")'.dependencies]

View File

@ -31,7 +31,7 @@ serde = { version = "1", default-features = false, features = ["derive"] }
thiserror = { version = "2", default-features = false }
downcast-rs = { version = "2", default-features = false, features = ["std"] }
derive_more = { version = "2", default-features = false, features = ["from"] }
smallvec = { version = "1.11", features = ["const_new"] }
smallvec = { version = "1", default-features = false, features = ["const_new"] }
[features]
default = []

View File

@ -1,39 +1,33 @@
use crate::{
core_3d::graph::Core3d,
tonemapping::{DebandDither, Tonemapping},
};
use crate::{primitives::Frustum, Camera, CameraProjection, OrthographicProjection, Projection};
use bevy_ecs::prelude::*;
use bevy_reflect::{std_traits::ReflectDefault, Reflect, ReflectDeserialize, ReflectSerialize};
use bevy_render::{
camera::{Camera, CameraRenderGraph, Exposure, Projection},
extract_component::ExtractComponent,
render_resource::{LoadOp, TextureUsages},
view::ColorGrading,
};
use bevy_transform::prelude::{GlobalTransform, Transform};
use serde::{Deserialize, Serialize};
use wgpu_types::{LoadOp, TextureUsages};
/// A 2D camera component. Enables the 2D render graph for a [`Camera`].
#[derive(Component, Default, Reflect, Clone)]
#[reflect(Component, Default, Clone)]
#[require(
Camera,
Projection::Orthographic(OrthographicProjection::default_2d()),
Frustum = OrthographicProjection::default_2d().compute_frustum(&GlobalTransform::from(Transform::default())),
)]
pub struct Camera2d;
/// A 3D camera component. Enables the main 3D render graph for a [`Camera`].
///
/// The camera coordinate space is right-handed X-right, Y-up, Z-back.
/// This means "forward" is -Z.
#[derive(Component, Reflect, Clone, ExtractComponent)]
#[extract_component_filter(With<Camera>)]
#[derive(Component, Reflect, Clone)]
#[reflect(Component, Default, Clone)]
#[require(
Camera,
DebandDither::Enabled,
CameraRenderGraph::new(Core3d),
Projection,
Tonemapping,
ColorGrading,
Exposure
)]
#[require(Camera, Projection)]
pub struct Camera3d {
/// The depth clear operation to perform for the main 3d pass.
pub depth_load_op: Camera3dDepthLoadOp,
/// The texture usages for the depth texture created for the main 3d pass.
pub depth_texture_usages: Camera3dDepthTextureUsage,
/// How many individual steps should be performed in the [`Transmissive3d`](crate::core_3d::Transmissive3d) pass.
/// How many individual steps should be performed in the `Transmissive3d` pass.
///
/// Roughly corresponds to how many “layers of transparency” are rendered for screen space
/// specular transmissive objects. Each step requires making one additional

View File

@ -1,12 +1,14 @@
#![expect(missing_docs, reason = "Not all docs are written yet, see #3492.")]
mod camera;
mod clear_color;
mod components;
pub mod primitives;
mod projection;
pub mod visibility;
pub use camera::*;
pub use clear_color::*;
pub use components::*;
pub use projection::*;
use bevy_app::{App, Plugin};

View File

@ -347,6 +347,63 @@ impl Frustum {
}
}
pub struct CubeMapFace {
pub target: Vec3,
pub up: Vec3,
}
// Cubemap faces are [+X, -X, +Y, -Y, +Z, -Z], per https://www.w3.org/TR/webgpu/#texture-view-creation
// Note: Cubemap coordinates are left-handed y-up, unlike the rest of Bevy.
// See https://registry.khronos.org/vulkan/specs/1.2/html/chap16.html#_cube_map_face_selection
//
// For each cubemap face, we take care to specify the appropriate target/up axis such that the rendered
// texture using Bevy's right-handed y-up coordinate space matches the expected cubemap face in
// left-handed y-up cubemap coordinates.
pub const CUBE_MAP_FACES: [CubeMapFace; 6] = [
// +X
CubeMapFace {
target: Vec3::X,
up: Vec3::Y,
},
// -X
CubeMapFace {
target: Vec3::NEG_X,
up: Vec3::Y,
},
// +Y
CubeMapFace {
target: Vec3::Y,
up: Vec3::Z,
},
// -Y
CubeMapFace {
target: Vec3::NEG_Y,
up: Vec3::NEG_Z,
},
// +Z (with left-handed conventions, pointing forwards)
CubeMapFace {
target: Vec3::NEG_Z,
up: Vec3::Y,
},
// -Z (with left-handed conventions, pointing backwards)
CubeMapFace {
target: Vec3::Z,
up: Vec3::Y,
},
];
pub fn face_index_to_name(face_index: usize) -> &'static str {
match face_index {
0 => "+x",
1 => "-x",
2 => "+y",
3 => "-y",
4 => "+z",
5 => "-z",
_ => "invalid",
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
pub struct CubemapFrusta {
@ -363,6 +420,42 @@ impl CubemapFrusta {
}
}
/// Cubemap layout defines the order of images in a packed cubemap image.
#[derive(Default, Reflect, Debug, Clone, Copy)]
pub enum CubemapLayout {
/// layout in a vertical cross format
/// ```text
/// +y
/// -x -z +x
/// -y
/// +z
/// ```
#[default]
CrossVertical = 0,
/// layout in a horizontal cross format
/// ```text
/// +y
/// -x -z +x +z
/// -y
/// ```
CrossHorizontal = 1,
/// layout in a vertical sequence
/// ```text
/// +x
/// -x
/// +y
/// -y
/// -z
/// +z
/// ```
SequenceVertical = 2,
/// layout in a horizontal sequence
/// ```text
/// +x -x +y -y -z +z
/// ```
SequenceHorizontal = 3,
}
#[derive(Component, Debug, Default, Reflect, Clone)]
#[reflect(Component, Default, Debug, Clone)]
pub struct CascadesFrusta {

View File

@ -3,7 +3,7 @@ mod render_layers;
use core::any::TypeId;
use bevy_ecs::entity::EntityHashSet;
use bevy_ecs::entity::{EntityHashMap, EntityHashSet};
use bevy_ecs::lifecycle::HookContext;
use bevy_ecs::world::DeferredWorld;
use derive_more::derive::{Deref, DerefMut};
@ -267,6 +267,50 @@ impl VisibleEntities {
}
}
/// Collection of mesh entities visible for 3D lighting.
///
/// This component contains all mesh entities visible from the current light view.
/// The collection is updated automatically by `bevy_pbr::SimulationLightSystems`.
#[derive(Component, Clone, Debug, Default, Reflect, Deref, DerefMut)]
#[reflect(Component, Debug, Default, Clone)]
pub struct VisibleMeshEntities {
#[reflect(ignore, clone)]
pub entities: Vec<Entity>,
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Debug, Default, Clone)]
pub struct CubemapVisibleEntities {
#[reflect(ignore, clone)]
data: [VisibleMeshEntities; 6],
}
impl CubemapVisibleEntities {
pub fn get(&self, i: usize) -> &VisibleMeshEntities {
&self.data[i]
}
pub fn get_mut(&mut self, i: usize) -> &mut VisibleMeshEntities {
&mut self.data[i]
}
pub fn iter(&self) -> impl DoubleEndedIterator<Item = &VisibleMeshEntities> {
self.data.iter()
}
pub fn iter_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut VisibleMeshEntities> {
self.data.iter_mut()
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Default, Clone)]
pub struct CascadesVisibleEntities {
/// Map of view entity to the visible entities for each cascade frustum.
#[reflect(ignore, clone)]
pub entities: EntityHashMap<Vec<VisibleMeshEntities>>,
}
#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemSet)]
pub enum VisibilitySystems {
/// Label for the [`calculate_bounds`], `calculate_bounds_2d` and `calculate_bounds_text2d` systems,
@ -303,6 +347,9 @@ impl Plugin for VisibilityPlugin {
.register_type::<RenderLayers>()
.register_type::<Visibility>()
.register_type::<VisibleEntities>()
.register_type::<CascadesVisibleEntities>()
.register_type::<VisibleMeshEntities>()
.register_type::<CubemapVisibleEntities>()
.register_required_components::<Mesh3d, Visibility>()
.register_required_components::<Mesh3d, VisibilityClass>()
.register_required_components::<Mesh2d, Visibility>()

View File

@ -27,6 +27,7 @@ bevy_derive = { path = "../bevy_derive", version = "0.17.0-dev" }
bevy_diagnostic = { path = "../bevy_diagnostic", version = "0.17.0-dev" }
bevy_ecs = { path = "../bevy_ecs", version = "0.17.0-dev" }
bevy_image = { path = "../bevy_image", version = "0.17.0-dev" }
bevy_camera = { path = "../bevy_camera", version = "0.17.0-dev" }
bevy_reflect = { path = "../bevy_reflect", version = "0.17.0-dev" }
bevy_render = { path = "../bevy_render", version = "0.17.0-dev" }
bevy_transform = { path = "../bevy_transform", version = "0.17.0-dev" }
@ -42,7 +43,7 @@ serde = { version = "1", features = ["derive"] }
bitflags = "2.3"
radsort = "0.1"
nonmax = "0.5"
smallvec = "1"
smallvec = { version = "1", default-features = false }
thiserror = { version = "2", default-features = false }
tracing = { version = "0.1", default-features = false, features = ["std"] }
bytemuck = { version = "1" }

View File

@ -1,26 +0,0 @@
use crate::{
core_2d::graph::Core2d,
tonemapping::{DebandDither, Tonemapping},
};
use bevy_ecs::prelude::*;
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use bevy_render::{
camera::{Camera, CameraProjection, CameraRenderGraph, OrthographicProjection, Projection},
extract_component::ExtractComponent,
primitives::Frustum,
};
use bevy_transform::prelude::{GlobalTransform, Transform};
/// A 2D camera component. Enables the 2D render graph for a [`Camera`].
#[derive(Component, Default, Reflect, Clone, ExtractComponent)]
#[extract_component_filter(With<Camera>)]
#[reflect(Component, Default, Clone)]
#[require(
Camera,
DebandDither,
CameraRenderGraph::new(Core2d),
Projection::Orthographic(OrthographicProjection::default_2d()),
Frustum = OrthographicProjection::default_2d().compute_frustum(&GlobalTransform::from(Transform::default())),
Tonemapping::None,
)]
pub struct Camera2d;

View File

@ -1,4 +1,3 @@
mod camera_2d;
mod main_opaque_pass_2d_node;
mod main_transparent_pass_2d_node;
@ -34,18 +33,22 @@ pub mod graph {
use core::ops::Range;
use bevy_asset::UntypedAssetId;
pub use bevy_camera::Camera2d;
use bevy_image::ToExtents;
use bevy_platform::collections::{HashMap, HashSet};
use bevy_render::{
batching::gpu_preprocessing::GpuPreprocessingMode,
camera::CameraRenderGraph,
render_phase::PhaseItemBatchSetKey,
view::{ExtractedView, RetainedViewEntity},
};
pub use camera_2d::*;
pub use main_opaque_pass_2d_node::*;
pub use main_transparent_pass_2d_node::*;
use crate::{tonemapping::TonemappingNode, upscaling::UpscalingNode};
use crate::{
tonemapping::{DebandDither, Tonemapping, TonemappingNode},
upscaling::UpscalingNode,
};
use bevy_app::{App, Plugin};
use bevy_ecs::prelude::*;
use bevy_math::FloatOrd;
@ -78,6 +81,11 @@ pub struct Core2dPlugin;
impl Plugin for Core2dPlugin {
fn build(&self, app: &mut App) {
app.register_type::<Camera2d>()
.register_required_components::<Camera2d, DebandDither>()
.register_required_components_with::<Camera2d, CameraRenderGraph>(|| {
CameraRenderGraph::new(Core2d)
})
.register_required_components_with::<Camera2d, Tonemapping>(|| Tonemapping::None)
.add_plugins(ExtractComponentPlugin::<Camera2d>::default());
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {

View File

@ -1,4 +1,3 @@
mod camera_3d;
mod main_opaque_pass_3d_node;
mod main_transmissive_pass_3d_node;
mod main_transparent_pass_3d_node;
@ -70,14 +69,17 @@ pub const DEPTH_TEXTURE_SAMPLING_SUPPORTED: bool = true;
use core::ops::Range;
pub use bevy_camera::{
Camera3d, Camera3dDepthLoadOp, Camera3dDepthTextureUsage, ScreenSpaceTransmissionQuality,
};
use bevy_render::{
batching::gpu_preprocessing::{GpuPreprocessingMode, GpuPreprocessingSupport},
camera::CameraRenderGraph,
experimental::occlusion_culling::OcclusionCulling,
mesh::allocator::SlabId,
render_phase::PhaseItemBatchSetKey,
view::{prepare_view_targets, NoIndirectDrawing, RetainedViewEntity},
};
pub use camera_3d::*;
pub use main_opaque_pass_3d_node::*;
pub use main_transparent_pass_3d_node::*;
@ -127,7 +129,7 @@ use crate::{
ViewPrepassTextures, MOTION_VECTOR_PREPASS_FORMAT, NORMAL_PREPASS_FORMAT,
},
skybox::SkyboxPlugin,
tonemapping::TonemappingNode,
tonemapping::{DebandDither, Tonemapping, TonemappingNode},
upscaling::UpscalingNode,
};
@ -139,6 +141,11 @@ impl Plugin for Core3dPlugin {
fn build(&self, app: &mut App) {
app.register_type::<Camera3d>()
.register_type::<ScreenSpaceTransmissionQuality>()
.register_required_components_with::<Camera3d, DebandDither>(|| DebandDither::Enabled)
.register_required_components_with::<Camera3d, CameraRenderGraph>(|| {
CameraRenderGraph::new(Core3d)
})
.register_required_components::<Camera3d, Tonemapping>()
.add_plugins((SkyboxPlugin, ExtractComponentPlugin::<Camera3d>::default()))
.add_systems(PostUpdate, check_msaa);

View File

@ -112,7 +112,10 @@ derive_more = { version = "2", default-features = false, features = [
] }
nonmax = { version = "0.5", default-features = false }
arrayvec = { version = "0.7.4", default-features = false, optional = true }
smallvec = { version = "1", features = ["union", "const_generics"] }
smallvec = { version = "1", default-features = false, features = [
"union",
"const_generics",
] }
indexmap = { version = "2.5.0", default-features = false }
variadics_please = { version = "1.1", default-features = false }
tracing = { version = "0.1", default-features = false, optional = true }

View File

@ -63,7 +63,7 @@ itertools = "0.14"
percent-encoding = "2.1"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0.140"
smallvec = "1.11"
smallvec = { version = "1", default-features = false }
tracing = { version = "0.1", default-features = false, features = ["std"] }
bevy_log = { path = "../bevy_log", version = "0.17.0-dev" }

View File

@ -24,7 +24,7 @@ libm = { version = "0.2", optional = true }
approx = { version = "0.5", default-features = false, optional = true }
rand = { version = "0.8", default-features = false, optional = true }
rand_distr = { version = "0.4.3", optional = true }
smallvec = { version = "1.11" }
smallvec = { version = "1", default-features = false }
bevy_reflect = { path = "../bevy_reflect", version = "0.17.0-dev", default-features = false, features = [
"glam",
], optional = true }

View File

@ -44,6 +44,7 @@ bevy_image = { path = "../bevy_image", version = "0.17.0-dev" }
bevy_math = { path = "../bevy_math", version = "0.17.0-dev" }
bevy_reflect = { path = "../bevy_reflect", version = "0.17.0-dev" }
bevy_render = { path = "../bevy_render", version = "0.17.0-dev" }
bevy_camera = { path = "../bevy_camera", version = "0.17.0-dev" }
bevy_tasks = { path = "../bevy_tasks", version = "0.17.0-dev", optional = true }
bevy_transform = { path = "../bevy_transform", version = "0.17.0-dev" }
bevy_utils = { path = "../bevy_utils", version = "0.17.0-dev" }
@ -70,7 +71,7 @@ bitvec = { version = "1", optional = true }
# direct dependency required for derive macro
bytemuck = { version = "1", features = ["derive", "must_cast"] }
radsort = "0.1"
smallvec = "1.6"
smallvec = { version = "1", default-features = false }
nonmax = "0.5"
static_assertions = "1"
tracing = { version = "0.1", default-features = false, features = ["std"] }

View File

@ -1,5 +1,10 @@
//! Assigning objects to clusters.
use bevy_camera::{
primitives::{Aabb, Frustum, HalfSpace, Sphere},
visibility::{RenderLayers, ViewVisibility},
Camera,
};
use bevy_ecs::{
entity::Entity,
query::{Has, With},
@ -9,25 +14,19 @@ use bevy_math::{
ops::{self, sin_cos},
Mat4, UVec3, Vec2, Vec3, Vec3A, Vec3Swizzles as _, Vec4, Vec4Swizzles as _,
};
use bevy_render::{
camera::Camera,
primitives::{Aabb, Frustum, HalfSpace, Sphere},
render_resource::BufferBindingType,
renderer::{RenderAdapter, RenderDevice},
view::{RenderLayers, ViewVisibility},
};
use bevy_transform::components::GlobalTransform;
use bevy_utils::prelude::default;
use tracing::warn;
use crate::{
decal::{self, clustered::ClusteredDecal},
prelude::EnvironmentMapLight,
ClusterConfig, ClusterFarZMode, Clusters, ExtractedPointLight, GlobalVisibleClusterableObjects,
LightProbe, PointLight, SpotLight, ViewClusterBindings, VisibleClusterableObjects,
VolumetricLight, CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT,
use super::{
ClusterConfig, ClusterFarZMode, ClusteredDecal, Clusters, GlobalClusterSettings,
GlobalVisibleClusterableObjects, ViewClusterBindings, VisibleClusterableObjects,
MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS,
};
use crate::{
prelude::EnvironmentMapLight, ExtractedPointLight, LightProbe, PointLight, SpotLight,
VolumetricLight,
};
const NDC_MIN: Vec2 = Vec2::NEG_ONE;
const NDC_MAX: Vec2 = Vec2::ONE;
@ -180,9 +179,9 @@ pub(crate) fn assign_objects_to_clusters(
mut clusterable_objects: Local<Vec<ClusterableObjectAssignmentData>>,
mut cluster_aabb_spheres: Local<Vec<Option<Sphere>>>,
mut max_clusterable_objects_warning_emitted: Local<bool>,
(render_device, render_adapter): (Option<Res<RenderDevice>>, Option<Res<RenderAdapter>>),
global_cluster_settings: Option<Res<GlobalClusterSettings>>,
) {
let (Some(render_device), Some(render_adapter)) = (render_device, render_adapter) else {
let Some(global_cluster_settings) = global_cluster_settings else {
return;
};
@ -229,20 +228,13 @@ pub(crate) fn assign_objects_to_clusters(
),
);
let clustered_forward_buffer_binding_type =
render_device.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT);
let supports_storage_buffers = matches!(
clustered_forward_buffer_binding_type,
BufferBindingType::Storage { .. }
);
// Gather up light probes, but only if we're clustering them.
//
// UBOs aren't large enough to hold indices for light probes, so we can't
// cluster light probes on such platforms (mainly WebGL 2). Besides, those
// platforms typically lack bindless textures, so multiple light probes
// wouldn't be supported anyhow.
if supports_storage_buffers {
if global_cluster_settings.supports_storage_buffers {
clusterable_objects.extend(light_probes_query.iter().map(
|(entity, transform, is_reflection_probe)| ClusterableObjectAssignmentData {
entity,
@ -259,7 +251,7 @@ pub(crate) fn assign_objects_to_clusters(
}
// Add decals if the current platform supports them.
if decal::clustered::clustered_decals_are_usable(&render_device, &render_adapter) {
if global_cluster_settings.clustered_decals_are_usable {
clusterable_objects.extend(decals_query.iter().map(|(entity, transform)| {
ClusterableObjectAssignmentData {
entity,
@ -272,7 +264,7 @@ pub(crate) fn assign_objects_to_clusters(
}
if clusterable_objects.len() > MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS
&& !supports_storage_buffers
&& !global_cluster_settings.supports_storage_buffers
{
clusterable_objects.sort_by_cached_key(|clusterable_object| {
(
@ -392,7 +384,7 @@ pub(crate) fn assign_objects_to_clusters(
// NOTE: Ensure the far_z is at least as far as the first_depth_slice to avoid clustering problems.
let far_z = far_z.max(first_slice_depth);
let cluster_factors = crate::calculate_cluster_factors(
let cluster_factors = calculate_cluster_factors(
first_slice_depth,
far_z,
requested_cluster_dimensions.z as f32,
@ -882,6 +874,23 @@ pub(crate) fn assign_objects_to_clusters(
}
}
pub fn calculate_cluster_factors(
near: f32,
far: f32,
z_slices: f32,
is_orthographic: bool,
) -> Vec2 {
if is_orthographic {
Vec2::new(-near, z_slices / (-far - -near))
} else {
let z_slices_of_ln_zfar_over_znear = (z_slices - 1.0) / ops::ln(far / near);
Vec2::new(
z_slices_of_ln_zfar_over_znear,
ops::ln(near) * z_slices_of_ln_zfar_over_znear,
)
}
}
fn compute_aabb_for_cluster(
z_near: f32,
z_far: f32,

View File

@ -2,6 +2,8 @@
use core::num::NonZero;
use bevy_asset::Handle;
use bevy_camera::visibility;
use bevy_core_pipeline::core_3d::Camera3d;
use bevy_ecs::{
component::Component,
@ -12,23 +14,27 @@ use bevy_ecs::{
system::{Commands, Query, Res},
world::{FromWorld, World},
};
use bevy_image::Image;
use bevy_math::{uvec4, AspectRatio, UVec2, UVec3, UVec4, Vec3Swizzles as _, Vec4};
use bevy_platform::collections::HashSet;
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use bevy_render::{
camera::Camera,
extract_component::ExtractComponent,
render_resource::{
BindingResource, BufferBindingType, ShaderSize as _, ShaderType, StorageBuffer,
UniformBuffer,
},
renderer::{RenderDevice, RenderQueue},
renderer::{RenderAdapter, RenderDevice, RenderQueue},
sync_world::RenderEntity,
view::{Visibility, VisibilityClass},
Extract,
};
use bevy_transform::components::Transform;
use tracing::warn;
pub(crate) use crate::cluster::assign::assign_objects_to_clusters;
use crate::MeshPipeline;
use crate::{LightVisibilityClass, MeshPipeline};
pub(crate) mod assign;
@ -63,6 +69,27 @@ const CLUSTER_COUNT_MASK: u32 = (1 << CLUSTER_COUNT_SIZE) - 1;
// The z-slicing method mentioned in the aortiz article is originally from Tiago Sousa's Siggraph 2016 talk about Doom 2016:
// http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf
#[derive(Resource)]
pub struct GlobalClusterSettings {
pub supports_storage_buffers: bool,
pub clustered_decals_are_usable: bool,
}
pub(crate) fn make_global_cluster_settings(world: &World) -> GlobalClusterSettings {
let device = world.resource::<RenderDevice>();
let adapter = world.resource::<RenderAdapter>();
let clustered_decals_are_usable =
crate::decal::clustered::clustered_decals_are_usable(device, adapter);
let supports_storage_buffers = matches!(
device.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT),
BufferBindingType::Storage { .. }
);
GlobalClusterSettings {
supports_storage_buffers,
clustered_decals_are_usable,
}
}
/// Configure the far z-plane mode used for the furthest depth slice for clustered forward
/// rendering
#[derive(Debug, Copy, Clone, Reflect)]
@ -209,6 +236,34 @@ struct ClusterableObjectCounts {
decals: u32,
}
/// An object that projects a decal onto surfaces within its bounds.
///
/// Conceptually, a clustered decal is a 1×1×1 cube centered on its origin. It
/// projects the given [`Self::image`] onto surfaces in the -Z direction (thus
/// you may find [`Transform::looking_at`] useful).
///
/// Clustered decals are the highest-quality types of decals that Bevy supports,
/// but they require bindless textures. This means that they presently can't be
/// used on WebGL 2, WebGPU, macOS, or iOS. Bevy's clustered decals can be used
/// with forward or deferred rendering and don't require a prepass.
#[derive(Component, Debug, Clone, Reflect, ExtractComponent)]
#[reflect(Component, Debug, Clone)]
#[require(Transform, Visibility, VisibilityClass)]
#[component(on_add = visibility::add_visibility_class::<LightVisibilityClass>)]
pub struct ClusteredDecal {
/// The image that the clustered decal projects.
///
/// This must be a 2D image. If it has an alpha channel, it'll be alpha
/// blended with the underlying surface and/or other decals. All decal
/// images in the scene must use the same sampler.
pub image: Handle<Image>,
/// An application-specific tag you can use for any purpose you want.
///
/// See the `clustered_decals` example for an example of use.
pub tag: u32,
}
enum ExtractedClusterableObjectElement {
ClusterHeader(ClusterableObjectCounts),
ClusterableObjectEntity(Entity),

View File

@ -1,19 +1,12 @@
pub use bevy_camera::visibility::{
CascadesVisibleEntities, CubemapVisibleEntities, VisibleMeshEntities,
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::component::Component;
use bevy_ecs::entity::{Entity, EntityHashMap};
use bevy_ecs::reflect::ReflectComponent;
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use bevy_render::sync_world::MainEntity;
/// Collection of mesh entities visible for 3D lighting.
///
/// This component contains all mesh entities visible from the current light view.
/// The collection is updated automatically by [`crate::SimulationLightSystems`].
#[derive(Component, Clone, Debug, Default, Reflect, Deref, DerefMut)]
#[reflect(Component, Debug, Default, Clone)]
pub struct VisibleMeshEntities {
#[reflect(ignore, clone)]
pub entities: Vec<Entity>,
}
#[derive(Component, Clone, Debug, Default, Reflect, Deref, DerefMut)]
#[reflect(Component, Debug, Default, Clone)]
@ -22,31 +15,6 @@ pub struct RenderVisibleMeshEntities {
pub entities: Vec<(Entity, MainEntity)>,
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Debug, Default, Clone)]
pub struct CubemapVisibleEntities {
#[reflect(ignore, clone)]
data: [VisibleMeshEntities; 6],
}
impl CubemapVisibleEntities {
pub fn get(&self, i: usize) -> &VisibleMeshEntities {
&self.data[i]
}
pub fn get_mut(&mut self, i: usize) -> &mut VisibleMeshEntities {
&mut self.data[i]
}
pub fn iter(&self) -> impl DoubleEndedIterator<Item = &VisibleMeshEntities> {
self.data.iter()
}
pub fn iter_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut VisibleMeshEntities> {
self.data.iter_mut()
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Debug, Default, Clone)]
pub struct RenderCubemapVisibleEntities {
@ -72,14 +40,6 @@ impl RenderCubemapVisibleEntities {
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Default, Clone)]
pub struct CascadesVisibleEntities {
/// Map of view entity to the visible entities for each cascade frustum.
#[reflect(ignore, clone)]
pub entities: EntityHashMap<Vec<VisibleMeshEntities>>,
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Default, Clone)]
pub struct RenderCascadesVisibleEntities {

View File

@ -17,12 +17,10 @@
use core::{num::NonZero, ops::Deref};
use bevy_app::{App, Plugin};
use bevy_asset::{AssetId, Handle};
use bevy_asset::AssetId;
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
component::Component,
entity::{Entity, EntityHashMap},
prelude::ReflectComponent,
query::With,
resource::Resource,
schedule::IntoScheduleConfigs as _,
@ -31,9 +29,9 @@ use bevy_ecs::{
use bevy_image::Image;
use bevy_math::Mat4;
use bevy_platform::collections::HashMap;
use bevy_reflect::Reflect;
pub use bevy_render::primitives::CubemapLayout;
use bevy_render::{
extract_component::{ExtractComponent, ExtractComponentPlugin},
extract_component::ExtractComponentPlugin,
load_shader_library,
render_asset::RenderAssets,
render_resource::{
@ -43,16 +41,15 @@ use bevy_render::{
renderer::{RenderAdapter, RenderDevice, RenderQueue},
sync_world::RenderEntity,
texture::{FallbackImage, GpuImage},
view::{self, ViewVisibility, Visibility, VisibilityClass},
view::ViewVisibility,
Extract, ExtractSchedule, Render, RenderApp, RenderSystems,
};
use bevy_transform::{components::GlobalTransform, prelude::Transform};
use bevy_transform::components::GlobalTransform;
use bytemuck::{Pod, Zeroable};
use crate::{
binding_arrays_are_usable, prepare_lights, DirectionalLight, GlobalClusterableObjectMeta,
LightVisibilityClass, PointLight, SpotLight,
};
pub use crate::ClusteredDecal;
use crate::{binding_arrays_are_usable, prepare_lights, GlobalClusterableObjectMeta};
pub use crate::{DirectionalLightTexture, PointLightTexture, SpotLightTexture};
/// The maximum number of decals that can be present in a view.
///
@ -67,108 +64,6 @@ pub(crate) const MAX_VIEW_DECALS: usize = 8;
/// can still be added to a scene, but they won't project any decals.
pub struct ClusteredDecalPlugin;
/// An object that projects a decal onto surfaces within its bounds.
///
/// Conceptually, a clustered decal is a 1×1×1 cube centered on its origin. It
/// projects the given [`Self::image`] onto surfaces in the -Z direction (thus
/// you may find [`Transform::looking_at`] useful).
///
/// Clustered decals are the highest-quality types of decals that Bevy supports,
/// but they require bindless textures. This means that they presently can't be
/// used on WebGL 2, WebGPU, macOS, or iOS. Bevy's clustered decals can be used
/// with forward or deferred rendering and don't require a prepass.
#[derive(Component, Debug, Clone, Reflect, ExtractComponent)]
#[reflect(Component, Debug, Clone)]
#[require(Transform, Visibility, VisibilityClass)]
#[component(on_add = view::add_visibility_class::<LightVisibilityClass>)]
pub struct ClusteredDecal {
/// The image that the clustered decal projects.
///
/// This must be a 2D image. If it has an alpha channel, it'll be alpha
/// blended with the underlying surface and/or other decals. All decal
/// images in the scene must use the same sampler.
pub image: Handle<Image>,
/// An application-specific tag you can use for any purpose you want.
///
/// See the `clustered_decals` example for an example of use.
pub tag: u32,
}
/// Cubemap layout defines the order of images in a packed cubemap image.
#[derive(Default, Reflect, Debug, Clone, Copy)]
pub enum CubemapLayout {
/// layout in a vertical cross format
/// ```text
/// +y
/// -x -z +x
/// -y
/// +z
/// ```
#[default]
CrossVertical = 0,
/// layout in a horizontal cross format
/// ```text
/// +y
/// -x -z +x +z
/// -y
/// ```
CrossHorizontal = 1,
/// layout in a vertical sequence
/// ```text
/// +x
/// -y
/// +y
/// -y
/// -z
/// +z
/// ```
SequenceVertical = 2,
/// layout in a horizontal sequence
/// ```text
/// +x -y +y -y -z +z
/// ```
SequenceHorizontal = 3,
}
/// Add to a [`PointLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
#[derive(Clone, Component, Debug, Reflect)]
#[reflect(Component, Debug)]
#[require(PointLight)]
pub struct PointLightTexture {
/// The texture image. Only the R channel is read.
pub image: Handle<Image>,
/// The cubemap layout. The image should be a packed cubemap in one of the formats described by the [`CubemapLayout`] enum.
pub cubemap_layout: CubemapLayout,
}
/// Add to a [`SpotLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
#[derive(Clone, Component, Debug, Reflect)]
#[reflect(Component, Debug)]
#[require(SpotLight)]
pub struct SpotLightTexture {
/// The texture image. Only the R channel is read.
/// Note the border of the image should be entirely black to avoid leaking light.
pub image: Handle<Image>,
}
/// Add to a [`DirectionalLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
#[derive(Clone, Component, Debug, Reflect)]
#[reflect(Component, Debug)]
#[require(DirectionalLight)]
pub struct DirectionalLightTexture {
/// The texture image. Only the R channel is read.
pub image: Handle<Image>,
/// Whether to tile the image infinitely, or use only a single tile centered at the light's translation
pub tiled: bool,
}
/// Stores information about all the clustered decals in the scene.
#[derive(Resource, Default)]
pub struct RenderClusteredDecals {

View File

@ -122,6 +122,7 @@ pub mod graph {
}
}
pub use crate::cascade::{CascadeShadowConfig, CascadeShadowConfigBuilder, Cascades};
use crate::{deferred::DeferredPbrLightingPlugin, graph::NodePbr};
use bevy_app::prelude::*;
use bevy_asset::{AssetApp, AssetPath, Assets, Handle};
@ -130,19 +131,16 @@ use bevy_ecs::prelude::*;
use bevy_image::Image;
use bevy_render::{
alpha::AlphaMode,
camera::{sort_cameras, CameraUpdateSystems, Projection},
camera::{sort_cameras, Projection},
extract_component::ExtractComponentPlugin,
extract_resource::ExtractResourcePlugin,
load_shader_library,
render_graph::RenderGraph,
render_resource::ShaderRef,
sync_component::SyncComponentPlugin,
view::VisibilitySystems,
ExtractSchedule, Render, RenderApp, RenderDebugFlags, RenderSystems,
};
use bevy_transform::TransformSystems;
use std::path::PathBuf;
fn shader_ref(path: PathBuf) -> ShaderRef {
@ -205,25 +203,8 @@ impl Plugin for PbrPlugin {
load_shader_library!(app, "meshlet/dummy_visibility_buffer_resolve.wgsl");
app.register_asset_reflect::<StandardMaterial>()
.register_type::<AmbientLight>()
.register_type::<CascadeShadowConfig>()
.register_type::<Cascades>()
.register_type::<CascadesVisibleEntities>()
.register_type::<VisibleMeshEntities>()
.register_type::<ClusterConfig>()
.register_type::<CubemapVisibleEntities>()
.register_type::<DirectionalLight>()
.register_type::<DirectionalLightShadowMap>()
.register_type::<NotShadowCaster>()
.register_type::<NotShadowReceiver>()
.register_type::<PointLight>()
.register_type::<PointLightShadowMap>()
.register_type::<SpotLight>()
.register_type::<ShadowFilteringMethod>()
.init_resource::<AmbientLight>()
.init_resource::<GlobalVisibleClusterableObjects>()
.init_resource::<DirectionalLightShadowMap>()
.init_resource::<PointLightShadowMap>()
.register_type::<DefaultOpaqueRendererMethod>()
.init_resource::<DefaultOpaqueRendererMethod>()
.add_plugins((
@ -246,7 +227,7 @@ impl Plugin for PbrPlugin {
ExtractComponentPlugin::<ShadowFilteringMethod>::default(),
LightmapPlugin,
LightProbePlugin,
PbrProjectionPlugin,
LightPlugin,
GpuMeshPreprocessPlugin {
use_gpu_instance_buffer_builder: self.use_gpu_instance_buffer_builder,
},
@ -269,64 +250,6 @@ impl Plugin for PbrPlugin {
SimulationLightSystems::AssignLightsToClusters,
)
.chain(),
)
.configure_sets(
PostUpdate,
SimulationLightSystems::UpdateDirectionalLightCascades
.ambiguous_with(SimulationLightSystems::UpdateDirectionalLightCascades),
)
.configure_sets(
PostUpdate,
SimulationLightSystems::CheckLightVisibility
.ambiguous_with(SimulationLightSystems::CheckLightVisibility),
)
.add_systems(
PostUpdate,
(
add_clusters
.in_set(SimulationLightSystems::AddClusters)
.after(CameraUpdateSystems),
assign_objects_to_clusters
.in_set(SimulationLightSystems::AssignLightsToClusters)
.after(TransformSystems::Propagate)
.after(VisibilitySystems::CheckVisibility)
.after(CameraUpdateSystems),
clear_directional_light_cascades
.in_set(SimulationLightSystems::UpdateDirectionalLightCascades)
.after(TransformSystems::Propagate)
.after(CameraUpdateSystems),
update_directional_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
// This must run after CheckVisibility because it relies on `ViewVisibility`
.after(VisibilitySystems::CheckVisibility)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::UpdateDirectionalLightCascades)
// We assume that no entity will be both a directional light and a spot light,
// so these systems will run independently of one another.
// FIXME: Add an archetype invariant for this https://github.com/bevyengine/bevy/issues/1481.
.ambiguous_with(update_spot_light_frusta),
update_point_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::AssignLightsToClusters),
update_spot_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::AssignLightsToClusters),
(
check_dir_light_mesh_visibility,
check_point_light_mesh_visibility,
)
.in_set(SimulationLightSystems::CheckLightVisibility)
.after(VisibilitySystems::CalculateBounds)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::UpdateLightFrusta)
// NOTE: This MUST be scheduled AFTER the core renderer visibility check
// because that resets entity `ViewVisibility` for the first view
// which would override any results from this otherwise
.after(VisibilitySystems::CheckVisibility)
.before(VisibilitySystems::MarkNewlyHiddenEntitiesInvisible),
),
);
if self.add_default_deferred_lighting_plugin {
@ -399,19 +322,8 @@ impl Plugin for PbrPlugin {
.init_resource::<ShadowSamplers>()
.init_resource::<GlobalClusterableObjectMeta>()
.init_resource::<FallbackBindlessResources>();
}
}
/// Camera projection PBR functionality.
#[derive(Default)]
pub struct PbrProjectionPlugin;
impl Plugin for PbrProjectionPlugin {
fn build(&self, app: &mut App) {
app.add_systems(
PostUpdate,
build_directional_light_cascades
.in_set(SimulationLightSystems::UpdateDirectionalLightCascades)
.after(clear_directional_light_cascades),
);
let global_cluster_settings = make_global_cluster_settings(render_app.world());
app.insert_resource(global_cluster_settings);
}
}

View File

@ -1,8 +1,12 @@
use super::*;
use bevy_camera::Camera;
use bevy_color::Color;
use bevy_ecs::prelude::*;
use bevy_reflect::prelude::*;
use bevy_render::{extract_component::ExtractComponent, extract_resource::ExtractResource};
/// An ambient light, which lights the entire scene equally.
///
/// This resource is inserted by the [`PbrPlugin`] and by default it is set to a low ambient light.
/// This resource is inserted by the [`LightPlugin`] and by default it is set to a low ambient light.
///
/// It can also be added to a camera to override the resource (or default) ambient for that camera only.
///
@ -17,6 +21,8 @@ use super::*;
/// ambient_light.brightness = 100.0;
/// }
/// ```
///
/// [`LightPlugin`]: crate::LightPlugin
#[derive(Resource, Component, Clone, Debug, ExtractResource, ExtractComponent, Reflect)]
#[reflect(Resource, Component, Debug, Default, Clone)]
#[require(Camera)]

View File

@ -0,0 +1,333 @@
pub use bevy_camera::primitives::{face_index_to_name, CubeMapFace, CUBE_MAP_FACES};
use bevy_camera::{Camera, Projection};
use bevy_ecs::{entity::EntityHashMap, prelude::*};
use bevy_math::{ops, Mat4, Vec3A, Vec4};
use bevy_reflect::prelude::*;
use bevy_transform::components::GlobalTransform;
use crate::{DirectionalLight, DirectionalLightShadowMap};
/// Controls how cascaded shadow mapping works.
/// Prefer using [`CascadeShadowConfigBuilder`] to construct an instance.
///
/// ```
/// # use bevy_pbr::CascadeShadowConfig;
/// # use bevy_pbr::CascadeShadowConfigBuilder;
/// # use bevy_utils::default;
/// #
/// let config: CascadeShadowConfig = CascadeShadowConfigBuilder {
/// maximum_distance: 100.0,
/// ..default()
/// }.into();
/// ```
#[derive(Component, Clone, Debug, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
pub struct CascadeShadowConfig {
/// The (positive) distance to the far boundary of each cascade.
pub bounds: Vec<f32>,
/// The proportion of overlap each cascade has with the previous cascade.
pub overlap_proportion: f32,
/// The (positive) distance to the near boundary of the first cascade.
pub minimum_distance: f32,
}
impl Default for CascadeShadowConfig {
fn default() -> Self {
CascadeShadowConfigBuilder::default().into()
}
}
fn calculate_cascade_bounds(
num_cascades: usize,
nearest_bound: f32,
shadow_maximum_distance: f32,
) -> Vec<f32> {
if num_cascades == 1 {
return vec![shadow_maximum_distance];
}
let base = ops::powf(
shadow_maximum_distance / nearest_bound,
1.0 / (num_cascades - 1) as f32,
);
(0..num_cascades)
.map(|i| nearest_bound * ops::powf(base, i as f32))
.collect()
}
/// Builder for [`CascadeShadowConfig`].
pub struct CascadeShadowConfigBuilder {
/// The number of shadow cascades.
/// More cascades increases shadow quality by mitigating perspective aliasing - a phenomenon where areas
/// nearer the camera are covered by fewer shadow map texels than areas further from the camera, causing
/// blocky looking shadows.
///
/// This does come at the cost increased rendering overhead, however this overhead is still less
/// than if you were to use fewer cascades and much larger shadow map textures to achieve the
/// same quality level.
///
/// In case rendered geometry covers a relatively narrow and static depth relative to camera, it may
/// make more sense to use fewer cascades and a higher resolution shadow map texture as perspective aliasing
/// is not as much an issue. Be sure to adjust `minimum_distance` and `maximum_distance` appropriately.
pub num_cascades: usize,
/// The minimum shadow distance, which can help improve the texel resolution of the first cascade.
/// Areas nearer to the camera than this will likely receive no shadows.
///
/// NOTE: Due to implementation details, this usually does not impact shadow quality as much as
/// `first_cascade_far_bound` and `maximum_distance`. At many view frustum field-of-views, the
/// texel resolution of the first cascade is dominated by the width / height of the view frustum plane
/// at `first_cascade_far_bound` rather than the depth of the frustum from `minimum_distance` to
/// `first_cascade_far_bound`.
pub minimum_distance: f32,
/// The maximum shadow distance.
/// Areas further from the camera than this will likely receive no shadows.
pub maximum_distance: f32,
/// Sets the far bound of the first cascade, relative to the view origin.
/// In-between cascades will be exponentially spaced relative to the maximum shadow distance.
/// NOTE: This is ignored if there is only one cascade, the maximum distance takes precedence.
pub first_cascade_far_bound: f32,
/// Sets the overlap proportion between cascades.
/// The overlap is used to make the transition from one cascade's shadow map to the next
/// less abrupt by blending between both shadow maps.
pub overlap_proportion: f32,
}
impl CascadeShadowConfigBuilder {
/// Returns the cascade config as specified by this builder.
pub fn build(&self) -> CascadeShadowConfig {
assert!(
self.num_cascades > 0,
"num_cascades must be positive, but was {}",
self.num_cascades
);
assert!(
self.minimum_distance >= 0.0,
"maximum_distance must be non-negative, but was {}",
self.minimum_distance
);
assert!(
self.num_cascades == 1 || self.minimum_distance < self.first_cascade_far_bound,
"minimum_distance must be less than first_cascade_far_bound, but was {}",
self.minimum_distance
);
assert!(
self.maximum_distance > self.minimum_distance,
"maximum_distance must be greater than minimum_distance, but was {}",
self.maximum_distance
);
assert!(
(0.0..1.0).contains(&self.overlap_proportion),
"overlap_proportion must be in [0.0, 1.0) but was {}",
self.overlap_proportion
);
CascadeShadowConfig {
bounds: calculate_cascade_bounds(
self.num_cascades,
self.first_cascade_far_bound,
self.maximum_distance,
),
overlap_proportion: self.overlap_proportion,
minimum_distance: self.minimum_distance,
}
}
}
impl Default for CascadeShadowConfigBuilder {
fn default() -> Self {
// The defaults are chosen to be similar to be Unity, Unreal, and Godot.
// Unity: first cascade far bound = 10.05, maximum distance = 150.0
// Unreal Engine 5: maximum distance = 200.0
// Godot: first cascade far bound = 10.0, maximum distance = 100.0
Self {
// Currently only support one cascade in WebGL 2.
num_cascades: if cfg!(all(
feature = "webgl",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
1
} else {
4
},
minimum_distance: 0.1,
maximum_distance: 150.0,
first_cascade_far_bound: 10.0,
overlap_proportion: 0.2,
}
}
}
impl From<CascadeShadowConfigBuilder> for CascadeShadowConfig {
fn from(builder: CascadeShadowConfigBuilder) -> Self {
builder.build()
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Debug, Default, Clone)]
pub struct Cascades {
/// Map from a view to the configuration of each of its [`Cascade`]s.
pub cascades: EntityHashMap<Vec<Cascade>>,
}
#[derive(Clone, Debug, Default, Reflect)]
#[reflect(Clone, Default)]
pub struct Cascade {
/// The transform of the light, i.e. the view to world matrix.
pub world_from_cascade: Mat4,
/// The orthographic projection for this cascade.
pub clip_from_cascade: Mat4,
/// The view-projection matrix for this cascade, converting world space into light clip space.
/// Importantly, this is derived and stored separately from `view_transform` and `projection` to
/// ensure shadow stability.
pub clip_from_world: Mat4,
/// Size of each shadow map texel in world units.
pub texel_size: f32,
}
pub fn clear_directional_light_cascades(mut lights: Query<(&DirectionalLight, &mut Cascades)>) {
for (directional_light, mut cascades) in lights.iter_mut() {
if !directional_light.shadows_enabled {
continue;
}
cascades.cascades.clear();
}
}
pub fn build_directional_light_cascades(
directional_light_shadow_map: Res<DirectionalLightShadowMap>,
views: Query<(Entity, &GlobalTransform, &Projection, &Camera)>,
mut lights: Query<(
&GlobalTransform,
&DirectionalLight,
&CascadeShadowConfig,
&mut Cascades,
)>,
) {
let views = views
.iter()
.filter_map(|(entity, transform, projection, camera)| {
if camera.is_active {
Some((entity, projection, transform.to_matrix()))
} else {
None
}
})
.collect::<Vec<_>>();
for (transform, directional_light, cascades_config, mut cascades) in &mut lights {
if !directional_light.shadows_enabled {
continue;
}
// It is very important to the numerical and thus visual stability of shadows that
// light_to_world has orthogonal upper-left 3x3 and zero translation.
// Even though only the direction (i.e. rotation) of the light matters, we don't constrain
// users to not change any other aspects of the transform - there's no guarantee
// `transform.to_matrix()` will give us a matrix with our desired properties.
// Instead, we directly create a good matrix from just the rotation.
let world_from_light = Mat4::from_quat(transform.compute_transform().rotation);
let light_to_world_inverse = world_from_light.inverse();
for (view_entity, projection, view_to_world) in views.iter().copied() {
let camera_to_light_view = light_to_world_inverse * view_to_world;
let view_cascades = cascades_config
.bounds
.iter()
.enumerate()
.map(|(idx, far_bound)| {
// Negate bounds as -z is camera forward direction.
let z_near = if idx > 0 {
(1.0 - cascades_config.overlap_proportion)
* -cascades_config.bounds[idx - 1]
} else {
-cascades_config.minimum_distance
};
let z_far = -far_bound;
let corners = projection.get_frustum_corners(z_near, z_far);
calculate_cascade(
corners,
directional_light_shadow_map.size as f32,
world_from_light,
camera_to_light_view,
)
})
.collect();
cascades.cascades.insert(view_entity, view_cascades);
}
}
}
/// Returns a [`Cascade`] for the frustum defined by `frustum_corners`.
///
/// The corner vertices should be specified in the following order:
/// first the bottom right, top right, top left, bottom left for the near plane, then similar for the far plane.
fn calculate_cascade(
frustum_corners: [Vec3A; 8],
cascade_texture_size: f32,
world_from_light: Mat4,
light_from_camera: Mat4,
) -> Cascade {
let mut min = Vec3A::splat(f32::MAX);
let mut max = Vec3A::splat(f32::MIN);
for corner_camera_view in frustum_corners {
let corner_light_view = light_from_camera.transform_point3a(corner_camera_view);
min = min.min(corner_light_view);
max = max.max(corner_light_view);
}
// NOTE: Use the larger of the frustum slice far plane diagonal and body diagonal lengths as this
// will be the maximum possible projection size. Use the ceiling to get an integer which is
// very important for floating point stability later. It is also important that these are
// calculated using the original camera space corner positions for floating point precision
// as even though the lengths using corner_light_view above should be the same, precision can
// introduce small but significant differences.
// NOTE: The size remains the same unless the view frustum or cascade configuration is modified.
let cascade_diameter = (frustum_corners[0] - frustum_corners[6])
.length()
.max((frustum_corners[4] - frustum_corners[6]).length())
.ceil();
// NOTE: If we ensure that cascade_texture_size is a power of 2, then as we made cascade_diameter an
// integer, cascade_texel_size is then an integer multiple of a power of 2 and can be
// exactly represented in a floating point value.
let cascade_texel_size = cascade_diameter / cascade_texture_size;
// NOTE: For shadow stability it is very important that the near_plane_center is at integer
// multiples of the texel size to be exactly representable in a floating point value.
let near_plane_center = Vec3A::new(
(0.5 * (min.x + max.x) / cascade_texel_size).floor() * cascade_texel_size,
(0.5 * (min.y + max.y) / cascade_texel_size).floor() * cascade_texel_size,
// NOTE: max.z is the near plane for right-handed y-up
max.z,
);
// It is critical for `world_to_cascade` to be stable. So rather than forming `cascade_to_world`
// and inverting it, which risks instability due to numerical precision, we directly form
// `world_to_cascade` as the reference material suggests.
let light_to_world_transpose = world_from_light.transpose();
let cascade_from_world = Mat4::from_cols(
light_to_world_transpose.x_axis,
light_to_world_transpose.y_axis,
light_to_world_transpose.z_axis,
(-near_plane_center).extend(1.0),
);
// Right-handed orthographic projection, centered at `near_plane_center`.
// NOTE: This is different from the reference material, as we use reverse Z.
let r = (max.z - min.z).recip();
let clip_from_cascade = Mat4::from_cols(
Vec4::new(2.0 / cascade_diameter, 0.0, 0.0, 0.0),
Vec4::new(0.0, 2.0 / cascade_diameter, 0.0, 0.0),
Vec4::new(0.0, 0.0, r, 0.0),
Vec4::new(0.0, 0.0, 1.0, 1.0),
);
let clip_from_world = clip_from_cascade * cascade_from_world;
Cascade {
world_from_cascade: cascade_from_world.inverse(),
clip_from_cascade,
clip_from_world,
texel_size: cascade_texel_size,
}
}

View File

@ -1,6 +1,16 @@
use bevy_render::view::{self, Visibility};
use bevy_asset::Handle;
use bevy_camera::{
primitives::{CascadesFrusta, Frustum},
visibility::{self, CascadesVisibleEntities, ViewVisibility, Visibility, VisibilityClass},
Camera,
};
use bevy_color::Color;
use bevy_ecs::prelude::*;
use bevy_image::Image;
use bevy_reflect::prelude::*;
use bevy_transform::components::Transform;
use super::*;
use crate::{cascade::CascadeShadowConfig, light_consts, Cascades, LightVisibilityClass};
/// A Directional light.
///
@ -53,7 +63,7 @@ use super::*;
Visibility,
VisibilityClass
)]
#[component(on_add = view::add_visibility_class::<LightVisibilityClass>)]
#[component(on_add = visibility::add_visibility_class::<LightVisibilityClass>)]
pub struct DirectionalLight {
/// The color of the light.
///
@ -90,6 +100,8 @@ pub struct DirectionalLight {
///
/// Note that soft shadows are significantly more expensive to render than
/// hard shadows.
///
/// [`ShadowFilteringMethod::Temporal`]: crate::ShadowFilteringMethod::Temporal
#[cfg(feature = "experimental_pbr_pcss")]
pub soft_shadow_size: Option<f32>,
@ -141,3 +153,77 @@ impl DirectionalLight {
pub const DEFAULT_SHADOW_DEPTH_BIAS: f32 = 0.02;
pub const DEFAULT_SHADOW_NORMAL_BIAS: f32 = 1.8;
}
/// Add to a [`DirectionalLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
#[derive(Clone, Component, Debug, Reflect)]
#[reflect(Component, Debug)]
#[require(DirectionalLight)]
pub struct DirectionalLightTexture {
/// The texture image. Only the R channel is read.
pub image: Handle<Image>,
/// Whether to tile the image infinitely, or use only a single tile centered at the light's translation
pub tiled: bool,
}
/// Controls the resolution of [`DirectionalLight`] shadow maps.
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_pbr::DirectionalLightShadowMap;
/// App::new()
/// .insert_resource(DirectionalLightShadowMap { size: 4096 });
/// ```
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource, Debug, Default, Clone)]
pub struct DirectionalLightShadowMap {
// The width and height of each cascade.
///
/// Defaults to `2048`.
pub size: usize,
}
impl Default for DirectionalLightShadowMap {
fn default() -> Self {
Self { size: 2048 }
}
}
pub fn update_directional_light_frusta(
mut views: Query<
(
&Cascades,
&DirectionalLight,
&ViewVisibility,
&mut CascadesFrusta,
),
(
// Prevents this query from conflicting with camera queries.
Without<Camera>,
),
>,
) {
for (cascades, directional_light, visibility, mut frusta) in &mut views {
// The frustum is used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frustum is
// not needed.
if !directional_light.shadows_enabled || !visibility.get() {
continue;
}
frusta.frusta = cascades
.cascades
.iter()
.map(|(view, cascades)| {
(
*view,
cascades
.iter()
.map(|c| Frustum::from_clip_from_world(&c.clip_from_world))
.collect::<Vec<_>>(),
)
})
.collect();
}
}

View File

@ -1,35 +1,43 @@
use bevy_ecs::{
entity::{EntityHashMap, EntityHashSet},
prelude::*,
};
use bevy_math::{ops, Mat4, Vec3A, Vec4};
use bevy_reflect::prelude::*;
use bevy_render::{
camera::{Camera, Projection},
extract_component::ExtractComponent,
extract_resource::ExtractResource,
mesh::Mesh3d,
use bevy_app::{App, Plugin, PostUpdate};
use bevy_camera::{
primitives::{Aabb, CascadesFrusta, CubemapFrusta, Frustum, Sphere},
view::{
InheritedVisibility, NoFrustumCulling, PreviousVisibleEntities, RenderLayers,
ViewVisibility, VisibilityClass, VisibilityRange, VisibleEntityRanges,
visibility::{
CascadesVisibleEntities, CubemapVisibleEntities, InheritedVisibility, NoFrustumCulling,
PreviousVisibleEntities, RenderLayers, ViewVisibility, VisibilityRange, VisibilitySystems,
VisibleEntityRanges, VisibleMeshEntities,
},
CameraUpdateSystems,
};
use bevy_transform::components::{GlobalTransform, Transform};
use bevy_ecs::{entity::EntityHashSet, prelude::*};
use bevy_math::Vec3A;
use bevy_reflect::prelude::*;
use bevy_render::{extract_component::ExtractComponent, mesh::Mesh3d};
use bevy_transform::{components::GlobalTransform, TransformSystems};
use bevy_utils::Parallel;
use core::{marker::PhantomData, ops::DerefMut};
use core::ops::DerefMut;
use crate::*;
pub use crate::light::spot_light::{spot_light_clip_from_view, spot_light_world_from_view};
use crate::{
add_clusters, assign_objects_to_clusters,
cascade::{build_directional_light_cascades, clear_directional_light_cascades},
CascadeShadowConfig, Cascades, VisibleClusterableObjects,
};
mod ambient_light;
pub use ambient_light::AmbientLight;
pub mod cascade;
mod point_light;
pub use point_light::PointLight;
pub use point_light::{
update_point_light_frusta, PointLight, PointLightShadowMap, PointLightTexture,
};
mod spot_light;
pub use spot_light::SpotLight;
pub use spot_light::{update_spot_light_frusta, SpotLight, SpotLightTexture};
mod directional_light;
pub use directional_light::DirectionalLight;
pub use directional_light::{
update_directional_light_frusta, DirectionalLight, DirectionalLightShadowMap,
DirectionalLightTexture,
};
/// Constants for operating with the light units: lumens, and lux.
pub mod light_consts {
@ -90,36 +98,85 @@ pub mod light_consts {
}
}
/// Marker resource for whether shadows are enabled for this material type
#[derive(Resource, Debug)]
pub struct ShadowsEnabled<M: Material>(PhantomData<M>);
pub struct LightPlugin;
impl<M: Material> Default for ShadowsEnabled<M> {
fn default() -> Self {
Self(PhantomData)
}
}
/// Controls the resolution of [`PointLight`] shadow maps.
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_pbr::PointLightShadowMap;
/// App::new()
/// .insert_resource(PointLightShadowMap { size: 2048 });
/// ```
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource, Debug, Default, Clone)]
pub struct PointLightShadowMap {
/// The width and height of each of the 6 faces of the cubemap.
///
/// Defaults to `1024`.
pub size: usize,
}
impl Default for PointLightShadowMap {
fn default() -> Self {
Self { size: 1024 }
impl Plugin for LightPlugin {
fn build(&self, app: &mut App) {
app.register_type::<AmbientLight>()
.register_type::<CascadeShadowConfig>()
.register_type::<Cascades>()
.register_type::<DirectionalLight>()
.register_type::<DirectionalLightShadowMap>()
.register_type::<NotShadowCaster>()
.register_type::<NotShadowReceiver>()
.register_type::<PointLight>()
.register_type::<PointLightShadowMap>()
.register_type::<SpotLight>()
.register_type::<ShadowFilteringMethod>()
.init_resource::<AmbientLight>()
.init_resource::<DirectionalLightShadowMap>()
.init_resource::<PointLightShadowMap>()
.configure_sets(
PostUpdate,
SimulationLightSystems::UpdateDirectionalLightCascades
.ambiguous_with(SimulationLightSystems::UpdateDirectionalLightCascades),
)
.configure_sets(
PostUpdate,
SimulationLightSystems::CheckLightVisibility
.ambiguous_with(SimulationLightSystems::CheckLightVisibility),
)
.add_systems(
PostUpdate,
(
add_clusters
.in_set(SimulationLightSystems::AddClusters)
.after(CameraUpdateSystems),
assign_objects_to_clusters
.in_set(SimulationLightSystems::AssignLightsToClusters)
.after(TransformSystems::Propagate)
.after(VisibilitySystems::CheckVisibility)
.after(CameraUpdateSystems),
clear_directional_light_cascades
.in_set(SimulationLightSystems::UpdateDirectionalLightCascades)
.after(TransformSystems::Propagate)
.after(CameraUpdateSystems),
update_directional_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
// This must run after CheckVisibility because it relies on `ViewVisibility`
.after(VisibilitySystems::CheckVisibility)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::UpdateDirectionalLightCascades)
// We assume that no entity will be both a directional light and a spot light,
// so these systems will run independently of one another.
// FIXME: Add an archetype invariant for this https://github.com/bevyengine/bevy/issues/1481.
.ambiguous_with(update_spot_light_frusta),
update_point_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::AssignLightsToClusters),
update_spot_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::AssignLightsToClusters),
(
check_dir_light_mesh_visibility,
check_point_light_mesh_visibility,
)
.in_set(SimulationLightSystems::CheckLightVisibility)
.after(VisibilitySystems::CalculateBounds)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::UpdateLightFrusta)
// NOTE: This MUST be scheduled AFTER the core renderer visibility check
// because that resets entity `ViewVisibility` for the first view
// which would override any results from this otherwise
.after(VisibilitySystems::CheckVisibility)
.before(VisibilitySystems::MarkNewlyHiddenEntitiesInvisible),
build_directional_light_cascades
.in_set(SimulationLightSystems::UpdateDirectionalLightCascades)
.after(clear_directional_light_cascades),
),
);
}
}
@ -127,353 +184,6 @@ impl Default for PointLightShadowMap {
/// With<DirectionalLight>)>`, for use with [`bevy_render::view::VisibleEntities`].
pub type WithLight = Or<(With<PointLight>, With<SpotLight>, With<DirectionalLight>)>;
/// Controls the resolution of [`DirectionalLight`] shadow maps.
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_pbr::DirectionalLightShadowMap;
/// App::new()
/// .insert_resource(DirectionalLightShadowMap { size: 4096 });
/// ```
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource, Debug, Default, Clone)]
pub struct DirectionalLightShadowMap {
// The width and height of each cascade.
///
/// Defaults to `2048`.
pub size: usize,
}
impl Default for DirectionalLightShadowMap {
fn default() -> Self {
Self { size: 2048 }
}
}
/// Controls how cascaded shadow mapping works.
/// Prefer using [`CascadeShadowConfigBuilder`] to construct an instance.
///
/// ```
/// # use bevy_pbr::CascadeShadowConfig;
/// # use bevy_pbr::CascadeShadowConfigBuilder;
/// # use bevy_utils::default;
/// #
/// let config: CascadeShadowConfig = CascadeShadowConfigBuilder {
/// maximum_distance: 100.0,
/// ..default()
/// }.into();
/// ```
#[derive(Component, Clone, Debug, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
pub struct CascadeShadowConfig {
/// The (positive) distance to the far boundary of each cascade.
pub bounds: Vec<f32>,
/// The proportion of overlap each cascade has with the previous cascade.
pub overlap_proportion: f32,
/// The (positive) distance to the near boundary of the first cascade.
pub minimum_distance: f32,
}
impl Default for CascadeShadowConfig {
fn default() -> Self {
CascadeShadowConfigBuilder::default().into()
}
}
fn calculate_cascade_bounds(
num_cascades: usize,
nearest_bound: f32,
shadow_maximum_distance: f32,
) -> Vec<f32> {
if num_cascades == 1 {
return vec![shadow_maximum_distance];
}
let base = ops::powf(
shadow_maximum_distance / nearest_bound,
1.0 / (num_cascades - 1) as f32,
);
(0..num_cascades)
.map(|i| nearest_bound * ops::powf(base, i as f32))
.collect()
}
/// Builder for [`CascadeShadowConfig`].
pub struct CascadeShadowConfigBuilder {
/// The number of shadow cascades.
/// More cascades increases shadow quality by mitigating perspective aliasing - a phenomenon where areas
/// nearer the camera are covered by fewer shadow map texels than areas further from the camera, causing
/// blocky looking shadows.
///
/// This does come at the cost increased rendering overhead, however this overhead is still less
/// than if you were to use fewer cascades and much larger shadow map textures to achieve the
/// same quality level.
///
/// In case rendered geometry covers a relatively narrow and static depth relative to camera, it may
/// make more sense to use fewer cascades and a higher resolution shadow map texture as perspective aliasing
/// is not as much an issue. Be sure to adjust `minimum_distance` and `maximum_distance` appropriately.
pub num_cascades: usize,
/// The minimum shadow distance, which can help improve the texel resolution of the first cascade.
/// Areas nearer to the camera than this will likely receive no shadows.
///
/// NOTE: Due to implementation details, this usually does not impact shadow quality as much as
/// `first_cascade_far_bound` and `maximum_distance`. At many view frustum field-of-views, the
/// texel resolution of the first cascade is dominated by the width / height of the view frustum plane
/// at `first_cascade_far_bound` rather than the depth of the frustum from `minimum_distance` to
/// `first_cascade_far_bound`.
pub minimum_distance: f32,
/// The maximum shadow distance.
/// Areas further from the camera than this will likely receive no shadows.
pub maximum_distance: f32,
/// Sets the far bound of the first cascade, relative to the view origin.
/// In-between cascades will be exponentially spaced relative to the maximum shadow distance.
/// NOTE: This is ignored if there is only one cascade, the maximum distance takes precedence.
pub first_cascade_far_bound: f32,
/// Sets the overlap proportion between cascades.
/// The overlap is used to make the transition from one cascade's shadow map to the next
/// less abrupt by blending between both shadow maps.
pub overlap_proportion: f32,
}
impl CascadeShadowConfigBuilder {
/// Returns the cascade config as specified by this builder.
pub fn build(&self) -> CascadeShadowConfig {
assert!(
self.num_cascades > 0,
"num_cascades must be positive, but was {}",
self.num_cascades
);
assert!(
self.minimum_distance >= 0.0,
"maximum_distance must be non-negative, but was {}",
self.minimum_distance
);
assert!(
self.num_cascades == 1 || self.minimum_distance < self.first_cascade_far_bound,
"minimum_distance must be less than first_cascade_far_bound, but was {}",
self.minimum_distance
);
assert!(
self.maximum_distance > self.minimum_distance,
"maximum_distance must be greater than minimum_distance, but was {}",
self.maximum_distance
);
assert!(
(0.0..1.0).contains(&self.overlap_proportion),
"overlap_proportion must be in [0.0, 1.0) but was {}",
self.overlap_proportion
);
CascadeShadowConfig {
bounds: calculate_cascade_bounds(
self.num_cascades,
self.first_cascade_far_bound,
self.maximum_distance,
),
overlap_proportion: self.overlap_proportion,
minimum_distance: self.minimum_distance,
}
}
}
impl Default for CascadeShadowConfigBuilder {
fn default() -> Self {
// The defaults are chosen to be similar to be Unity, Unreal, and Godot.
// Unity: first cascade far bound = 10.05, maximum distance = 150.0
// Unreal Engine 5: maximum distance = 200.0
// Godot: first cascade far bound = 10.0, maximum distance = 100.0
Self {
// Currently only support one cascade in WebGL 2.
num_cascades: if cfg!(all(
feature = "webgl",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
1
} else {
4
},
minimum_distance: 0.1,
maximum_distance: 150.0,
first_cascade_far_bound: 10.0,
overlap_proportion: 0.2,
}
}
}
impl From<CascadeShadowConfigBuilder> for CascadeShadowConfig {
fn from(builder: CascadeShadowConfigBuilder) -> Self {
builder.build()
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Debug, Default, Clone)]
pub struct Cascades {
/// Map from a view to the configuration of each of its [`Cascade`]s.
pub cascades: EntityHashMap<Vec<Cascade>>,
}
#[derive(Clone, Debug, Default, Reflect)]
#[reflect(Clone, Default)]
pub struct Cascade {
/// The transform of the light, i.e. the view to world matrix.
pub world_from_cascade: Mat4,
/// The orthographic projection for this cascade.
pub clip_from_cascade: Mat4,
/// The view-projection matrix for this cascade, converting world space into light clip space.
/// Importantly, this is derived and stored separately from `view_transform` and `projection` to
/// ensure shadow stability.
pub clip_from_world: Mat4,
/// Size of each shadow map texel in world units.
pub texel_size: f32,
}
pub fn clear_directional_light_cascades(mut lights: Query<(&DirectionalLight, &mut Cascades)>) {
for (directional_light, mut cascades) in lights.iter_mut() {
if !directional_light.shadows_enabled {
continue;
}
cascades.cascades.clear();
}
}
pub fn build_directional_light_cascades(
directional_light_shadow_map: Res<DirectionalLightShadowMap>,
views: Query<(Entity, &GlobalTransform, &Projection, &Camera)>,
mut lights: Query<(
&GlobalTransform,
&DirectionalLight,
&CascadeShadowConfig,
&mut Cascades,
)>,
) {
let views = views
.iter()
.filter_map(|(entity, transform, projection, camera)| {
if camera.is_active {
Some((entity, projection, transform.to_matrix()))
} else {
None
}
})
.collect::<Vec<_>>();
for (transform, directional_light, cascades_config, mut cascades) in &mut lights {
if !directional_light.shadows_enabled {
continue;
}
// It is very important to the numerical and thus visual stability of shadows that
// light_to_world has orthogonal upper-left 3x3 and zero translation.
// Even though only the direction (i.e. rotation) of the light matters, we don't constrain
// users to not change any other aspects of the transform - there's no guarantee
// `transform.to_matrix()` will give us a matrix with our desired properties.
// Instead, we directly create a good matrix from just the rotation.
let world_from_light = Mat4::from_quat(transform.compute_transform().rotation);
let light_to_world_inverse = world_from_light.inverse();
for (view_entity, projection, view_to_world) in views.iter().copied() {
let camera_to_light_view = light_to_world_inverse * view_to_world;
let view_cascades = cascades_config
.bounds
.iter()
.enumerate()
.map(|(idx, far_bound)| {
// Negate bounds as -z is camera forward direction.
let z_near = if idx > 0 {
(1.0 - cascades_config.overlap_proportion)
* -cascades_config.bounds[idx - 1]
} else {
-cascades_config.minimum_distance
};
let z_far = -far_bound;
let corners = projection.get_frustum_corners(z_near, z_far);
calculate_cascade(
corners,
directional_light_shadow_map.size as f32,
world_from_light,
camera_to_light_view,
)
})
.collect();
cascades.cascades.insert(view_entity, view_cascades);
}
}
}
/// Returns a [`Cascade`] for the frustum defined by `frustum_corners`.
///
/// The corner vertices should be specified in the following order:
/// first the bottom right, top right, top left, bottom left for the near plane, then similar for the far plane.
fn calculate_cascade(
frustum_corners: [Vec3A; 8],
cascade_texture_size: f32,
world_from_light: Mat4,
light_from_camera: Mat4,
) -> Cascade {
let mut min = Vec3A::splat(f32::MAX);
let mut max = Vec3A::splat(f32::MIN);
for corner_camera_view in frustum_corners {
let corner_light_view = light_from_camera.transform_point3a(corner_camera_view);
min = min.min(corner_light_view);
max = max.max(corner_light_view);
}
// NOTE: Use the larger of the frustum slice far plane diagonal and body diagonal lengths as this
// will be the maximum possible projection size. Use the ceiling to get an integer which is
// very important for floating point stability later. It is also important that these are
// calculated using the original camera space corner positions for floating point precision
// as even though the lengths using corner_light_view above should be the same, precision can
// introduce small but significant differences.
// NOTE: The size remains the same unless the view frustum or cascade configuration is modified.
let cascade_diameter = (frustum_corners[0] - frustum_corners[6])
.length()
.max((frustum_corners[4] - frustum_corners[6]).length())
.ceil();
// NOTE: If we ensure that cascade_texture_size is a power of 2, then as we made cascade_diameter an
// integer, cascade_texel_size is then an integer multiple of a power of 2 and can be
// exactly represented in a floating point value.
let cascade_texel_size = cascade_diameter / cascade_texture_size;
// NOTE: For shadow stability it is very important that the near_plane_center is at integer
// multiples of the texel size to be exactly representable in a floating point value.
let near_plane_center = Vec3A::new(
(0.5 * (min.x + max.x) / cascade_texel_size).floor() * cascade_texel_size,
(0.5 * (min.y + max.y) / cascade_texel_size).floor() * cascade_texel_size,
// NOTE: max.z is the near plane for right-handed y-up
max.z,
);
// It is critical for `world_to_cascade` to be stable. So rather than forming `cascade_to_world`
// and inverting it, which risks instability due to numerical precision, we directly form
// `world_to_cascade` as the reference material suggests.
let light_to_world_transpose = world_from_light.transpose();
let cascade_from_world = Mat4::from_cols(
light_to_world_transpose.x_axis,
light_to_world_transpose.y_axis,
light_to_world_transpose.z_axis,
(-near_plane_center).extend(1.0),
);
// Right-handed orthographic projection, centered at `near_plane_center`.
// NOTE: This is different from the reference material, as we use reverse Z.
let r = (max.z - min.z).recip();
let clip_from_cascade = Mat4::from_cols(
Vec4::new(2.0 / cascade_diameter, 0.0, 0.0, 0.0),
Vec4::new(0.0, 2.0 / cascade_diameter, 0.0, 0.0),
Vec4::new(0.0, 0.0, r, 0.0),
Vec4::new(0.0, 0.0, 1.0, 1.0),
);
let clip_from_world = clip_from_cascade * cascade_from_world;
Cascade {
world_from_cascade: cascade_from_world.inverse(),
clip_from_cascade,
clip_from_world,
texel_size: cascade_texel_size,
}
}
/// Add this component to make a [`Mesh3d`] not cast shadows.
#[derive(Debug, Component, Reflect, Default)]
#[reflect(Component, Default, Debug)]
@ -534,6 +244,8 @@ pub enum ShadowFilteringMethod {
}
/// The [`VisibilityClass`] used for all lights (point, directional, and spot).
///
/// [`VisibilityClass`]: bevy_camera::visibility::VisibilityClass
pub struct LightVisibilityClass;
/// System sets used to run light-related systems.
@ -552,138 +264,6 @@ pub enum SimulationLightSystems {
CheckLightVisibility,
}
pub fn update_directional_light_frusta(
mut views: Query<
(
&Cascades,
&DirectionalLight,
&ViewVisibility,
&mut CascadesFrusta,
),
(
// Prevents this query from conflicting with camera queries.
Without<Camera>,
),
>,
) {
for (cascades, directional_light, visibility, mut frusta) in &mut views {
// The frustum is used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frustum is
// not needed.
if !directional_light.shadows_enabled || !visibility.get() {
continue;
}
frusta.frusta = cascades
.cascades
.iter()
.map(|(view, cascades)| {
(
*view,
cascades
.iter()
.map(|c| Frustum::from_clip_from_world(&c.clip_from_world))
.collect::<Vec<_>>(),
)
})
.collect();
}
}
// NOTE: Run this after assign_lights_to_clusters!
pub fn update_point_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<(Entity, &GlobalTransform, &PointLight, &mut CubemapFrusta)>,
changed_lights: Query<
Entity,
(
With<PointLight>,
Or<(Changed<GlobalTransform>, Changed<PointLight>)>,
),
>,
) {
let view_rotations = CUBE_MAP_FACES
.iter()
.map(|CubeMapFace { target, up }| Transform::IDENTITY.looking_at(*target, *up))
.collect::<Vec<_>>();
for (entity, transform, point_light, mut cubemap_frusta) in &mut views {
// If this light hasn't changed, and neither has the set of global_lights,
// then we can skip this calculation.
if !global_lights.is_changed() && !changed_lights.contains(entity) {
continue;
}
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !point_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
let clip_from_view = Mat4::perspective_infinite_reverse_rh(
core::f32::consts::FRAC_PI_2,
1.0,
point_light.shadow_map_near_z,
);
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
// and ignore rotation because we want the shadow map projections to align with the axes
let view_translation = Transform::from_translation(transform.translation());
let view_backward = transform.back();
for (view_rotation, frustum) in view_rotations.iter().zip(cubemap_frusta.iter_mut()) {
let world_from_view = view_translation * *view_rotation;
let clip_from_world = clip_from_view * world_from_view.to_matrix().inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
point_light.range,
);
}
}
}
pub fn update_spot_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<
(Entity, &GlobalTransform, &SpotLight, &mut Frustum),
Or<(Changed<GlobalTransform>, Changed<SpotLight>)>,
>,
) {
for (entity, transform, spot_light, mut frustum) in &mut views {
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !spot_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
let view_backward = transform.back();
let spot_world_from_view = spot_light_world_from_view(transform);
let spot_clip_from_view =
spot_light_clip_from_view(spot_light.outer_angle, spot_light.shadow_map_near_z);
let clip_from_world = spot_clip_from_view * spot_world_from_view.inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
spot_light.range,
);
}
}
fn shrink_entities(visible_entities: &mut Vec<Entity>) {
// Check that visible entities capacity() is no more than two times greater than len()
let capacity = visible_entities.capacity();

View File

@ -1,6 +1,16 @@
use bevy_render::view::{self, Visibility};
use bevy_asset::Handle;
use bevy_camera::{
primitives::{CubeMapFace, CubemapFrusta, CubemapLayout, Frustum, CUBE_MAP_FACES},
visibility::{self, CubemapVisibleEntities, Visibility, VisibilityClass},
};
use bevy_color::Color;
use bevy_ecs::prelude::*;
use bevy_image::Image;
use bevy_math::Mat4;
use bevy_reflect::prelude::*;
use bevy_transform::components::{GlobalTransform, Transform};
use super::*;
use crate::{GlobalVisibleClusterableObjects, LightVisibilityClass};
/// A light that emits light in all directions from a central point.
///
@ -34,7 +44,7 @@ use super::*;
Visibility,
VisibilityClass
)]
#[component(on_add = view::add_visibility_class::<LightVisibilityClass>)]
#[component(on_add = visibility::add_visibility_class::<LightVisibilityClass>)]
pub struct PointLight {
/// The color of this light source.
pub color: Color,
@ -74,6 +84,8 @@ pub struct PointLight {
///
/// Note that soft shadows are significantly more expensive to render than
/// hard shadows.
///
/// [`ShadowFilteringMethod::Temporal`]: crate::ShadowFilteringMethod::Temporal
#[cfg(feature = "experimental_pbr_pcss")]
pub soft_shadows_enabled: bool,
@ -136,3 +148,98 @@ impl PointLight {
pub const DEFAULT_SHADOW_NORMAL_BIAS: f32 = 0.6;
pub const DEFAULT_SHADOW_MAP_NEAR_Z: f32 = 0.1;
}
/// Add to a [`PointLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
#[derive(Clone, Component, Debug, Reflect)]
#[reflect(Component, Debug)]
#[require(PointLight)]
pub struct PointLightTexture {
/// The texture image. Only the R channel is read.
pub image: Handle<Image>,
/// The cubemap layout. The image should be a packed cubemap in one of the formats described by the [`CubemapLayout`] enum.
pub cubemap_layout: CubemapLayout,
}
/// Controls the resolution of [`PointLight`] shadow maps.
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_pbr::PointLightShadowMap;
/// App::new()
/// .insert_resource(PointLightShadowMap { size: 2048 });
/// ```
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource, Debug, Default, Clone)]
pub struct PointLightShadowMap {
/// The width and height of each of the 6 faces of the cubemap.
///
/// Defaults to `1024`.
pub size: usize,
}
impl Default for PointLightShadowMap {
fn default() -> Self {
Self { size: 1024 }
}
}
// NOTE: Run this after assign_lights_to_clusters!
pub fn update_point_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<(Entity, &GlobalTransform, &PointLight, &mut CubemapFrusta)>,
changed_lights: Query<
Entity,
(
With<PointLight>,
Or<(Changed<GlobalTransform>, Changed<PointLight>)>,
),
>,
) {
let view_rotations = CUBE_MAP_FACES
.iter()
.map(|CubeMapFace { target, up }| Transform::IDENTITY.looking_at(*target, *up))
.collect::<Vec<_>>();
for (entity, transform, point_light, mut cubemap_frusta) in &mut views {
// If this light hasn't changed, and neither has the set of global_lights,
// then we can skip this calculation.
if !global_lights.is_changed() && !changed_lights.contains(entity) {
continue;
}
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !point_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
let clip_from_view = Mat4::perspective_infinite_reverse_rh(
core::f32::consts::FRAC_PI_2,
1.0,
point_light.shadow_map_near_z,
);
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
// and ignore rotation because we want the shadow map projections to align with the axes
let view_translation = Transform::from_translation(transform.translation());
let view_backward = transform.back();
for (view_rotation, frustum) in view_rotations.iter().zip(cubemap_frusta.iter_mut()) {
let world_from_view = view_translation * *view_rotation;
let clip_from_world = clip_from_view * world_from_view.to_matrix().inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
point_light.range,
);
}
}
}

View File

@ -1,6 +1,17 @@
use bevy_render::view::{self, Visibility};
use bevy_asset::Handle;
use bevy_camera::{
primitives::Frustum,
visibility::{self, Visibility, VisibilityClass},
};
use bevy_color::Color;
use bevy_ecs::prelude::*;
use bevy_image::Image;
use bevy_math::{Mat4, Vec4};
use bevy_reflect::prelude::*;
use bevy_render::view::VisibleMeshEntities;
use bevy_transform::components::{GlobalTransform, Transform};
use super::*;
use crate::{GlobalVisibleClusterableObjects, LightVisibilityClass};
/// A light that emits light in a given direction from a central point.
///
@ -10,7 +21,7 @@ use super::*;
#[derive(Component, Debug, Clone, Copy, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
#[require(Frustum, VisibleMeshEntities, Transform, Visibility, VisibilityClass)]
#[component(on_add = view::add_visibility_class::<LightVisibilityClass>)]
#[component(on_add = visibility::add_visibility_class::<LightVisibilityClass>)]
pub struct SpotLight {
/// The color of the light.
///
@ -58,6 +69,8 @@ pub struct SpotLight {
///
/// Note that soft shadows are significantly more expensive to render than
/// hard shadows.
///
/// [`ShadowFilteringMethod::Temporal`]: crate::ShadowFilteringMethod::Temporal
#[cfg(feature = "experimental_pbr_pcss")]
pub soft_shadows_enabled: bool,
@ -140,3 +153,82 @@ impl Default for SpotLight {
}
}
}
// this method of constructing a basis from a vec3 is used by glam::Vec3::any_orthonormal_pair
// we will also construct it in the fragment shader and need our implementations to match,
// so we reproduce it here to avoid a mismatch if glam changes. we also switch the handedness
// could move this onto transform but it's pretty niche
pub fn spot_light_world_from_view(transform: &GlobalTransform) -> Mat4 {
// the matrix z_local (opposite of transform.forward())
let fwd_dir = transform.back().extend(0.0);
let sign = 1f32.copysign(fwd_dir.z);
let a = -1.0 / (fwd_dir.z + sign);
let b = fwd_dir.x * fwd_dir.y * a;
let up_dir = Vec4::new(
1.0 + sign * fwd_dir.x * fwd_dir.x * a,
sign * b,
-sign * fwd_dir.x,
0.0,
);
let right_dir = Vec4::new(-b, -sign - fwd_dir.y * fwd_dir.y * a, fwd_dir.y, 0.0);
Mat4::from_cols(
right_dir,
up_dir,
fwd_dir,
transform.translation().extend(1.0),
)
}
pub fn spot_light_clip_from_view(angle: f32, near_z: f32) -> Mat4 {
// spot light projection FOV is 2x the angle from spot light center to outer edge
Mat4::perspective_infinite_reverse_rh(angle * 2.0, 1.0, near_z)
}
/// Add to a [`SpotLight`] to add a light texture effect.
/// A texture mask is applied to the light source to modulate its intensity,
/// simulating patterns like window shadows, gobo/cookie effects, or soft falloffs.
#[derive(Clone, Component, Debug, Reflect)]
#[reflect(Component, Debug)]
#[require(SpotLight)]
pub struct SpotLightTexture {
/// The texture image. Only the R channel is read.
/// Note the border of the image should be entirely black to avoid leaking light.
pub image: Handle<Image>,
}
pub fn update_spot_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<
(Entity, &GlobalTransform, &SpotLight, &mut Frustum),
Or<(Changed<GlobalTransform>, Changed<SpotLight>)>,
>,
) {
for (entity, transform, spot_light, mut frustum) in &mut views {
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !spot_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
let view_backward = transform.back();
let spot_world_from_view = spot_light_world_from_view(transform);
let spot_clip_from_view =
spot_light_clip_from_view(spot_light.outer_angle, spot_light.shadow_map_near_z);
let clip_from_world = spot_clip_from_view * spot_world_from_view.inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
spot_light.range,
);
}
}

View File

@ -1717,3 +1717,13 @@ pub fn write_material_bind_group_buffers(
allocator.write_buffers(&render_device, &render_queue);
}
}
/// Marker resource for whether shadows are enabled for this material type
#[derive(Resource, Debug)]
pub struct ShadowsEnabled<M: Material>(PhantomData<M>);
impl<M: Material> Default for ShadowsEnabled<M> {
fn default() -> Self {
Self(PhantomData)
}
}

View File

@ -1,6 +1,9 @@
use self::assign::ClusterableObjectType;
use crate::assign::calculate_cluster_factors;
use crate::cascade::{Cascade, CascadeShadowConfig, Cascades};
use crate::*;
use bevy_asset::UntypedAssetId;
pub use bevy_camera::primitives::{face_index_to_name, CubeMapFace, CUBE_MAP_FACES};
use bevy_color::ColorToComponents;
use bevy_core_pipeline::core_3d::{Camera3d, CORE_3D_DEPTH_FORMAT};
use bevy_derive::{Deref, DerefMut};
@ -11,7 +14,7 @@ use bevy_ecs::{
prelude::*,
system::lifetimeless::Read,
};
use bevy_math::{ops, Mat4, UVec4, Vec2, Vec3, Vec3Swizzles, Vec4, Vec4Swizzles};
use bevy_math::{ops, Mat4, UVec4, Vec3, Vec3Swizzles, Vec4, Vec4Swizzles};
use bevy_platform::collections::{HashMap, HashSet};
use bevy_platform::hash::FixedHasher;
use bevy_render::erased_render_asset::ErasedRenderAssets;
@ -584,63 +587,6 @@ pub(crate) fn remove_light_view_entities(
}
}
pub(crate) struct CubeMapFace {
pub(crate) target: Vec3,
pub(crate) up: Vec3,
}
// Cubemap faces are [+X, -X, +Y, -Y, +Z, -Z], per https://www.w3.org/TR/webgpu/#texture-view-creation
// Note: Cubemap coordinates are left-handed y-up, unlike the rest of Bevy.
// See https://registry.khronos.org/vulkan/specs/1.2/html/chap16.html#_cube_map_face_selection
//
// For each cubemap face, we take care to specify the appropriate target/up axis such that the rendered
// texture using Bevy's right-handed y-up coordinate space matches the expected cubemap face in
// left-handed y-up cubemap coordinates.
pub(crate) const CUBE_MAP_FACES: [CubeMapFace; 6] = [
// +X
CubeMapFace {
target: Vec3::X,
up: Vec3::Y,
},
// -X
CubeMapFace {
target: Vec3::NEG_X,
up: Vec3::Y,
},
// +Y
CubeMapFace {
target: Vec3::Y,
up: Vec3::Z,
},
// -Y
CubeMapFace {
target: Vec3::NEG_Y,
up: Vec3::NEG_Z,
},
// +Z (with left-handed conventions, pointing forwards)
CubeMapFace {
target: Vec3::NEG_Z,
up: Vec3::Y,
},
// -Z (with left-handed conventions, pointing backwards)
CubeMapFace {
target: Vec3::Z,
up: Vec3::Y,
},
];
fn face_index_to_name(face_index: usize) -> &'static str {
match face_index {
0 => "+x",
1 => "-x",
2 => "+y",
3 => "-y",
4 => "+z",
5 => "-z",
_ => "invalid",
}
}
#[derive(Component)]
pub struct ShadowView {
pub depth_attachment: DepthAttachment,
@ -694,54 +640,6 @@ pub enum LightEntity {
light_entity: Entity,
},
}
pub fn calculate_cluster_factors(
near: f32,
far: f32,
z_slices: f32,
is_orthographic: bool,
) -> Vec2 {
if is_orthographic {
Vec2::new(-near, z_slices / (-far - -near))
} else {
let z_slices_of_ln_zfar_over_znear = (z_slices - 1.0) / ops::ln(far / near);
Vec2::new(
z_slices_of_ln_zfar_over_znear,
ops::ln(near) * z_slices_of_ln_zfar_over_znear,
)
}
}
// this method of constructing a basis from a vec3 is used by glam::Vec3::any_orthonormal_pair
// we will also construct it in the fragment shader and need our implementations to match,
// so we reproduce it here to avoid a mismatch if glam changes. we also switch the handedness
// could move this onto transform but it's pretty niche
pub(crate) fn spot_light_world_from_view(transform: &GlobalTransform) -> Mat4 {
// the matrix z_local (opposite of transform.forward())
let fwd_dir = transform.back().extend(0.0);
let sign = 1f32.copysign(fwd_dir.z);
let a = -1.0 / (fwd_dir.z + sign);
let b = fwd_dir.x * fwd_dir.y * a;
let up_dir = Vec4::new(
1.0 + sign * fwd_dir.x * fwd_dir.x * a,
sign * b,
-sign * fwd_dir.x,
0.0,
);
let right_dir = Vec4::new(-b, -sign - fwd_dir.y * fwd_dir.y * a, fwd_dir.y, 0.0);
Mat4::from_cols(
right_dir,
up_dir,
fwd_dir,
transform.translation().extend(1.0),
)
}
pub(crate) fn spot_light_clip_from_view(angle: f32, near_z: f32) -> Mat4 {
// spot light projection FOV is 2x the angle from spot light center to outer edge
Mat4::perspective_infinite_reverse_rh(angle * 2.0, 1.0, near_z)
}
pub fn prepare_lights(
mut commands: Commands,

View File

@ -96,7 +96,7 @@ thiserror = { version = "2", default-features = false }
derive_more = { version = "2", default-features = false, features = ["from"] }
serde = { version = "1", default-features = false, features = ["alloc"] }
assert_type_match = "0.1.1"
smallvec = { version = "1.11", default-features = false, optional = true }
smallvec = { version = "1", default-features = false, optional = true }
glam = { version = "0.29.3", default-features = false, features = [
"serde",
], optional = true }

View File

@ -48,13 +48,10 @@ pub(crate) trait VariantBuilder: Sized {
/// * `this`: The identifier of the enum
/// * `field`: The field to access
fn access_field(&self, this: &Ident, field: VariantField) -> TokenStream {
match &field.field.data.ident {
Some(field_ident) => {
if let Some(field_ident) = &field.field.data.ident {
let name = field_ident.to_string();
quote!(#this.field(#name))
}
None => {
if let Some(field_index) = field.field.reflection_index {
} else if let Some(field_index) = field.field.reflection_index {
quote!(#this.field_at(#field_index))
} else {
quote!(::core::compile_error!(
@ -62,8 +59,6 @@ pub(crate) trait VariantBuilder: Sized {
))
}
}
}
}
/// Returns a token stream that unwraps a field of a variant as a `&dyn Reflect`
/// (from an `Option<dyn Reflect>`).

View File

@ -114,7 +114,7 @@ profiling = { version = "1", features = [
], optional = true }
async-channel = "2.3.0"
nonmax = "0.5"
smallvec = { version = "1.11", features = ["const_new"] }
smallvec = { version = "1", default-features = false, features = ["const_new"] }
offset-allocator = "0.2"
variadics_please = "1.1"
tracing = { version = "0.1", default-features = false, features = ["std"] }

View File

@ -29,7 +29,7 @@ use bevy_ecs::{
event::EventReader,
lifecycle::HookContext,
prelude::With,
query::Has,
query::{Has, QueryItem},
reflect::ReflectComponent,
resource::Resource,
schedule::IntoScheduleConfigs,
@ -59,6 +59,8 @@ impl Plugin for CameraPlugin {
.register_type::<MipBias>()
.register_required_components::<Camera, Msaa>()
.register_required_components::<Camera, SyncToRenderWorld>()
.register_required_components::<Camera3d, ColorGrading>()
.register_required_components::<Camera3d, Exposure>()
.add_plugins((
ExtractResourcePlugin::<ClearColor>::default(),
ExtractComponentPlugin::<CameraMainTextureUsages>::default(),
@ -95,7 +97,7 @@ fn warn_on_no_render_graph(world: DeferredWorld, HookContext { entity, caller, .
}
impl ExtractResource for ClearColor {
type Source = ClearColor;
type Source = Self;
fn extract_resource(source: &Self::Source) -> Self {
source.clone()
@ -106,12 +108,28 @@ impl ExtractComponent for CameraMainTextureUsages {
type QueryFilter = ();
type Out = Self;
fn extract_component(
item: bevy_ecs::query::QueryItem<'_, '_, Self::QueryData>,
) -> Option<Self::Out> {
fn extract_component(item: QueryItem<Self::QueryData>) -> Option<Self::Out> {
Some(*item)
}
}
impl ExtractComponent for Camera2d {
type QueryData = &'static Self;
type QueryFilter = With<Camera>;
type Out = Self;
fn extract_component(item: QueryItem<Self::QueryData>) -> Option<Self::Out> {
Some(item.clone())
}
}
impl ExtractComponent for Camera3d {
type QueryData = &'static Self;
type QueryFilter = With<Camera>;
type Out = Self;
fn extract_component(item: QueryItem<Self::QueryData>) -> Option<Self::Out> {
Some(item.clone())
}
}
/// Configures the [`RenderGraph`] name assigned to be run for a given [`Camera`] entity.
#[derive(Component, Debug, Deref, DerefMut, Reflect, Clone)]

View File

@ -36,7 +36,7 @@ bevy_platform = { path = "../bevy_platform", version = "0.17.0-dev", default-fea
cosmic-text = { version = "0.14", features = ["shape-run-cache"] }
thiserror = { version = "2", default-features = false }
serde = { version = "1", features = ["derive"] }
smallvec = "1.13"
smallvec = { version = "1", default-features = false }
unicode-bidi = "0.3.13"
sys-locale = "0.3.0"
tracing = { version = "0.1", default-features = false, features = ["std"] }

View File

@ -40,7 +40,7 @@ bytemuck = { version = "1.5", features = ["derive"] }
thiserror = { version = "2", default-features = false }
derive_more = { version = "2", default-features = false, features = ["from"] }
nonmax = "0.5"
smallvec = "1.11"
smallvec = { version = "1", default-features = false }
accesskit = "0.19"
tracing = { version = "0.1", default-features = false, features = ["std"] }

View File

@ -37,7 +37,7 @@ bytemuck = { version = "1.5", features = ["derive"] }
thiserror = { version = "2", default-features = false }
derive_more = { version = "1", default-features = false, features = ["from"] }
nonmax = "0.5"
smallvec = "1.11"
smallvec = { version = "1", default-features = false }
accesskit = "0.18"
tracing = { version = "0.1", default-features = false, features = ["std"] }