Add generic cubic splines to bevy_math
(#7683)
# Objective - Make cubic splines more flexible and more performant - Remove the existing spline implementation that is generic over many degrees - This is a potential performance footgun and adds type complexity for negligible gain. - Add implementations of: - Bezier splines - Cardinal splines (inc. Catmull-Rom) - B-Splines - Hermite splines https://user-images.githubusercontent.com/2632925/221780519-495d1b20-ab46-45b4-92a3-32c46da66034.mp4 https://user-images.githubusercontent.com/2632925/221780524-2b154016-699f-404f-9c18-02092f589b04.mp4 https://user-images.githubusercontent.com/2632925/221780525-f934f99d-9ad4-4999-bae2-75d675f5644f.mp4 ## Solution - Implements the concept that splines are curve generators (e.g. https://youtu.be/jvPPXbo87ds?t=3488) via the `CubicGenerator` trait. - Common splines are bespoke data types that implement this trait. This gives us flexibility to add custom spline-specific methods on these types, while ultimately all generating a `CubicCurve`. - All splines generate `CubicCurve`s, which are a chain of precomputed polynomial coefficients. This means that all splines have the same evaluation cost, as the calculations for determining position, velocity, and acceleration are all identical. In addition, `CubicCurve`s are simply a list of `CubicSegment`s, which are evaluated from t=0 to t=1. This also means cubic splines of different type can be chained together, as ultimately they all are simply a collection of `CubicSegment`s. - Because easing is an operation on a singe segment of a Bezier curve, we can simply implement easing on `Beziers` that use the `Vec2` type for points. Higher level crates such as `bevy_ui` can wrap this in a more ergonomic interface as needed. ### Performance Measured on a desktop i5 8600K (6-year-old CPU): - easing: 2.7x faster (19ns) - cubic vec2 position sample: 1.5x faster (1.8ns) - cubic vec3 position sample: 1.5x faster (2.6ns) - cubic vec3a position sample: 1.9x faster (1.4ns) On a laptop i7 11800H: - easing: 16ns - cubic vec2 position sample: 1.6ns - cubic vec3 position sample: 2.3ns - cubic vec3a position sample: 1.2ns --- ## Changelog - Added a generic cubic curve trait, and implementation for Cardinal splines (including Catmull-Rom), B-Splines, Beziers, and Hermite Splines. 2D cubic curve segments also implement easing functionality for animation.
This commit is contained in:
parent
47ddd4a8ce
commit
2ea0061018
@ -1,128 +1,89 @@
|
||||
use criterion::{black_box, criterion_group, criterion_main, Criterion};
|
||||
|
||||
use bevy_math::*;
|
||||
use bevy_math::{prelude::*, *};
|
||||
|
||||
fn easing(c: &mut Criterion) {
|
||||
let cubic_bezier = CubicBezierEasing::new(vec2(0.25, 0.1), vec2(0.25, 1.0));
|
||||
let cubic_bezier = CubicSegment::new_bezier(vec2(0.25, 0.1), vec2(0.25, 1.0));
|
||||
c.bench_function("easing_1000", |b| {
|
||||
b.iter(|| {
|
||||
(0..1000).map(|i| i as f32 / 1000.0).for_each(|t| {
|
||||
cubic_bezier.ease(black_box(t));
|
||||
black_box(cubic_bezier.ease(black_box(t)));
|
||||
})
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
fn fifteen_degree(c: &mut Criterion) {
|
||||
let bezier = Bezier::<Vec3A, 16>::new([
|
||||
[0.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0],
|
||||
[1.0, 0.0, 0.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
[0.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0],
|
||||
[1.0, 0.0, 0.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
[0.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0],
|
||||
[1.0, 0.0, 0.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
[0.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0],
|
||||
[1.0, 0.0, 0.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
]);
|
||||
c.bench_function("fifteen_degree_position", |b| {
|
||||
b.iter(|| bezier.position(black_box(0.5)));
|
||||
});
|
||||
}
|
||||
|
||||
fn quadratic_2d(c: &mut Criterion) {
|
||||
let bezier = QuadraticBezier2d::new([[0.0, 0.0], [0.0, 1.0], [1.0, 1.0]]);
|
||||
c.bench_function("quadratic_position_Vec2", |b| {
|
||||
b.iter(|| bezier.position(black_box(0.5)));
|
||||
});
|
||||
}
|
||||
|
||||
fn quadratic(c: &mut Criterion) {
|
||||
let bezier = QuadraticBezier3d::new([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 1.0]]);
|
||||
c.bench_function("quadratic_position_Vec3A", |b| {
|
||||
b.iter(|| bezier.position(black_box(0.5)));
|
||||
});
|
||||
}
|
||||
|
||||
fn quadratic_vec3(c: &mut Criterion) {
|
||||
let bezier = Bezier::<Vec3, 3>::new([[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 1.0]]);
|
||||
c.bench_function("quadratic_position_Vec3", |b| {
|
||||
b.iter(|| bezier.position(black_box(0.5)));
|
||||
});
|
||||
}
|
||||
|
||||
fn cubic_2d(c: &mut Criterion) {
|
||||
let bezier = CubicBezier2d::new([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]]);
|
||||
let bezier = Bezier::new([[
|
||||
vec2(0.0, 0.0),
|
||||
vec2(0.0, 1.0),
|
||||
vec2(1.0, 0.0),
|
||||
vec2(1.0, 1.0),
|
||||
]])
|
||||
.to_curve();
|
||||
c.bench_function("cubic_position_Vec2", |b| {
|
||||
b.iter(|| bezier.position(black_box(0.5)));
|
||||
b.iter(|| black_box(bezier.position(black_box(0.5))));
|
||||
});
|
||||
}
|
||||
|
||||
fn cubic(c: &mut Criterion) {
|
||||
let bezier = CubicBezier3d::new([
|
||||
[0.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0],
|
||||
[1.0, 0.0, 0.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
]);
|
||||
let bezier = Bezier::new([[
|
||||
vec3a(0.0, 0.0, 0.0),
|
||||
vec3a(0.0, 1.0, 0.0),
|
||||
vec3a(1.0, 0.0, 0.0),
|
||||
vec3a(1.0, 1.0, 1.0),
|
||||
]])
|
||||
.to_curve();
|
||||
c.bench_function("cubic_position_Vec3A", |b| {
|
||||
b.iter(|| bezier.position(black_box(0.5)));
|
||||
b.iter(|| black_box(bezier.position(black_box(0.5))));
|
||||
});
|
||||
}
|
||||
|
||||
fn cubic_vec3(c: &mut Criterion) {
|
||||
let bezier = Bezier::<Vec3, 4>::new([
|
||||
[0.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0],
|
||||
[1.0, 0.0, 0.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
]);
|
||||
let bezier = Bezier::new([[
|
||||
vec3(0.0, 0.0, 0.0),
|
||||
vec3(0.0, 1.0, 0.0),
|
||||
vec3(1.0, 0.0, 0.0),
|
||||
vec3(1.0, 1.0, 1.0),
|
||||
]])
|
||||
.to_curve();
|
||||
c.bench_function("cubic_position_Vec3", |b| {
|
||||
b.iter(|| bezier.position(black_box(0.5)));
|
||||
b.iter(|| black_box(bezier.position(black_box(0.5))));
|
||||
});
|
||||
}
|
||||
|
||||
fn build_pos_cubic(c: &mut Criterion) {
|
||||
let bezier = CubicBezier3d::new([
|
||||
[0.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0],
|
||||
[1.0, 0.0, 0.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
]);
|
||||
let bezier = Bezier::new([[
|
||||
vec3a(0.0, 0.0, 0.0),
|
||||
vec3a(0.0, 1.0, 0.0),
|
||||
vec3a(1.0, 0.0, 0.0),
|
||||
vec3a(1.0, 1.0, 1.0),
|
||||
]])
|
||||
.to_curve();
|
||||
c.bench_function("build_pos_cubic_100_points", |b| {
|
||||
b.iter(|| bezier.iter_positions(black_box(100)).collect::<Vec<_>>());
|
||||
b.iter(|| black_box(bezier.iter_positions(black_box(100)).collect::<Vec<_>>()));
|
||||
});
|
||||
}
|
||||
|
||||
fn build_accel_cubic(c: &mut Criterion) {
|
||||
let bezier = CubicBezier3d::new([
|
||||
[0.0, 0.0, 0.0],
|
||||
[0.0, 1.0, 0.0],
|
||||
[1.0, 0.0, 0.0],
|
||||
[1.0, 1.0, 1.0],
|
||||
]);
|
||||
let bezier = Bezier::new([[
|
||||
vec3a(0.0, 0.0, 0.0),
|
||||
vec3a(0.0, 1.0, 0.0),
|
||||
vec3a(1.0, 0.0, 0.0),
|
||||
vec3a(1.0, 1.0, 1.0),
|
||||
]])
|
||||
.to_curve();
|
||||
c.bench_function("build_accel_cubic_100_points", |b| {
|
||||
b.iter(|| bezier.iter_positions(black_box(100)).collect::<Vec<_>>());
|
||||
b.iter(|| black_box(bezier.iter_positions(black_box(100)).collect::<Vec<_>>()));
|
||||
});
|
||||
}
|
||||
|
||||
criterion_group!(
|
||||
benches,
|
||||
easing,
|
||||
fifteen_degree,
|
||||
quadratic_2d,
|
||||
quadratic,
|
||||
quadratic_vec3,
|
||||
cubic_2d,
|
||||
cubic,
|
||||
cubic_vec3,
|
||||
cubic,
|
||||
build_pos_cubic,
|
||||
build_accel_cubic,
|
||||
);
|
||||
|
@ -1,457 +0,0 @@
|
||||
use glam::{Vec2, Vec3, Vec3A};
|
||||
|
||||
use std::{
|
||||
fmt::Debug,
|
||||
iter::Sum,
|
||||
ops::{Add, Mul, Sub},
|
||||
};
|
||||
|
||||
/// A point in space of any dimension that supports the mathematical operations needed by
|
||||
/// [`Bezier`].
|
||||
pub trait Point:
|
||||
Mul<f32, Output = Self>
|
||||
+ Add<Self, Output = Self>
|
||||
+ Sub<Self, Output = Self>
|
||||
+ Sum
|
||||
+ Default
|
||||
+ Debug
|
||||
+ Clone
|
||||
+ PartialEq
|
||||
+ Copy
|
||||
{
|
||||
}
|
||||
impl Point for Vec3 {} // 3D
|
||||
impl Point for Vec3A {} // 3D
|
||||
impl Point for Vec2 {} // 2D
|
||||
impl Point for f32 {} // 1D
|
||||
|
||||
/// A cubic Bezier curve in 2D space
|
||||
pub type CubicBezier2d = Bezier<Vec2, 4>;
|
||||
/// A cubic Bezier curve in 3D space
|
||||
pub type CubicBezier3d = Bezier<Vec3A, 4>;
|
||||
/// A quadratic Bezier curve in 2D space
|
||||
pub type QuadraticBezier2d = Bezier<Vec2, 3>;
|
||||
/// A quadratic Bezier curve in 3D space
|
||||
pub type QuadraticBezier3d = Bezier<Vec3A, 3>;
|
||||
|
||||
/// A generic Bezier curve with `N` control points, and dimension defined by `P`.
|
||||
///
|
||||
/// Consider the following type aliases for most common uses:
|
||||
/// - [`CubicBezier2d`]
|
||||
/// - [`CubicBezier3d`]
|
||||
/// - [`QuadraticBezier2d`]
|
||||
/// - [`QuadraticBezier3d`]
|
||||
///
|
||||
/// The Bezier degree is equal to `N - 1`. For example, a cubic Bezier has 4 control points, and a
|
||||
/// degree of 3. The time-complexity of evaluating a Bezier increases superlinearly with the number
|
||||
/// of control points. As such, it is recommended to instead use a chain of quadratic or cubic
|
||||
/// `Beziers` instead of a high-degree Bezier.
|
||||
///
|
||||
/// ### About Bezier curves
|
||||
///
|
||||
/// `Bezier` curves are parametric implicit functions; all that means is they take a parameter `t`,
|
||||
/// and output a point in space, like:
|
||||
///
|
||||
/// > B(t) = (x, y, z)
|
||||
///
|
||||
/// So, all that is needed to find a point in space along a Bezier curve is the parameter `t`.
|
||||
/// Additionally, the values of `t` are straightforward: `t` is 0 at the start of the curve (first
|
||||
/// control point) and 1 at the end (last control point).
|
||||
///
|
||||
/// ```
|
||||
/// # use bevy_math::{Bezier, Vec2, vec2};
|
||||
/// let p0 = vec2(0.25, 0.1);
|
||||
/// let p1 = vec2(0.25, 1.0);
|
||||
/// let bezier = Bezier::<Vec2, 2>::new([p0, p1]);
|
||||
/// assert_eq!(bezier.position(0.0), p0);
|
||||
/// assert_eq!(bezier.position(1.0), p1);
|
||||
/// ```
|
||||
///
|
||||
/// ### Plotting
|
||||
///
|
||||
/// To plot a Bezier curve, simply plug in a series of values of `t` from zero to one. The functions
|
||||
/// to do this are [`Bezier::position`] to sample the curve at a value of `t`, and
|
||||
/// [`Bezier::iter_positions`] to iterate over the curve with a number of subdivisions.
|
||||
///
|
||||
/// ### Velocity and Acceleration
|
||||
///
|
||||
/// In addition to the position of a point on the Bezier curve, it is also useful to get information
|
||||
/// about the curvature. Methods are provided to help with this:
|
||||
///
|
||||
/// - [`Bezier::velocity`]: the instantaneous velocity vector with respect to `t`. This is a vector
|
||||
/// that points in the direction a point is traveling when it is at point `t`. This vector is
|
||||
/// tangent to the curve.
|
||||
/// - [`Bezier::acceleration`]: the instantaneous acceleration vector with respect to `t`. This is a
|
||||
/// vector that points in the direction a point is accelerating towards when it is at point
|
||||
/// `t`. This vector will point to the inside of turns, the direction the point is being
|
||||
/// pulled toward to change direction.
|
||||
#[derive(Clone, Copy, Debug, PartialEq)]
|
||||
pub struct Bezier<P: Point, const N: usize>(pub [P; N]);
|
||||
|
||||
impl<P: Point, const N: usize> Default for Bezier<P, N> {
|
||||
fn default() -> Self {
|
||||
Bezier([P::default(); N])
|
||||
}
|
||||
}
|
||||
|
||||
impl<P: Point, const N: usize> Bezier<P, N> {
|
||||
/// Construct a new Bezier curve.
|
||||
pub fn new(control_points: [impl Into<P>; N]) -> Self {
|
||||
let control_points = control_points.map(|v| v.into());
|
||||
Self(control_points)
|
||||
}
|
||||
|
||||
/// Compute the position of a point along the Bezier curve at the supplied parametric value `t`.
|
||||
pub fn position(&self, t: f32) -> P {
|
||||
generic::position(self.0, t)
|
||||
}
|
||||
|
||||
/// Compute the first derivative B'(t) of this Bezier at `t` with respect to t. This is the
|
||||
/// instantaneous velocity of a point on the Bezier curve at `t`.
|
||||
pub fn velocity(&self, t: f32) -> P {
|
||||
generic::velocity(self.0, t)
|
||||
}
|
||||
|
||||
/// Compute the second derivative B''(t) of this Bezier at `t` with respect to t. This is the
|
||||
/// instantaneous acceleration of a point on the Bezier curve at `t`.
|
||||
pub fn acceleration(&self, t: f32) -> P {
|
||||
generic::acceleration(self.0, t)
|
||||
}
|
||||
|
||||
/// A flexible iterator used to sample [`Bezier`] curves with arbitrary functions.
|
||||
///
|
||||
/// This splits the Bezier into `subdivisions` of evenly spaced `t` values across the length of
|
||||
/// the curve from start (t = 0) to end (t = 1), returning an iterator that evaluates the curve
|
||||
/// with the supplied `sample_function` at each `t`.
|
||||
///
|
||||
/// Given `subdivisions = 2`, this will split the curve into two lines, or three points, and
|
||||
/// return an iterator over those three points, one at the start, middle, and end.
|
||||
#[inline]
|
||||
pub fn iter_samples(
|
||||
&self,
|
||||
subdivisions: usize,
|
||||
sample_function: fn(&Self, f32) -> P,
|
||||
) -> impl Iterator<Item = P> + '_ {
|
||||
(0..=subdivisions).map(move |i| {
|
||||
let t = i as f32 / subdivisions as f32;
|
||||
sample_function(self, t)
|
||||
})
|
||||
}
|
||||
|
||||
/// Iterate over the curve split into `subdivisions`, sampling the position at each step.
|
||||
pub fn iter_positions(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
|
||||
self.iter_samples(subdivisions, Self::position)
|
||||
}
|
||||
|
||||
/// Iterate over the curve split into `subdivisions`, sampling the velocity at each step.
|
||||
pub fn iter_velocities(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
|
||||
self.iter_samples(subdivisions, Self::velocity)
|
||||
}
|
||||
|
||||
/// Iterate over the curve split into `subdivisions`, sampling the acceleration at each step.
|
||||
pub fn iter_accelerations(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
|
||||
self.iter_samples(subdivisions, Self::acceleration)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Into<P>, P: Point, const N: usize> From<[T; N]> for Bezier<P, N> {
|
||||
fn from(control_points: [T; N]) -> Self {
|
||||
Bezier::new(control_points)
|
||||
}
|
||||
}
|
||||
|
||||
/// A 2-dimensional Bezier curve used for easing in animation.
|
||||
///
|
||||
/// A cubic Bezier easing curve has control point `p0` at (0, 0) and `p3` at (1, 1), leaving only
|
||||
/// `p1` and `p2` as the remaining degrees of freedom. The first and last control points are fixed
|
||||
/// to ensure the animation begins at 0, and ends at 1.
|
||||
#[derive(Default, Clone, Copy, Debug, PartialEq)]
|
||||
pub struct CubicBezierEasing {
|
||||
/// Control point P1 of the 2D cubic Bezier curve. Controls the start of the animation.
|
||||
pub p1: Vec2,
|
||||
/// Control point P2 of the 2D cubic Bezier curve. Controls the end of the animation.
|
||||
pub p2: Vec2,
|
||||
}
|
||||
|
||||
impl CubicBezierEasing {
|
||||
/// Construct a cubic Bezier curve for animation easing, with control points `p1` and `p2`.
|
||||
/// These correspond to the two free "handles" of the Bezier curve.
|
||||
///
|
||||
/// This is a very common tool for animations that accelerate and decelerate smoothly. For
|
||||
/// example, the ubiquitous "ease-in-out" is defined as `(0.25, 0.1), (0.25, 1.0)`.
|
||||
pub fn new(p1: impl Into<Vec2>, p2: impl Into<Vec2>) -> Self {
|
||||
Self {
|
||||
p1: p1.into(),
|
||||
p2: p2.into(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Maximum allowable error for iterative Bezier solve
|
||||
const MAX_ERROR: f32 = 1e-5;
|
||||
|
||||
/// Maximum number of iterations during Bezier solve
|
||||
const MAX_ITERS: u8 = 8;
|
||||
|
||||
/// Given a `time` within `0..=1`, returns an eased value that follows the cubic Bezier curve
|
||||
/// instead of a straight line. This eased result may be outside the range `0..=1`, however it
|
||||
/// will always start at 0 and end at 1: `ease(0) = 0` and `ease(1) = 1`.
|
||||
///
|
||||
/// ```
|
||||
/// # use bevy_math::CubicBezierEasing;
|
||||
/// let cubic_bezier = CubicBezierEasing::new((0.25, 0.1), (0.25, 1.0));
|
||||
/// assert_eq!(cubic_bezier.ease(0.0), 0.0);
|
||||
/// assert_eq!(cubic_bezier.ease(1.0), 1.0);
|
||||
/// ```
|
||||
///
|
||||
/// # How cubic Bezier easing works
|
||||
///
|
||||
/// Easing is generally accomplished with the help of "shaping functions". These are curves that
|
||||
/// start at (0,0) and end at (1,1). The x-axis of this plot is the current `time` of the
|
||||
/// animation, from 0 to 1. The y-axis is how far along the animation is, also from 0 to 1. You
|
||||
/// can imagine that if the shaping function is a straight line, there is a 1:1 mapping between
|
||||
/// the `time` and how far along your animation is. If the `time` = 0.5, the animation is
|
||||
/// halfway through. This is known as linear interpolation, and results in objects animating
|
||||
/// with a constant velocity, and no smooth acceleration or deceleration at the start or end.
|
||||
///
|
||||
/// ```text
|
||||
/// y
|
||||
/// │ ●
|
||||
/// │ ⬈
|
||||
/// │ ⬈
|
||||
/// │ ⬈
|
||||
/// │ ⬈
|
||||
/// ●─────────── x (time)
|
||||
/// ```
|
||||
///
|
||||
/// Using cubic Beziers, we have a curve that starts at (0,0), ends at (1,1), and follows a path
|
||||
/// determined by the two remaining control points (handles). These handles allow us to define a
|
||||
/// smooth curve. As `time` (x-axis) progresses, we now follow the curve, and use the `y` value
|
||||
/// to determine how far along the animation is.
|
||||
///
|
||||
/// ```text
|
||||
/// y
|
||||
/// ⬈➔●
|
||||
/// │ ⬈
|
||||
/// │ ↑
|
||||
/// │ ↑
|
||||
/// │ ⬈
|
||||
/// ●➔⬈───────── x (time)
|
||||
/// ```
|
||||
///
|
||||
/// To accomplish this, we need to be able to find the position `y` on a Bezier curve, given the
|
||||
/// `x` value. As discussed in the [`Bezier`] documentation, a Bezier curve is an implicit
|
||||
/// parametric function like B(t) = (x,y). To find `y`, we first solve for `t` that corresponds
|
||||
/// to the given `x` (`time`). We use the Newton-Raphson root-finding method to quickly find a
|
||||
/// value of `t` that matches `x`. Once we have this we can easily plug that `t` into our
|
||||
/// Bezier's `position` function, to find the `y` component, which is how far along our
|
||||
/// animation should be. In other words:
|
||||
///
|
||||
/// > Given `time` in `0..=1`
|
||||
///
|
||||
/// > Use Newton's method to find a value of `t` that results in B(t) = (x,y) where `x == time`
|
||||
///
|
||||
/// > Once a solution is found, use the resulting `y` value as the final result
|
||||
///
|
||||
/// # Performance
|
||||
///
|
||||
/// This operation can be used frequently without fear of performance issues. Benchmarks show
|
||||
/// this operation taking on the order of 50 nanoseconds.
|
||||
pub fn ease(&self, time: f32) -> f32 {
|
||||
let x = time.clamp(0.0, 1.0);
|
||||
let t = self.find_t_given_x(x);
|
||||
self.evaluate_y_at(t)
|
||||
}
|
||||
|
||||
/// Compute the x-coordinate of the point along the Bezier curve at `t`.
|
||||
#[inline]
|
||||
fn evaluate_x_at(&self, t: f32) -> f32 {
|
||||
generic::position([0.0, self.p1.x, self.p2.x, 1.0], t)
|
||||
}
|
||||
|
||||
/// Compute the y-coordinate of the point along the Bezier curve at `t`.
|
||||
#[inline]
|
||||
fn evaluate_y_at(&self, t: f32) -> f32 {
|
||||
generic::position([0.0, self.p1.y, self.p2.y, 1.0], t)
|
||||
}
|
||||
|
||||
/// Compute the slope of the line at the given parametric value `t` with respect to t.
|
||||
#[inline]
|
||||
fn dx_dt(&self, t: f32) -> f32 {
|
||||
generic::velocity([0.0, self.p1.x, self.p2.x, 1.0], t)
|
||||
}
|
||||
|
||||
/// Solve for the parametric value `t` that corresponds to the given value of `x` using the
|
||||
/// Newton-Raphson method. See documentation on [`Self::ease`] for more details.
|
||||
#[inline]
|
||||
fn find_t_given_x(&self, x: f32) -> f32 {
|
||||
// PERFORMANCE NOTE:
|
||||
//
|
||||
// I tried pre-solving and caching values along the curve at struct instantiation to give
|
||||
// the solver a better starting guess. This ended up being slightly slower, possibly due to
|
||||
// the increased size of the type. Another option would be to store the last `t`, and use
|
||||
// that, however it's possible this could end up in a bad state where t is very far from the
|
||||
// naive but generally safe guess of x, e.g. after an animation resets.
|
||||
//
|
||||
// Further optimization might not be needed however - benchmarks are showing it takes about
|
||||
// 50 nanoseconds for an ease operation on my modern laptop, which seems sufficiently fast.
|
||||
let mut t_guess = x;
|
||||
for _ in 0..Self::MAX_ITERS {
|
||||
let x_guess = self.evaluate_x_at(t_guess);
|
||||
let error = x_guess - x;
|
||||
if error.abs() <= Self::MAX_ERROR {
|
||||
break;
|
||||
}
|
||||
// Using Newton's method, use the tangent line to estimate a better guess value.
|
||||
let slope = self.dx_dt(t_guess);
|
||||
t_guess -= error / slope;
|
||||
}
|
||||
t_guess.clamp(0.0, 1.0)
|
||||
}
|
||||
}
|
||||
|
||||
impl<P: Into<Vec2>> From<[P; 2]> for CubicBezierEasing {
|
||||
fn from(points: [P; 2]) -> Self {
|
||||
let [p0, p1] = points;
|
||||
CubicBezierEasing::new(p0, p1)
|
||||
}
|
||||
}
|
||||
|
||||
/// Generic implementations for sampling Bezier curves. Consider using the methods on
|
||||
/// [`Bezier`](crate::Bezier) for more ergonomic use.
|
||||
pub mod generic {
|
||||
use super::Point;
|
||||
|
||||
/// Compute the Bernstein basis polynomial `i` of degree `n`, at `t`.
|
||||
///
|
||||
/// For more information, see <https://en.wikipedia.org/wiki/Bernstein_polynomial>.
|
||||
#[inline]
|
||||
pub fn bernstein_basis(n: usize, i: usize, t: f32) -> f32 {
|
||||
(1. - t).powi((n - i) as i32) * t.powi(i as i32)
|
||||
}
|
||||
|
||||
/// Efficiently compute the binomial coefficient of `n` choose `k`.
|
||||
#[inline]
|
||||
fn binomial_coeff(n: usize, k: usize) -> usize {
|
||||
let k = usize::min(k, n - k);
|
||||
(0..k).fold(1, |val, i| val * (n - i) / (i + 1))
|
||||
}
|
||||
|
||||
/// Evaluate the Bezier curve B(t) of degree `N-1` at the parametric value `t`.
|
||||
#[inline]
|
||||
pub fn position<P: Point, const N: usize>(control_points: [P; N], t: f32) -> P {
|
||||
let p = control_points;
|
||||
let degree = N - 1;
|
||||
(0..=degree)
|
||||
.map(|i| p[i] * binomial_coeff(degree, i) as f32 * bernstein_basis(degree, i, t))
|
||||
.sum()
|
||||
}
|
||||
|
||||
/// Compute the first derivative B'(t) of Bezier curve B(t) of degree `N-1` at the given
|
||||
/// parametric value `t` with respect to t. Note that the first derivative of a Bezier is also a
|
||||
/// Bezier, of degree `N-2`.
|
||||
#[inline]
|
||||
pub fn velocity<P: Point, const N: usize>(control_points: [P; N], t: f32) -> P {
|
||||
if N <= 1 {
|
||||
return P::default(); // Zero for numeric types
|
||||
}
|
||||
let p = control_points;
|
||||
let degree = N - 1;
|
||||
let degree_vel = N - 2; // the velocity Bezier is one degree lower than the position Bezier
|
||||
(0..=degree_vel)
|
||||
.map(|i| {
|
||||
// Point on the velocity Bezier curve:
|
||||
let p = (p[i + 1] - p[i]) * degree as f32;
|
||||
p * binomial_coeff(degree_vel, i) as f32 * bernstein_basis(degree_vel, i, t)
|
||||
})
|
||||
.sum()
|
||||
}
|
||||
|
||||
/// Compute the second derivative B''(t) of Bezier curve B(t) of degree `N-1` at the given
|
||||
/// parametric value `t` with respect to t. Note that the second derivative of a Bezier is also
|
||||
/// a Bezier, of degree `N-3`.
|
||||
#[inline]
|
||||
pub fn acceleration<P: Point, const N: usize>(control_points: [P; N], t: f32) -> P {
|
||||
if N <= 2 {
|
||||
return P::default(); // Zero for numeric types
|
||||
}
|
||||
let p = control_points;
|
||||
let degree = N - 1;
|
||||
let degree_vel = N - 2; // the velocity Bezier is one degree lower than the position Bezier
|
||||
let degree_accel = N - 3; // the accel Bezier is one degree lower than the velocity Bezier
|
||||
(0..degree_vel)
|
||||
.map(|i| {
|
||||
// Points on the velocity Bezier curve:
|
||||
let p0 = (p[i + 1] - p[i]) * degree as f32;
|
||||
let p1 = (p[i + 2] - p[i + 1]) * degree as f32;
|
||||
// Point on the acceleration Bezier curve:
|
||||
let p = (p1 - p0) * (degree_vel) as f32;
|
||||
p * binomial_coeff(degree_accel, i) as f32 * bernstein_basis(degree_accel, i, t)
|
||||
})
|
||||
.sum()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use glam::Vec2;
|
||||
|
||||
use crate::{CubicBezier2d, CubicBezierEasing};
|
||||
|
||||
/// How close two floats can be and still be considered equal
|
||||
const FLOAT_EQ: f32 = 1e-5;
|
||||
|
||||
/// Basic cubic Bezier easing test to verify the shape of the curve.
|
||||
#[test]
|
||||
fn easing_simple() {
|
||||
// A curve similar to ease-in-out, but symmetric
|
||||
let bezier = CubicBezierEasing::new([1.0, 0.0], [0.0, 1.0]);
|
||||
assert_eq!(bezier.ease(0.0), 0.0);
|
||||
assert!(bezier.ease(0.2) < 0.2); // tests curve
|
||||
assert_eq!(bezier.ease(0.5), 0.5); // true due to symmetry
|
||||
assert!(bezier.ease(0.8) > 0.8); // tests curve
|
||||
assert_eq!(bezier.ease(1.0), 1.0);
|
||||
}
|
||||
|
||||
/// A curve that forms an upside-down "U", that should extend below 0.0. Useful for animations
|
||||
/// that go beyond the start and end positions, e.g. bouncing.
|
||||
#[test]
|
||||
fn easing_overshoot() {
|
||||
// A curve that forms an upside-down "U", that should extend above 1.0
|
||||
let bezier = CubicBezierEasing::new([0.0, 2.0], [1.0, 2.0]);
|
||||
assert_eq!(bezier.ease(0.0), 0.0);
|
||||
assert!(bezier.ease(0.5) > 1.5);
|
||||
assert_eq!(bezier.ease(1.0), 1.0);
|
||||
}
|
||||
|
||||
/// A curve that forms a "U", that should extend below 0.0. Useful for animations that go beyond
|
||||
/// the start and end positions, e.g. bouncing.
|
||||
#[test]
|
||||
fn easing_undershoot() {
|
||||
let bezier = CubicBezierEasing::new([0.0, -2.0], [1.0, -2.0]);
|
||||
assert_eq!(bezier.ease(0.0), 0.0);
|
||||
assert!(bezier.ease(0.5) < -0.5);
|
||||
assert_eq!(bezier.ease(1.0), 1.0);
|
||||
}
|
||||
|
||||
/// Sweep along the full length of a 3D cubic Bezier, and manually check the position.
|
||||
#[test]
|
||||
fn cubic() {
|
||||
const N_SAMPLES: usize = 1000;
|
||||
let bezier = CubicBezier2d::new([[-1.0, -20.0], [3.0, 2.0], [5.0, 3.0], [9.0, 8.0]]);
|
||||
assert_eq!(bezier.position(0.0), bezier.0[0]); // 0 == Start
|
||||
assert_eq!(bezier.position(1.0), bezier.0[3]); // 1 == End
|
||||
for i in 0..=N_SAMPLES {
|
||||
let t = i as f32 / N_SAMPLES as f32; // Check along entire length
|
||||
assert!(bezier.position(t).distance(cubic_manual(t, bezier)) <= FLOAT_EQ);
|
||||
}
|
||||
}
|
||||
|
||||
/// Manual, hardcoded function for computing the position along a cubic bezier.
|
||||
fn cubic_manual(t: f32, bezier: CubicBezier2d) -> Vec2 {
|
||||
let [p0, p1, p2, p3] = bezier.0;
|
||||
p0 * (1.0 - t).powi(3)
|
||||
+ 3.0 * p1 * t * (1.0 - t).powi(2)
|
||||
+ 3.0 * p2 * t.powi(2) * (1.0 - t)
|
||||
+ p3 * t.powi(3)
|
||||
}
|
||||
}
|
602
crates/bevy_math/src/cubic_splines.rs
Normal file
602
crates/bevy_math/src/cubic_splines.rs
Normal file
@ -0,0 +1,602 @@
|
||||
//! Provides types for building cubic splines for rendering curves and use with animation easing.
|
||||
|
||||
use glam::{Vec2, Vec3, Vec3A};
|
||||
|
||||
use std::{
|
||||
fmt::Debug,
|
||||
iter::Sum,
|
||||
ops::{Add, Mul, Sub},
|
||||
};
|
||||
|
||||
/// A point in space of any dimension that supports the math ops needed for cubic spline
|
||||
/// interpolation.
|
||||
pub trait Point:
|
||||
Mul<f32, Output = Self>
|
||||
+ Add<Self, Output = Self>
|
||||
+ Sub<Self, Output = Self>
|
||||
+ Add<f32, Output = Self>
|
||||
+ Sum
|
||||
+ Default
|
||||
+ Debug
|
||||
+ Clone
|
||||
+ PartialEq
|
||||
+ Copy
|
||||
{
|
||||
}
|
||||
impl Point for Vec3 {}
|
||||
impl Point for Vec3A {}
|
||||
impl Point for Vec2 {}
|
||||
impl Point for f32 {}
|
||||
|
||||
/// A spline composed of a series of cubic Bezier curves.
|
||||
///
|
||||
/// Useful for user-drawn curves with local control, or animation easing. See
|
||||
/// [`CubicSegment::new_bezier`] for use in easing.
|
||||
///
|
||||
/// ### Interpolation
|
||||
/// The curve only passes through the first and last control point in each set of four points.
|
||||
///
|
||||
/// ### Tangency
|
||||
/// Manually defined by the two intermediate control points within each set of four points.
|
||||
///
|
||||
/// ### Continuity
|
||||
/// At minimum C0 continuous, up to C2. Continuity greater than C0 can result in a loss of local
|
||||
/// control over the spline due to the curvature constraints.
|
||||
///
|
||||
/// ### Usage
|
||||
///
|
||||
/// ```
|
||||
/// # use bevy_math::{*, prelude::*};
|
||||
/// let points = [[
|
||||
/// vec2(-1.0, -20.0),
|
||||
/// vec2(3.0, 2.0),
|
||||
/// vec2(5.0, 3.0),
|
||||
/// vec2(9.0, 8.0),
|
||||
/// ]];
|
||||
/// let bezier = Bezier::new(points).to_curve();
|
||||
/// let positions: Vec<_> = bezier.iter_positions(100).collect();
|
||||
/// ```
|
||||
pub struct Bezier<P: Point> {
|
||||
control_points: Vec<[P; 4]>,
|
||||
}
|
||||
|
||||
impl<P: Point> Bezier<P> {
|
||||
/// Create a new Bezier curve from sets of control points.
|
||||
pub fn new(control_points: impl Into<Vec<[P; 4]>>) -> Self {
|
||||
Self {
|
||||
control_points: control_points.into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<P: Point> CubicGenerator<P> for Bezier<P> {
|
||||
#[inline]
|
||||
fn to_curve(&self) -> CubicCurve<P> {
|
||||
let char_matrix = [
|
||||
[1., 0., 0., 0.],
|
||||
[-3., 3., 0., 0.],
|
||||
[3., -6., 3., 0.],
|
||||
[-1., 3., -3., 1.],
|
||||
];
|
||||
|
||||
let segments = self
|
||||
.control_points
|
||||
.iter()
|
||||
.map(|p| CubicCurve::coefficients(*p, 1.0, char_matrix))
|
||||
.collect();
|
||||
|
||||
CubicCurve { segments }
|
||||
}
|
||||
}
|
||||
|
||||
/// A spline interpolated continuously between the nearest two control points, with the position and
|
||||
/// velocity of the curve specified at both control points. This curve passes through all control
|
||||
/// points, with the specified velocity which includes direction and parametric speed.
|
||||
///
|
||||
/// Useful for smooth interpolation when you know the position and velocity at two points in time,
|
||||
/// such as network prediction.
|
||||
///
|
||||
/// ### Interpolation
|
||||
/// The curve passes through every control point.
|
||||
///
|
||||
/// ### Tangency
|
||||
/// Explicitly defined at each control point.
|
||||
///
|
||||
/// ### Continuity
|
||||
/// At minimum C0 continuous, up to C1.
|
||||
///
|
||||
/// ### Usage
|
||||
///
|
||||
/// ```
|
||||
/// # use bevy_math::{*, prelude::*};
|
||||
/// let points = [
|
||||
/// vec2(-1.0, -20.0),
|
||||
/// vec2(3.0, 2.0),
|
||||
/// vec2(5.0, 3.0),
|
||||
/// vec2(9.0, 8.0),
|
||||
/// ];
|
||||
/// let tangents = [
|
||||
/// vec2(0.0, 1.0),
|
||||
/// vec2(0.0, 1.0),
|
||||
/// vec2(0.0, 1.0),
|
||||
/// vec2(0.0, 1.0),
|
||||
/// ];
|
||||
/// let hermite = Hermite::new(points, tangents).to_curve();
|
||||
/// let positions: Vec<_> = hermite.iter_positions(100).collect();
|
||||
/// ```
|
||||
pub struct Hermite<P: Point> {
|
||||
control_points: Vec<(P, P)>,
|
||||
}
|
||||
impl<P: Point> Hermite<P> {
|
||||
/// Create a new Hermite curve from sets of control points.
|
||||
pub fn new(
|
||||
control_points: impl IntoIterator<Item = P>,
|
||||
tangents: impl IntoIterator<Item = P>,
|
||||
) -> Self {
|
||||
Self {
|
||||
control_points: control_points
|
||||
.into_iter()
|
||||
.zip(tangents.into_iter())
|
||||
.collect(),
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<P: Point> CubicGenerator<P> for Hermite<P> {
|
||||
#[inline]
|
||||
fn to_curve(&self) -> CubicCurve<P> {
|
||||
let char_matrix = [
|
||||
[1., 0., 0., 0.],
|
||||
[0., 1., 0., 0.],
|
||||
[-3., -2., 3., -1.],
|
||||
[2., 1., -2., 1.],
|
||||
];
|
||||
|
||||
let segments = self
|
||||
.control_points
|
||||
.windows(2)
|
||||
.map(|p| {
|
||||
let (p0, v0, p1, v1) = (p[0].0, p[0].1, p[1].0, p[1].1);
|
||||
CubicCurve::coefficients([p0, v0, p1, v1], 1.0, char_matrix)
|
||||
})
|
||||
.collect();
|
||||
|
||||
CubicCurve { segments }
|
||||
}
|
||||
}
|
||||
|
||||
/// A spline interpolated continuously across the nearest four control points, with the position of
|
||||
/// the curve specified at every control point and the tangents computed automatically.
|
||||
///
|
||||
/// **Note** the Catmull-Rom spline is a special case of Cardinal spline where the tension is 0.5.
|
||||
///
|
||||
/// ### Interpolation
|
||||
/// The curve passes through every control point.
|
||||
///
|
||||
/// ### Tangency
|
||||
/// Automatically defined at each control point.
|
||||
///
|
||||
/// ### Continuity
|
||||
/// C1 continuous.
|
||||
///
|
||||
/// ### Usage
|
||||
///
|
||||
/// ```
|
||||
/// # use bevy_math::{*, prelude::*};
|
||||
/// let points = [
|
||||
/// vec2(-1.0, -20.0),
|
||||
/// vec2(3.0, 2.0),
|
||||
/// vec2(5.0, 3.0),
|
||||
/// vec2(9.0, 8.0),
|
||||
/// ];
|
||||
/// let cardinal = CardinalSpline::new(0.3, points).to_curve();
|
||||
/// let positions: Vec<_> = cardinal.iter_positions(100).collect();
|
||||
/// ```
|
||||
pub struct CardinalSpline<P: Point> {
|
||||
tension: f32,
|
||||
control_points: Vec<P>,
|
||||
}
|
||||
|
||||
impl<P: Point> CardinalSpline<P> {
|
||||
/// Build a new Cardinal spline.
|
||||
pub fn new(tension: f32, control_points: impl Into<Vec<P>>) -> Self {
|
||||
Self {
|
||||
tension,
|
||||
control_points: control_points.into(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Build a new Catmull-Rom spline, the special case of a Cardinal spline where tension = 1/2.
|
||||
pub fn new_catmull_rom(control_points: impl Into<Vec<P>>) -> Self {
|
||||
Self {
|
||||
tension: 0.5,
|
||||
control_points: control_points.into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<P: Point> CubicGenerator<P> for CardinalSpline<P> {
|
||||
#[inline]
|
||||
fn to_curve(&self) -> CubicCurve<P> {
|
||||
let s = self.tension;
|
||||
let char_matrix = [
|
||||
[0., 1., 0., 0.],
|
||||
[-s, 0., s, 0.],
|
||||
[2. * s, s - 3., 3. - 2. * s, -s],
|
||||
[-s, 2. - s, s - 2., s],
|
||||
];
|
||||
|
||||
let segments = self
|
||||
.control_points
|
||||
.windows(4)
|
||||
.map(|p| CubicCurve::coefficients([p[0], p[1], p[2], p[3]], 1.0, char_matrix))
|
||||
.collect();
|
||||
|
||||
CubicCurve { segments }
|
||||
}
|
||||
}
|
||||
|
||||
/// A spline interpolated continuously across the nearest four control points. The curve does not
|
||||
/// pass through any of the control points.
|
||||
///
|
||||
/// ### Interpolation
|
||||
/// The curve does not pass through control points.
|
||||
///
|
||||
/// ### Tangency
|
||||
/// Automatically computed based on the position of control points.
|
||||
///
|
||||
/// ### Continuity
|
||||
/// C2 continuous! The acceleration continuity of this spline makes it useful for camera paths.
|
||||
///
|
||||
/// ### Usage
|
||||
///
|
||||
/// ```
|
||||
/// # use bevy_math::{*, prelude::*};
|
||||
/// let points = [
|
||||
/// vec2(-1.0, -20.0),
|
||||
/// vec2(3.0, 2.0),
|
||||
/// vec2(5.0, 3.0),
|
||||
/// vec2(9.0, 8.0),
|
||||
/// ];
|
||||
/// let b_spline = BSpline::new(points).to_curve();
|
||||
/// let positions: Vec<_> = b_spline.iter_positions(100).collect();
|
||||
/// ```
|
||||
pub struct BSpline<P: Point> {
|
||||
control_points: Vec<P>,
|
||||
}
|
||||
impl<P: Point> BSpline<P> {
|
||||
/// Build a new Cardinal spline.
|
||||
pub fn new(control_points: impl Into<Vec<P>>) -> Self {
|
||||
Self {
|
||||
control_points: control_points.into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<P: Point> CubicGenerator<P> for BSpline<P> {
|
||||
#[inline]
|
||||
fn to_curve(&self) -> CubicCurve<P> {
|
||||
let char_matrix = [
|
||||
[1., 4., 1., 0.],
|
||||
[-3., 0., 3., 0.],
|
||||
[3., -6., 3., 0.],
|
||||
[-1., 3., -3., 1.],
|
||||
];
|
||||
|
||||
let segments = self
|
||||
.control_points
|
||||
.windows(4)
|
||||
.map(|p| CubicCurve::coefficients([p[0], p[1], p[2], p[3]], 1.0 / 6.0, char_matrix))
|
||||
.collect();
|
||||
|
||||
CubicCurve { segments }
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement this on cubic splines that can generate a curve from their spline parameters.
|
||||
pub trait CubicGenerator<P: Point> {
|
||||
/// Build a [`CubicCurve`] by computing the interpolation coefficients for each curve segment.
|
||||
fn to_curve(&self) -> CubicCurve<P>;
|
||||
}
|
||||
|
||||
/// A segment of a cubic curve, used to hold precomputed coefficients for fast interpolation.
|
||||
///
|
||||
/// Segments can be chained together to form a longer compound curve.
|
||||
#[derive(Clone, Debug, Default, PartialEq)]
|
||||
pub struct CubicSegment<P: Point> {
|
||||
coeff: [P; 4],
|
||||
}
|
||||
|
||||
impl<P: Point> CubicSegment<P> {
|
||||
/// Instantaneous position of a point at parametric value `t`.
|
||||
#[inline]
|
||||
pub fn position(&self, t: f32) -> P {
|
||||
let [a, b, c, d] = self.coeff;
|
||||
a + b * t + c * t.powi(2) + d * t.powi(3)
|
||||
}
|
||||
|
||||
/// Instantaneous velocity of a point at parametric value `t`.
|
||||
#[inline]
|
||||
pub fn velocity(&self, t: f32) -> P {
|
||||
let [_, b, c, d] = self.coeff;
|
||||
b + c * 2.0 * t + d * 3.0 * t.powi(2)
|
||||
}
|
||||
|
||||
/// Instantaneous acceleration of a point at parametric value `t`.
|
||||
#[inline]
|
||||
pub fn acceleration(&self, t: f32) -> P {
|
||||
let [_, _, c, d] = self.coeff;
|
||||
c * 2.0 + d * 6.0 * t
|
||||
}
|
||||
}
|
||||
|
||||
/// The `CubicSegment<Vec2>` can be used as a 2-dimensional easing curve for animation.
|
||||
///
|
||||
/// The x-axis of the curve is time, and the y-axis is the output value. This struct provides
|
||||
/// methods for extremely fast solves for y given x.
|
||||
impl CubicSegment<Vec2> {
|
||||
/// Construct a cubic Bezier curve for animation easing, with control points `p1` and `p2`. A
|
||||
/// cubic Bezier easing curve has control point `p0` at (0, 0) and `p3` at (1, 1), leaving only
|
||||
/// `p1` and `p2` as the remaining degrees of freedom. The first and last control points are
|
||||
/// fixed to ensure the animation begins at 0, and ends at 1.
|
||||
///
|
||||
/// This is a very common tool for UI animations that accelerate and decelerate smoothly. For
|
||||
/// example, the ubiquitous "ease-in-out" is defined as `(0.25, 0.1), (0.25, 1.0)`.
|
||||
pub fn new_bezier(p1: impl Into<Vec2>, p2: impl Into<Vec2>) -> Self {
|
||||
let (p0, p3) = (Vec2::ZERO, Vec2::ONE);
|
||||
let bezier = Bezier::new([[p0, p1.into(), p2.into(), p3]]).to_curve();
|
||||
bezier.segments[0].clone()
|
||||
}
|
||||
|
||||
/// Maximum allowable error for iterative Bezier solve
|
||||
const MAX_ERROR: f32 = 1e-5;
|
||||
|
||||
/// Maximum number of iterations during Bezier solve
|
||||
const MAX_ITERS: u8 = 8;
|
||||
|
||||
/// Given a `time` within `0..=1`, returns an eased value that follows the cubic curve instead
|
||||
/// of a straight line. This eased result may be outside the range `0..=1`, however it will
|
||||
/// always start at 0 and end at 1: `ease(0) = 0` and `ease(1) = 1`.
|
||||
///
|
||||
/// ```
|
||||
/// # use bevy_math::prelude::*;
|
||||
/// let cubic_bezier = CubicSegment::new_bezier((0.25, 0.1), (0.25, 1.0));
|
||||
/// assert_eq!(cubic_bezier.ease(0.0), 0.0);
|
||||
/// assert_eq!(cubic_bezier.ease(1.0), 1.0);
|
||||
/// ```
|
||||
///
|
||||
/// # How cubic easing works
|
||||
///
|
||||
/// Easing is generally accomplished with the help of "shaping functions". These are curves that
|
||||
/// start at (0,0) and end at (1,1). The x-axis of this plot is the current `time` of the
|
||||
/// animation, from 0 to 1. The y-axis is how far along the animation is, also from 0 to 1. You
|
||||
/// can imagine that if the shaping function is a straight line, there is a 1:1 mapping between
|
||||
/// the `time` and how far along your animation is. If the `time` = 0.5, the animation is
|
||||
/// halfway through. This is known as linear interpolation, and results in objects animating
|
||||
/// with a constant velocity, and no smooth acceleration or deceleration at the start or end.
|
||||
///
|
||||
/// ```text
|
||||
/// y
|
||||
/// │ ●
|
||||
/// │ ⬈
|
||||
/// │ ⬈
|
||||
/// │ ⬈
|
||||
/// │ ⬈
|
||||
/// ●─────────── x (time)
|
||||
/// ```
|
||||
///
|
||||
/// Using cubic Beziers, we have a curve that starts at (0,0), ends at (1,1), and follows a path
|
||||
/// determined by the two remaining control points (handles). These handles allow us to define a
|
||||
/// smooth curve. As `time` (x-axis) progresses, we now follow the curve, and use the `y` value
|
||||
/// to determine how far along the animation is.
|
||||
///
|
||||
/// ```text
|
||||
/// y
|
||||
/// ⬈➔●
|
||||
/// │ ⬈
|
||||
/// │ ↑
|
||||
/// │ ↑
|
||||
/// │ ⬈
|
||||
/// ●➔⬈───────── x (time)
|
||||
/// ```
|
||||
///
|
||||
/// To accomplish this, we need to be able to find the position `y` on a curve, given the `x`
|
||||
/// value. Cubic curves are implicit parametric functions like B(t) = (x,y). To find `y`, we
|
||||
/// first solve for `t` that corresponds to the given `x` (`time`). We use the Newton-Raphson
|
||||
/// root-finding method to quickly find a value of `t` that is very near the desired value of
|
||||
/// `x`. Once we have this we can easily plug that `t` into our curve's `position` function, to
|
||||
/// find the `y` component, which is how far along our animation should be. In other words:
|
||||
///
|
||||
/// > Given `time` in `0..=1`
|
||||
///
|
||||
/// > Use Newton's method to find a value of `t` that results in B(t) = (x,y) where `x == time`
|
||||
///
|
||||
/// > Once a solution is found, use the resulting `y` value as the final result
|
||||
#[inline]
|
||||
pub fn ease(&self, time: f32) -> f32 {
|
||||
let x = time.clamp(0.0, 1.0);
|
||||
self.find_y_given_x(x)
|
||||
}
|
||||
|
||||
/// Find the `y` value of the curve at the given `x` value using the Newton-Raphson method.
|
||||
#[inline]
|
||||
fn find_y_given_x(&self, x: f32) -> f32 {
|
||||
let mut t_guess = x;
|
||||
let mut pos_guess = Vec2::ZERO;
|
||||
for _ in 0..Self::MAX_ITERS {
|
||||
pos_guess = self.position(t_guess);
|
||||
let error = pos_guess.x - x;
|
||||
if error.abs() <= Self::MAX_ERROR {
|
||||
break;
|
||||
}
|
||||
// Using Newton's method, use the tangent line to estimate a better guess value.
|
||||
let slope = self.velocity(t_guess).x; // dx/dt
|
||||
t_guess -= error / slope;
|
||||
}
|
||||
pos_guess.y
|
||||
}
|
||||
}
|
||||
|
||||
/// A collection of [`CubicSegment`]s chained into a curve.
|
||||
#[derive(Clone, Debug, Default, PartialEq)]
|
||||
pub struct CubicCurve<P: Point> {
|
||||
segments: Vec<CubicSegment<P>>,
|
||||
}
|
||||
|
||||
impl<P: Point> CubicCurve<P> {
|
||||
/// Compute the position of a point on the cubic curve at the parametric value `t`.
|
||||
///
|
||||
/// Note that `t` varies from `0..=(n_points - 3)`.
|
||||
#[inline]
|
||||
pub fn position(&self, t: f32) -> P {
|
||||
let (segment, t) = self.segment(t);
|
||||
segment.position(t)
|
||||
}
|
||||
|
||||
/// Compute the first derivative with respect to t at `t`. This is the instantaneous velocity of
|
||||
/// a point on the cubic curve at `t`.
|
||||
///
|
||||
/// Note that `t` varies from `0..=(n_points - 3)`.
|
||||
#[inline]
|
||||
pub fn velocity(&self, t: f32) -> P {
|
||||
let (segment, t) = self.segment(t);
|
||||
segment.velocity(t)
|
||||
}
|
||||
|
||||
/// Compute the second derivative with respect to t at `t`. This is the instantaneous
|
||||
/// acceleration of a point on the cubic curve at `t`.
|
||||
///
|
||||
/// Note that `t` varies from `0..=(n_points - 3)`.
|
||||
#[inline]
|
||||
pub fn acceleration(&self, t: f32) -> P {
|
||||
let (segment, t) = self.segment(t);
|
||||
segment.acceleration(t)
|
||||
}
|
||||
|
||||
/// A flexible iterator used to sample curves with arbitrary functions.
|
||||
///
|
||||
/// This splits the curve into `subdivisions` of evenly spaced `t` values across the
|
||||
/// length of the curve from start (t = 0) to end (t = 1), returning an iterator that evaluates
|
||||
/// the curve with the supplied `sample_function` at each `t`.
|
||||
///
|
||||
/// Given `subdivisions = 2`, this will split the curve into two lines, or three points, and
|
||||
/// return an iterator over those three points, one at the start, middle, and end.
|
||||
#[inline]
|
||||
pub fn iter_samples(
|
||||
&self,
|
||||
subdivisions: usize,
|
||||
sample_function: fn(&Self, f32) -> P,
|
||||
) -> impl Iterator<Item = P> + '_ {
|
||||
(0..subdivisions).map(move |i| {
|
||||
let segments = self.segments.len() as f32;
|
||||
let t = i as f32 / subdivisions as f32 * segments;
|
||||
sample_function(self, t)
|
||||
})
|
||||
}
|
||||
|
||||
/// Iterate over the curve split into `subdivisions`, sampling the position at each step.
|
||||
pub fn iter_positions(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
|
||||
self.iter_samples(subdivisions, Self::position)
|
||||
}
|
||||
|
||||
/// Iterate over the curve split into `subdivisions`, sampling the velocity at each step.
|
||||
pub fn iter_velocities(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
|
||||
self.iter_samples(subdivisions, Self::velocity)
|
||||
}
|
||||
|
||||
/// Iterate over the curve split into `subdivisions`, sampling the acceleration at each step.
|
||||
pub fn iter_accelerations(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
|
||||
self.iter_samples(subdivisions, Self::acceleration)
|
||||
}
|
||||
|
||||
/// Returns the [`CubicSegment`] and local `t` value given a spline's global `t` value.
|
||||
#[inline]
|
||||
fn segment(&self, t: f32) -> (&CubicSegment<P>, f32) {
|
||||
if self.segments.len() == 1 {
|
||||
(&self.segments[0], t)
|
||||
} else {
|
||||
let i = (t.floor() as usize).clamp(0, self.segments.len() - 1);
|
||||
(&self.segments[i], t - i as f32)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn coefficients(p: [P; 4], multiplier: f32, char_matrix: [[f32; 4]; 4]) -> CubicSegment<P> {
|
||||
let [c0, c1, c2, c3] = char_matrix;
|
||||
// These are the polynomial coefficients, computed by multiplying the characteristic
|
||||
// matrix by the point matrix.
|
||||
let mut coeff = [
|
||||
p[0] * c0[0] + p[1] * c0[1] + p[2] * c0[2] + p[3] * c0[3],
|
||||
p[0] * c1[0] + p[1] * c1[1] + p[2] * c1[2] + p[3] * c1[3],
|
||||
p[0] * c2[0] + p[1] * c2[1] + p[2] * c2[2] + p[3] * c2[3],
|
||||
p[0] * c3[0] + p[1] * c3[1] + p[2] * c3[2] + p[3] * c3[3],
|
||||
];
|
||||
coeff.iter_mut().for_each(|c| *c = *c * multiplier);
|
||||
CubicSegment { coeff }
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use glam::{vec2, Vec2};
|
||||
|
||||
use crate::cubic_splines::{Bezier, CubicGenerator, CubicSegment};
|
||||
|
||||
/// How close two floats can be and still be considered equal
|
||||
const FLOAT_EQ: f32 = 1e-5;
|
||||
|
||||
/// Sweep along the full length of a 3D cubic Bezier, and manually check the position.
|
||||
#[test]
|
||||
fn cubic() {
|
||||
const N_SAMPLES: usize = 1000;
|
||||
let points = [[
|
||||
vec2(-1.0, -20.0),
|
||||
vec2(3.0, 2.0),
|
||||
vec2(5.0, 3.0),
|
||||
vec2(9.0, 8.0),
|
||||
]];
|
||||
let bezier = Bezier::new(points).to_curve();
|
||||
for i in 0..=N_SAMPLES {
|
||||
let t = i as f32 / N_SAMPLES as f32; // Check along entire length
|
||||
assert!(bezier.position(t).distance(cubic_manual(t, points[0])) <= FLOAT_EQ);
|
||||
}
|
||||
}
|
||||
|
||||
/// Manual, hardcoded function for computing the position along a cubic bezier.
|
||||
fn cubic_manual(t: f32, points: [Vec2; 4]) -> Vec2 {
|
||||
let p = points;
|
||||
p[0] * (1.0 - t).powi(3)
|
||||
+ 3.0 * p[1] * t * (1.0 - t).powi(2)
|
||||
+ 3.0 * p[2] * t.powi(2) * (1.0 - t)
|
||||
+ p[3] * t.powi(3)
|
||||
}
|
||||
|
||||
/// Basic cubic Bezier easing test to verify the shape of the curve.
|
||||
#[test]
|
||||
fn easing_simple() {
|
||||
// A curve similar to ease-in-out, but symmetric
|
||||
let bezier = CubicSegment::new_bezier([1.0, 0.0], [0.0, 1.0]);
|
||||
assert_eq!(bezier.ease(0.0), 0.0);
|
||||
assert!(bezier.ease(0.2) < 0.2); // tests curve
|
||||
assert_eq!(bezier.ease(0.5), 0.5); // true due to symmetry
|
||||
assert!(bezier.ease(0.8) > 0.8); // tests curve
|
||||
assert_eq!(bezier.ease(1.0), 1.0);
|
||||
}
|
||||
|
||||
/// A curve that forms an upside-down "U", that should extend below 0.0. Useful for animations
|
||||
/// that go beyond the start and end positions, e.g. bouncing.
|
||||
#[test]
|
||||
fn easing_overshoot() {
|
||||
// A curve that forms an upside-down "U", that should extend above 1.0
|
||||
let bezier = CubicSegment::new_bezier([0.0, 2.0], [1.0, 2.0]);
|
||||
assert_eq!(bezier.ease(0.0), 0.0);
|
||||
assert!(bezier.ease(0.5) > 1.5);
|
||||
assert_eq!(bezier.ease(1.0), 1.0);
|
||||
}
|
||||
|
||||
/// A curve that forms a "U", that should extend below 0.0. Useful for animations that go beyond
|
||||
/// the start and end positions, e.g. bouncing.
|
||||
#[test]
|
||||
fn easing_undershoot() {
|
||||
let bezier = CubicSegment::new_bezier([0.0, -2.0], [1.0, -2.0]);
|
||||
assert_eq!(bezier.ease(0.0), 0.0);
|
||||
assert!(bezier.ease(0.5) < -0.5);
|
||||
assert_eq!(bezier.ease(1.0), 1.0);
|
||||
}
|
||||
}
|
@ -6,14 +6,10 @@
|
||||
|
||||
#![warn(missing_docs)]
|
||||
|
||||
mod bezier;
|
||||
pub mod cubic_splines;
|
||||
mod ray;
|
||||
mod rect;
|
||||
|
||||
pub use bezier::{
|
||||
generic as generic_bezier, Bezier, CubicBezier2d, CubicBezier3d, CubicBezierEasing,
|
||||
QuadraticBezier2d, QuadraticBezier3d,
|
||||
};
|
||||
pub use ray::Ray;
|
||||
pub use rect::Rect;
|
||||
|
||||
@ -21,9 +17,9 @@ pub use rect::Rect;
|
||||
pub mod prelude {
|
||||
#[doc(hidden)]
|
||||
pub use crate::{
|
||||
BVec2, BVec3, BVec4, Bezier, CubicBezier2d, CubicBezier3d, CubicBezierEasing, EulerRot,
|
||||
IVec2, IVec3, IVec4, Mat2, Mat3, Mat4, QuadraticBezier2d, QuadraticBezier3d, Quat, Ray,
|
||||
Rect, UVec2, UVec3, UVec4, Vec2, Vec3, Vec4,
|
||||
cubic_splines::{BSpline, Bezier, CardinalSpline, CubicGenerator, CubicSegment, Hermite},
|
||||
BVec2, BVec3, BVec4, EulerRot, IVec2, IVec3, IVec4, Mat2, Mat3, Mat4, Quat, Ray, Rect,
|
||||
UVec2, UVec3, UVec4, Vec2, Vec3, Vec4,
|
||||
};
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user