A Curve trait for general interoperation — Part I (#14630)

# Objective

This PR implements part of the [Curve
RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/80-curve-trait.md).
See that document for motivation, objectives, etc.

## Solution

For purposes of reviewability, this PR excludes the entire part of the
RFC related to taking multiple samples, resampling, and interpolation
generally. (This means the entire `cores` submodule is also excluded.)
On the other hand, the entire `Interval` type and all of the functional
`Curve` adaptors are included.

## Testing

Test modules are included and can be run locally (but they are also
included in CI).

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
This commit is contained in:
Matty 2024-08-09 10:19:44 -04:00 committed by GitHub
parent 66bf160ec5
commit 23e87270df
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 1059 additions and 0 deletions

View File

@ -0,0 +1,373 @@
//! The [`Interval`] type for nonempty intervals used by the [`Curve`](super::Curve) trait.
use itertools::Either;
use std::{
cmp::{max_by, min_by},
ops::RangeInclusive,
};
use thiserror::Error;
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
/// A nonempty closed interval, possibly unbounded in either direction.
///
/// In other words, the interval may stretch all the way to positive or negative infinity, but it
/// will always have some nonempty interior.
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Interval {
start: f32,
end: f32,
}
/// An error that indicates that an operation would have returned an invalid [`Interval`].
#[derive(Debug, Error)]
#[error("The resulting interval would be invalid (empty or with a NaN endpoint)")]
pub struct InvalidIntervalError;
/// An error indicating that spaced points could not be extracted from an unbounded interval.
#[derive(Debug, Error)]
#[error("Cannot extract spaced points from an unbounded interval")]
pub struct SpacedPointsError;
/// An error indicating that a linear map between intervals could not be constructed because of
/// unboundedness.
#[derive(Debug, Error)]
#[error("Could not construct linear function to map between intervals")]
pub(super) enum LinearMapError {
/// The source interval being mapped out of was unbounded.
#[error("The source interval is unbounded")]
SourceUnbounded,
/// The target interval being mapped into was unbounded.
#[error("The target interval is unbounded")]
TargetUnbounded,
}
impl Interval {
/// Create a new [`Interval`] with the specified `start` and `end`. The interval can be unbounded
/// but cannot be empty (so `start` must be less than `end`) and neither endpoint can be NaN; invalid
/// parameters will result in an error.
#[inline]
pub fn new(start: f32, end: f32) -> Result<Self, InvalidIntervalError> {
if start >= end || start.is_nan() || end.is_nan() {
Err(InvalidIntervalError)
} else {
Ok(Self { start, end })
}
}
/// An interval which stretches across the entire real line from negative infinity to infinity.
pub const EVERYWHERE: Self = Self {
start: f32::NEG_INFINITY,
end: f32::INFINITY,
};
/// Get the start of this interval.
#[inline]
pub fn start(self) -> f32 {
self.start
}
/// Get the end of this interval.
#[inline]
pub fn end(self) -> f32 {
self.end
}
/// Create an [`Interval`] by intersecting this interval with another. Returns an error if the
/// intersection would be empty (hence an invalid interval).
pub fn intersect(self, other: Interval) -> Result<Interval, InvalidIntervalError> {
let lower = max_by(self.start, other.start, f32::total_cmp);
let upper = min_by(self.end, other.end, f32::total_cmp);
Self::new(lower, upper)
}
/// Get the length of this interval. Note that the result may be infinite (`f32::INFINITY`).
#[inline]
pub fn length(self) -> f32 {
self.end - self.start
}
/// Returns `true` if this interval is bounded — that is, if both its start and end are finite.
///
/// Equivalently, an interval is bounded if its length is finite.
#[inline]
pub fn is_bounded(self) -> bool {
self.length().is_finite()
}
/// Returns `true` if this interval has a finite start.
#[inline]
pub fn has_finite_start(self) -> bool {
self.start.is_finite()
}
/// Returns `true` if this interval has a finite end.
#[inline]
pub fn has_finite_end(self) -> bool {
self.end.is_finite()
}
/// Returns `true` if `item` is contained in this interval.
#[inline]
pub fn contains(self, item: f32) -> bool {
(self.start..=self.end).contains(&item)
}
/// Returns `true` if the other interval is contained in this interval.
///
/// This is non-strict: each interval will contain itself.
#[inline]
pub fn contains_interval(self, other: Self) -> bool {
self.start <= other.start && self.end >= other.end
}
/// Clamp the given `value` to lie within this interval.
#[inline]
pub fn clamp(self, value: f32) -> f32 {
value.clamp(self.start, self.end)
}
/// Get an iterator over equally-spaced points from this interval in increasing order.
/// If `points` is 1, the start of this interval is returned. If `points` is 0, an empty
/// iterator is returned. An error is returned if the interval is unbounded.
#[inline]
pub fn spaced_points(
self,
points: usize,
) -> Result<impl Iterator<Item = f32>, SpacedPointsError> {
if !self.is_bounded() {
return Err(SpacedPointsError);
}
if points < 2 {
// If `points` is 1, this is `Some(self.start)` as an iterator, and if `points` is 0,
// then this is `None` as an iterator. This is written this way to avoid having to
// introduce a ternary disjunction of iterators.
let iter = (points == 1).then_some(self.start).into_iter();
return Ok(Either::Left(iter));
}
let step = self.length() / (points - 1) as f32;
let iter = (0..points).map(move |x| self.start + x as f32 * step);
Ok(Either::Right(iter))
}
/// Get the linear function which maps this interval onto the `other` one. Returns an error if either
/// interval is unbounded.
#[inline]
pub(super) fn linear_map_to(self, other: Self) -> Result<impl Fn(f32) -> f32, LinearMapError> {
if !self.is_bounded() {
return Err(LinearMapError::SourceUnbounded);
}
if !other.is_bounded() {
return Err(LinearMapError::TargetUnbounded);
}
let scale = other.length() / self.length();
Ok(move |x| (x - self.start) * scale + other.start)
}
}
impl TryFrom<RangeInclusive<f32>> for Interval {
type Error = InvalidIntervalError;
fn try_from(range: RangeInclusive<f32>) -> Result<Self, Self::Error> {
Interval::new(*range.start(), *range.end())
}
}
/// Create an [`Interval`] with a given `start` and `end`. Alias of [`Interval::new`].
#[inline]
pub fn interval(start: f32, end: f32) -> Result<Interval, InvalidIntervalError> {
Interval::new(start, end)
}
#[cfg(test)]
mod tests {
use super::*;
use approx::{assert_abs_diff_eq, AbsDiffEq};
#[test]
fn make_intervals() {
let ivl = Interval::new(2.0, -1.0);
assert!(ivl.is_err());
let ivl = Interval::new(-0.0, 0.0);
assert!(ivl.is_err());
let ivl = Interval::new(f32::NEG_INFINITY, 15.5);
assert!(ivl.is_ok());
let ivl = Interval::new(-2.0, f32::INFINITY);
assert!(ivl.is_ok());
let ivl = Interval::new(f32::NEG_INFINITY, f32::INFINITY);
assert!(ivl.is_ok());
let ivl = Interval::new(f32::INFINITY, f32::NEG_INFINITY);
assert!(ivl.is_err());
let ivl = Interval::new(-1.0, f32::NAN);
assert!(ivl.is_err());
let ivl = Interval::new(f32::NAN, -42.0);
assert!(ivl.is_err());
let ivl = Interval::new(f32::NAN, f32::NAN);
assert!(ivl.is_err());
let ivl = Interval::new(0.0, 1.0);
assert!(ivl.is_ok());
}
#[test]
fn lengths() {
let ivl = interval(-5.0, 10.0).unwrap();
assert!((ivl.length() - 15.0).abs() <= f32::EPSILON);
let ivl = interval(5.0, 100.0).unwrap();
assert!((ivl.length() - 95.0).abs() <= f32::EPSILON);
let ivl = interval(0.0, f32::INFINITY).unwrap();
assert_eq!(ivl.length(), f32::INFINITY);
let ivl = interval(f32::NEG_INFINITY, 0.0).unwrap();
assert_eq!(ivl.length(), f32::INFINITY);
let ivl = Interval::EVERYWHERE;
assert_eq!(ivl.length(), f32::INFINITY);
}
#[test]
fn intersections() {
let ivl1 = interval(-1.0, 1.0).unwrap();
let ivl2 = interval(0.0, 2.0).unwrap();
let ivl3 = interval(-3.0, 0.0).unwrap();
let ivl4 = interval(0.0, f32::INFINITY).unwrap();
let ivl5 = interval(f32::NEG_INFINITY, 0.0).unwrap();
let ivl6 = Interval::EVERYWHERE;
assert!(ivl1
.intersect(ivl2)
.is_ok_and(|ivl| ivl == interval(0.0, 1.0).unwrap()));
assert!(ivl1
.intersect(ivl3)
.is_ok_and(|ivl| ivl == interval(-1.0, 0.0).unwrap()));
assert!(ivl2.intersect(ivl3).is_err());
assert!(ivl1
.intersect(ivl4)
.is_ok_and(|ivl| ivl == interval(0.0, 1.0).unwrap()));
assert!(ivl1
.intersect(ivl5)
.is_ok_and(|ivl| ivl == interval(-1.0, 0.0).unwrap()));
assert!(ivl4.intersect(ivl5).is_err());
assert_eq!(ivl1.intersect(ivl6).unwrap(), ivl1);
assert_eq!(ivl4.intersect(ivl6).unwrap(), ivl4);
assert_eq!(ivl5.intersect(ivl6).unwrap(), ivl5);
}
#[test]
fn containment() {
let ivl = interval(0.0, 1.0).unwrap();
assert!(ivl.contains(0.0));
assert!(ivl.contains(1.0));
assert!(ivl.contains(0.5));
assert!(!ivl.contains(-0.1));
assert!(!ivl.contains(1.1));
assert!(!ivl.contains(f32::NAN));
let ivl = interval(3.0, f32::INFINITY).unwrap();
assert!(ivl.contains(3.0));
assert!(ivl.contains(2.0e5));
assert!(ivl.contains(3.5e6));
assert!(!ivl.contains(2.5));
assert!(!ivl.contains(-1e5));
assert!(!ivl.contains(f32::NAN));
}
#[test]
fn interval_containment() {
let ivl = interval(0.0, 1.0).unwrap();
assert!(ivl.contains_interval(interval(-0.0, 0.5).unwrap()));
assert!(ivl.contains_interval(interval(0.5, 1.0).unwrap()));
assert!(ivl.contains_interval(interval(0.25, 0.75).unwrap()));
assert!(!ivl.contains_interval(interval(-0.25, 0.5).unwrap()));
assert!(!ivl.contains_interval(interval(0.5, 1.25).unwrap()));
assert!(!ivl.contains_interval(interval(0.25, f32::INFINITY).unwrap()));
assert!(!ivl.contains_interval(interval(f32::NEG_INFINITY, 0.75).unwrap()));
let big_ivl = interval(0.0, f32::INFINITY).unwrap();
assert!(big_ivl.contains_interval(interval(0.0, 5.0).unwrap()));
assert!(big_ivl.contains_interval(interval(0.0, f32::INFINITY).unwrap()));
assert!(big_ivl.contains_interval(interval(1.0, 5.0).unwrap()));
assert!(!big_ivl.contains_interval(interval(-1.0, f32::INFINITY).unwrap()));
assert!(!big_ivl.contains_interval(interval(-2.0, 5.0).unwrap()));
}
#[test]
fn boundedness() {
assert!(!Interval::EVERYWHERE.is_bounded());
assert!(interval(0.0, 3.5e5).unwrap().is_bounded());
assert!(!interval(-2.0, f32::INFINITY).unwrap().is_bounded());
assert!(!interval(f32::NEG_INFINITY, 5.0).unwrap().is_bounded());
}
#[test]
fn linear_maps() {
let ivl1 = interval(-3.0, 5.0).unwrap();
let ivl2 = interval(0.0, 1.0).unwrap();
let map = ivl1.linear_map_to(ivl2);
assert!(map.is_ok_and(|f| f(-3.0).abs_diff_eq(&0.0, f32::EPSILON)
&& f(5.0).abs_diff_eq(&1.0, f32::EPSILON)
&& f(1.0).abs_diff_eq(&0.5, f32::EPSILON)));
let ivl1 = interval(0.0, 1.0).unwrap();
let ivl2 = Interval::EVERYWHERE;
assert!(ivl1.linear_map_to(ivl2).is_err());
let ivl1 = interval(f32::NEG_INFINITY, -4.0).unwrap();
let ivl2 = interval(0.0, 1.0).unwrap();
assert!(ivl1.linear_map_to(ivl2).is_err());
}
#[test]
fn spaced_points() {
let ivl = interval(0.0, 50.0).unwrap();
let points_iter: Vec<f32> = ivl.spaced_points(1).unwrap().collect();
assert_abs_diff_eq!(points_iter[0], 0.0);
assert_eq!(points_iter.len(), 1);
let points_iter: Vec<f32> = ivl.spaced_points(2).unwrap().collect();
assert_abs_diff_eq!(points_iter[0], 0.0);
assert_abs_diff_eq!(points_iter[1], 50.0);
let points_iter = ivl.spaced_points(21).unwrap();
let step = ivl.length() / 20.0;
for (index, point) in points_iter.enumerate() {
let expected = ivl.start() + step * index as f32;
assert_abs_diff_eq!(point, expected);
}
let ivl = interval(-21.0, 79.0).unwrap();
let points_iter = ivl.spaced_points(10000).unwrap();
let step = ivl.length() / 9999.0;
for (index, point) in points_iter.enumerate() {
let expected = ivl.start() + step * index as f32;
assert_abs_diff_eq!(point, expected);
}
let ivl = interval(-1.0, f32::INFINITY).unwrap();
let points_iter = ivl.spaced_points(25);
assert!(points_iter.is_err());
let ivl = interval(f32::NEG_INFINITY, -25.0).unwrap();
let points_iter = ivl.spaced_points(9);
assert!(points_iter.is_err());
}
}

View File

@ -0,0 +1,685 @@
//! The [`Curve`] trait, used to describe curves in a number of different domains. This module also
//! contains the [`Interval`] type, along with a selection of core data structures used to back
//! curves that are interpolated from samples.
pub mod interval;
pub use interval::{interval, Interval};
use interval::InvalidIntervalError;
use std::{marker::PhantomData, ops::Deref};
use thiserror::Error;
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
/// A trait for a type that can represent values of type `T` parametrized over a fixed interval.
/// Typical examples of this are actual geometric curves where `T: VectorSpace`, but other kinds
/// of output data can be represented as well.
pub trait Curve<T> {
/// The interval over which this curve is parametrized.
///
/// This is the range of values of `t` where we can sample the curve and receive valid output.
fn domain(&self) -> Interval;
/// Sample a point on this curve at the parameter value `t`, extracting the associated value.
/// This is the unchecked version of sampling, which should only be used if the sample time `t`
/// is already known to lie within the curve's domain.
///
/// Values sampled from outside of a curve's domain are generally considered invalid; data which
/// is nonsensical or otherwise useless may be returned in such a circumstance, and extrapolation
/// beyond a curve's domain should not be relied upon.
fn sample_unchecked(&self, t: f32) -> T;
/// Sample a point on this curve at the parameter value `t`, returning `None` if the point is
/// outside of the curve's domain.
fn sample(&self, t: f32) -> Option<T> {
match self.domain().contains(t) {
true => Some(self.sample_unchecked(t)),
false => None,
}
}
/// Sample a point on this curve at the parameter value `t`, clamping `t` to lie inside the
/// domain of the curve.
fn sample_clamped(&self, t: f32) -> T {
let t = self.domain().clamp(t);
self.sample_unchecked(t)
}
/// Create a new curve by mapping the values of this curve via a function `f`; i.e., if the
/// sample at time `t` for this curve is `x`, the value at time `t` on the new curve will be
/// `f(x)`.
fn map<S, F>(self, f: F) -> MapCurve<T, S, Self, F>
where
Self: Sized,
F: Fn(T) -> S,
{
MapCurve {
preimage: self,
f,
_phantom: PhantomData,
}
}
/// Create a new [`Curve`] whose parameter space is related to the parameter space of this curve
/// by `f`. For each time `t`, the sample from the new curve at time `t` is the sample from
/// this curve at time `f(t)`. The given `domain` will be the domain of the new curve. The
/// function `f` is expected to take `domain` into `self.domain()`.
///
/// Note that this is the opposite of what one might expect intuitively; for example, if this
/// curve has a parameter domain of `[0, 1]`, then stretching the parameter domain to
/// `[0, 2]` would be performed as follows, dividing by what might be perceived as the scaling
/// factor rather than multiplying:
/// ```
/// # use bevy_math::curve::*;
/// let my_curve = constant_curve(interval(0.0, 1.0).unwrap(), 1.0);
/// let scaled_curve = my_curve.reparametrize(interval(0.0, 2.0).unwrap(), |t| t / 2.0);
/// ```
/// This kind of linear remapping is provided by the convenience method
/// [`Curve::reparametrize_linear`], which requires only the desired domain for the new curve.
///
/// # Examples
/// ```
/// // Reverse a curve:
/// # use bevy_math::curve::*;
/// # use bevy_math::vec2;
/// let my_curve = constant_curve(interval(0.0, 1.0).unwrap(), 1.0);
/// let domain = my_curve.domain();
/// let reversed_curve = my_curve.reparametrize(domain, |t| domain.end() - t);
///
/// // Take a segment of a curve:
/// # let my_curve = constant_curve(interval(0.0, 1.0).unwrap(), 1.0);
/// let curve_segment = my_curve.reparametrize(interval(0.0, 0.5).unwrap(), |t| 0.5 + t);
///
/// // Reparametrize by an easing curve:
/// # let my_curve = constant_curve(interval(0.0, 1.0).unwrap(), 1.0);
/// # let easing_curve = constant_curve(interval(0.0, 1.0).unwrap(), vec2(1.0, 1.0));
/// let domain = my_curve.domain();
/// let eased_curve = my_curve.reparametrize(domain, |t| easing_curve.sample_unchecked(t).y);
/// ```
fn reparametrize<F>(self, domain: Interval, f: F) -> ReparamCurve<T, Self, F>
where
Self: Sized,
F: Fn(f32) -> f32,
{
ReparamCurve {
domain,
base: self,
f,
_phantom: PhantomData,
}
}
/// Linearly reparametrize this [`Curve`], producing a new curve whose domain is the given
/// `domain` instead of the current one. This operation is only valid for curves with bounded
/// domains; if either this curve's domain or the given `domain` is unbounded, an error is
/// returned.
fn reparametrize_linear(
self,
domain: Interval,
) -> Result<LinearReparamCurve<T, Self>, LinearReparamError>
where
Self: Sized,
{
if !self.domain().is_bounded() {
return Err(LinearReparamError::SourceCurveUnbounded);
}
if !domain.is_bounded() {
return Err(LinearReparamError::TargetIntervalUnbounded);
}
Ok(LinearReparamCurve {
base: self,
new_domain: domain,
_phantom: PhantomData,
})
}
/// Reparametrize this [`Curve`] by sampling from another curve.
///
/// The resulting curve samples at time `t` by first sampling `other` at time `t`, which produces
/// another sample time `s` which is then used to sample this curve. The domain of the resulting
/// curve is the domain of `other`.
fn reparametrize_by_curve<C>(self, other: C) -> CurveReparamCurve<T, Self, C>
where
Self: Sized,
C: Curve<f32>,
{
CurveReparamCurve {
base: self,
reparam_curve: other,
_phantom: PhantomData,
}
}
/// Create a new [`Curve`] which is the graph of this one; that is, its output echoes the sample
/// time as part of a tuple.
///
/// For example, if this curve outputs `x` at time `t`, then the produced curve will produce
/// `(t, x)` at time `t`. In particular, if this curve is a `Curve<T>`, the output of this method
/// is a `Curve<(f32, T)>`.
fn graph(self) -> GraphCurve<T, Self>
where
Self: Sized,
{
GraphCurve {
base: self,
_phantom: PhantomData,
}
}
/// Create a new [`Curve`] by zipping this curve together with another.
///
/// The sample at time `t` in the new curve is `(x, y)`, where `x` is the sample of `self` at
/// time `t` and `y` is the sample of `other` at time `t`. The domain of the new curve is the
/// intersection of the domains of its constituents. If the domain intersection would be empty,
/// an error is returned.
fn zip<S, C>(self, other: C) -> Result<ProductCurve<T, S, Self, C>, InvalidIntervalError>
where
Self: Sized,
C: Curve<S> + Sized,
{
let domain = self.domain().intersect(other.domain())?;
Ok(ProductCurve {
domain,
first: self,
second: other,
_phantom: PhantomData,
})
}
/// Create a new [`Curve`] by composing this curve end-to-end with another, producing another curve
/// with outputs of the same type. The domain of the other curve is translated so that its start
/// coincides with where this curve ends. A [`ChainError`] is returned if this curve's domain
/// doesn't have a finite end or if `other`'s domain doesn't have a finite start.
fn chain<C>(self, other: C) -> Result<ChainCurve<T, Self, C>, ChainError>
where
Self: Sized,
C: Curve<T>,
{
if !self.domain().has_finite_end() {
return Err(ChainError::FirstEndInfinite);
}
if !other.domain().has_finite_start() {
return Err(ChainError::SecondStartInfinite);
}
Ok(ChainCurve {
first: self,
second: other,
_phantom: PhantomData,
})
}
/// Borrow this curve rather than taking ownership of it. This is essentially an alias for a
/// prefix `&`; the point is that intermediate operations can be performed while retaining
/// access to the original curve.
///
/// # Example
/// ```ignore
/// # use bevy_math::curve::*;
/// let my_curve = function_curve(interval(0.0, 1.0).unwrap(), |t| t * t + 1.0);
/// // Borrow `my_curve` long enough to resample a mapped version. Note that `map` takes
/// // ownership of its input.
/// let samples = my_curve.by_ref().map(|x| x * 2.0).resample_auto(100).unwrap();
/// // Do something else with `my_curve` since we retained ownership:
/// let new_curve = my_curve.reparametrize_linear(interval(-1.0, 1.0).unwrap()).unwrap();
/// ```
fn by_ref(&self) -> &Self
where
Self: Sized,
{
self
}
/// Flip this curve so that its tuple output is arranged the other way.
fn flip<U, V>(self) -> impl Curve<(V, U)>
where
Self: Sized + Curve<(U, V)>,
{
self.map(|(u, v)| (v, u))
}
}
impl<T, C, D> Curve<T> for D
where
C: Curve<T> + ?Sized,
D: Deref<Target = C>,
{
fn domain(&self) -> Interval {
<C as Curve<T>>::domain(self)
}
fn sample_unchecked(&self, t: f32) -> T {
<C as Curve<T>>::sample_unchecked(self, t)
}
}
/// An error indicating that a linear reparametrization couldn't be performed because of
/// malformed inputs.
#[derive(Debug, Error)]
#[error("Could not build a linear function to reparametrize this curve")]
pub enum LinearReparamError {
/// The source curve that was to be reparametrized had unbounded domain.
#[error("This curve has unbounded domain")]
SourceCurveUnbounded,
/// The target interval for reparametrization was unbounded.
#[error("The target interval for reparametrization is unbounded")]
TargetIntervalUnbounded,
}
/// An error indicating that an end-to-end composition couldn't be performed because of
/// malformed inputs.
#[derive(Debug, Error)]
#[error("Could not compose these curves together")]
pub enum ChainError {
/// The right endpoint of the first curve was infinite.
#[error("The first curve's domain has an infinite end")]
FirstEndInfinite,
/// The left endpoint of the second curve was infinite.
#[error("The second curve's domain has an infinite start")]
SecondStartInfinite,
}
/// A curve with a constant value over its domain.
///
/// This is a curve that holds an inner value and always produces a clone of that value when sampled.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct ConstantCurve<T> {
domain: Interval,
value: T,
}
impl<T> ConstantCurve<T>
where
T: Clone,
{
/// Create a constant curve, which has the given `domain` and always produces the given `value`
/// when sampled.
pub fn new(domain: Interval, value: T) -> Self {
Self { domain, value }
}
}
impl<T> Curve<T> for ConstantCurve<T>
where
T: Clone,
{
#[inline]
fn domain(&self) -> Interval {
self.domain
}
#[inline]
fn sample_unchecked(&self, _t: f32) -> T {
self.value.clone()
}
}
/// A curve defined by a function together with a fixed domain.
///
/// This is a curve that holds an inner function `f` which takes numbers (`f32`) as input and produces
/// output of type `T`. The value of this curve when sampled at time `t` is just `f(t)`.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct FunctionCurve<T, F> {
domain: Interval,
f: F,
_phantom: PhantomData<T>,
}
impl<T, F> FunctionCurve<T, F>
where
F: Fn(f32) -> T,
{
/// Create a new curve with the given `domain` from the given `function`. When sampled, the
/// `function` is evaluated at the sample time to compute the output.
pub fn new(domain: Interval, function: F) -> Self {
FunctionCurve {
domain,
f: function,
_phantom: PhantomData,
}
}
}
impl<T, F> Curve<T> for FunctionCurve<T, F>
where
F: Fn(f32) -> T,
{
#[inline]
fn domain(&self) -> Interval {
self.domain
}
#[inline]
fn sample_unchecked(&self, t: f32) -> T {
(self.f)(t)
}
}
/// A curve whose samples are defined by mapping samples from another curve through a
/// given function. Curves of this type are produced by [`Curve::map`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct MapCurve<S, T, C, F> {
preimage: C,
f: F,
_phantom: PhantomData<(S, T)>,
}
impl<S, T, C, F> Curve<T> for MapCurve<S, T, C, F>
where
C: Curve<S>,
F: Fn(S) -> T,
{
#[inline]
fn domain(&self) -> Interval {
self.preimage.domain()
}
#[inline]
fn sample_unchecked(&self, t: f32) -> T {
(self.f)(self.preimage.sample_unchecked(t))
}
}
/// A curve whose sample space is mapped onto that of some base curve's before sampling.
/// Curves of this type are produced by [`Curve::reparametrize`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct ReparamCurve<T, C, F> {
domain: Interval,
base: C,
f: F,
_phantom: PhantomData<T>,
}
impl<T, C, F> Curve<T> for ReparamCurve<T, C, F>
where
C: Curve<T>,
F: Fn(f32) -> f32,
{
#[inline]
fn domain(&self) -> Interval {
self.domain
}
#[inline]
fn sample_unchecked(&self, t: f32) -> T {
self.base.sample_unchecked((self.f)(t))
}
}
/// A curve that has had its domain changed by a linear reparametrization (stretching and scaling).
/// Curves of this type are produced by [`Curve::reparametrize_linear`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct LinearReparamCurve<T, C> {
/// Invariants: The domain of this curve must always be bounded.
base: C,
/// Invariants: This interval must always be bounded.
new_domain: Interval,
_phantom: PhantomData<T>,
}
impl<T, C> Curve<T> for LinearReparamCurve<T, C>
where
C: Curve<T>,
{
#[inline]
fn domain(&self) -> Interval {
self.new_domain
}
#[inline]
fn sample_unchecked(&self, t: f32) -> T {
// The invariants imply this unwrap always succeeds.
let f = self.new_domain.linear_map_to(self.base.domain()).unwrap();
self.base.sample_unchecked(f(t))
}
}
/// A curve that has been reparametrized by another curve, using that curve to transform the
/// sample times before sampling. Curves of this type are produced by [`Curve::reparametrize_by_curve`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct CurveReparamCurve<T, C, D> {
base: C,
reparam_curve: D,
_phantom: PhantomData<T>,
}
impl<T, C, D> Curve<T> for CurveReparamCurve<T, C, D>
where
C: Curve<T>,
D: Curve<f32>,
{
#[inline]
fn domain(&self) -> Interval {
self.reparam_curve.domain()
}
#[inline]
fn sample_unchecked(&self, t: f32) -> T {
let sample_time = self.reparam_curve.sample_unchecked(t);
self.base.sample_unchecked(sample_time)
}
}
/// A curve that is the graph of another curve over its parameter space. Curves of this type are
/// produced by [`Curve::graph`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct GraphCurve<T, C> {
base: C,
_phantom: PhantomData<T>,
}
impl<T, C> Curve<(f32, T)> for GraphCurve<T, C>
where
C: Curve<T>,
{
#[inline]
fn domain(&self) -> Interval {
self.base.domain()
}
#[inline]
fn sample_unchecked(&self, t: f32) -> (f32, T) {
(t, self.base.sample_unchecked(t))
}
}
/// A curve that combines the output data from two constituent curves into a tuple output. Curves
/// of this type are produced by [`Curve::zip`].
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct ProductCurve<S, T, C, D> {
domain: Interval,
first: C,
second: D,
_phantom: PhantomData<(S, T)>,
}
impl<S, T, C, D> Curve<(S, T)> for ProductCurve<S, T, C, D>
where
C: Curve<S>,
D: Curve<T>,
{
#[inline]
fn domain(&self) -> Interval {
self.domain
}
#[inline]
fn sample_unchecked(&self, t: f32) -> (S, T) {
(
self.first.sample_unchecked(t),
self.second.sample_unchecked(t),
)
}
}
/// The curve that results from chaining one curve with another. The second curve is
/// effectively reparametrized so that its start is at the end of the first.
///
/// For this to be well-formed, the first curve's domain must be right-finite and the second's
/// must be left-finite.
///
/// Curves of this type are produced by [`Curve::chain`].
pub struct ChainCurve<T, C, D> {
first: C,
second: D,
_phantom: PhantomData<T>,
}
impl<T, C, D> Curve<T> for ChainCurve<T, C, D>
where
C: Curve<T>,
D: Curve<T>,
{
#[inline]
fn domain(&self) -> Interval {
// This unwrap always succeeds because `first` has a valid Interval as its domain and the
// length of `second` cannot be NAN. It's still fine if it's infinity.
Interval::new(
self.first.domain().start(),
self.first.domain().end() + self.second.domain().length(),
)
.unwrap()
}
#[inline]
fn sample_unchecked(&self, t: f32) -> T {
if t > self.first.domain().end() {
self.second.sample_unchecked(
// `t - first.domain.end` computes the offset into the domain of the second.
t - self.first.domain().end() + self.second.domain().start(),
)
} else {
self.first.sample_unchecked(t)
}
}
}
/// Create a [`Curve`] that constantly takes the given `value` over the given `domain`.
pub fn constant_curve<T: Clone>(domain: Interval, value: T) -> ConstantCurve<T> {
ConstantCurve { domain, value }
}
/// Convert the given function `f` into a [`Curve`] with the given `domain`, sampled by
/// evaluating the function.
pub fn function_curve<T, F>(domain: Interval, f: F) -> FunctionCurve<T, F>
where
F: Fn(f32) -> T,
{
FunctionCurve {
domain,
f,
_phantom: PhantomData,
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Quat;
use approx::{assert_abs_diff_eq, AbsDiffEq};
use std::f32::consts::TAU;
#[test]
fn constant_curves() {
let curve = constant_curve(Interval::EVERYWHERE, 5.0);
assert!(curve.sample_unchecked(-35.0) == 5.0);
let curve = constant_curve(interval(0.0, 1.0).unwrap(), true);
assert!(curve.sample_unchecked(2.0));
assert!(curve.sample(2.0).is_none());
}
#[test]
fn function_curves() {
let curve = function_curve(Interval::EVERYWHERE, |t| t * t);
assert!(curve.sample_unchecked(2.0).abs_diff_eq(&4.0, f32::EPSILON));
assert!(curve.sample_unchecked(-3.0).abs_diff_eq(&9.0, f32::EPSILON));
let curve = function_curve(interval(0.0, f32::INFINITY).unwrap(), f32::log2);
assert_eq!(curve.sample_unchecked(3.5), f32::log2(3.5));
assert!(curve.sample_unchecked(-1.0).is_nan());
assert!(curve.sample(-1.0).is_none());
}
#[test]
fn mapping() {
let curve = function_curve(Interval::EVERYWHERE, |t| t * 3.0 + 1.0);
let mapped_curve = curve.map(|x| x / 7.0);
assert_eq!(mapped_curve.sample_unchecked(3.5), (3.5 * 3.0 + 1.0) / 7.0);
assert_eq!(
mapped_curve.sample_unchecked(-1.0),
(-1.0 * 3.0 + 1.0) / 7.0
);
assert_eq!(mapped_curve.domain(), Interval::EVERYWHERE);
let curve = function_curve(interval(0.0, 1.0).unwrap(), |t| t * TAU);
let mapped_curve = curve.map(Quat::from_rotation_z);
assert_eq!(mapped_curve.sample_unchecked(0.0), Quat::IDENTITY);
assert!(mapped_curve.sample_unchecked(1.0).is_near_identity());
assert_eq!(mapped_curve.domain(), interval(0.0, 1.0).unwrap());
}
#[test]
fn reparametrization() {
let curve = function_curve(interval(1.0, f32::INFINITY).unwrap(), f32::log2);
let reparametrized_curve = curve
.by_ref()
.reparametrize(interval(0.0, f32::INFINITY).unwrap(), f32::exp2);
assert_abs_diff_eq!(reparametrized_curve.sample_unchecked(3.5), 3.5);
assert_abs_diff_eq!(reparametrized_curve.sample_unchecked(100.0), 100.0);
assert_eq!(
reparametrized_curve.domain(),
interval(0.0, f32::INFINITY).unwrap()
);
let reparametrized_curve = curve
.by_ref()
.reparametrize(interval(0.0, 1.0).unwrap(), |t| t + 1.0);
assert_abs_diff_eq!(reparametrized_curve.sample_unchecked(0.0), 0.0);
assert_abs_diff_eq!(reparametrized_curve.sample_unchecked(1.0), 1.0);
assert_eq!(reparametrized_curve.domain(), interval(0.0, 1.0).unwrap());
}
#[test]
fn multiple_maps() {
// Make sure these actually happen in the right order.
let curve = function_curve(interval(0.0, 1.0).unwrap(), f32::exp2);
let first_mapped = curve.map(f32::log2);
let second_mapped = first_mapped.map(|x| x * -2.0);
assert_abs_diff_eq!(second_mapped.sample_unchecked(0.0), 0.0);
assert_abs_diff_eq!(second_mapped.sample_unchecked(0.5), -1.0);
assert_abs_diff_eq!(second_mapped.sample_unchecked(1.0), -2.0);
}
#[test]
fn multiple_reparams() {
// Make sure these happen in the right order too.
let curve = function_curve(interval(0.0, 1.0).unwrap(), f32::exp2);
let first_reparam = curve.reparametrize(interval(1.0, 2.0).unwrap(), f32::log2);
let second_reparam = first_reparam.reparametrize(interval(0.0, 1.0).unwrap(), |t| t + 1.0);
assert_abs_diff_eq!(second_reparam.sample_unchecked(0.0), 1.0);
assert_abs_diff_eq!(second_reparam.sample_unchecked(0.5), 1.5);
assert_abs_diff_eq!(second_reparam.sample_unchecked(1.0), 2.0);
}
}

View File

@ -17,6 +17,7 @@ pub mod bounding;
pub mod common_traits;
mod compass;
pub mod cubic_splines;
pub mod curve;
mod direction;
mod float_ord;
mod isometry;