Extrusion bounded (#13346)
# Objective - Implement `Bounded3d` for some `Extrusion<T>` - Provide methods to calculate `Aabb3d`s and `BoundingSphere`s for any extrusion with a `Bounded2d` base shape ## Solution - Implemented `Bounded3d` for all 2D `bevy_math` primitives with the exception of `Plane2d`. As far as I can see, `Plane2d` is pretty much a line? and I think it is very unintuitive to extrude a plane and get a plane as a result. - Add `extrusion_bounding_box` and `extrusion_bounding_sphere`. These are not always used internally since there are faster methods for specific extrusions. Both of them produce the optimal result within precision limits though. ## Testing - Bounds for extrusions are tested within the same module. All unique implementations are tested. - The correctness was validated visually aswell. --------- Co-authored-by: Raphael Büttgenbach <62256001+solis-lumine-vorago@users.noreply.github.com> Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
This commit is contained in:
parent
ace4c6023b
commit
5e1c841f4e
493
crates/bevy_math/src/bounding/bounded3d/extrusion.rs
Normal file
493
crates/bevy_math/src/bounding/bounded3d/extrusion.rs
Normal file
@ -0,0 +1,493 @@
|
||||
use std::f32::consts::FRAC_PI_2;
|
||||
|
||||
use glam::{Vec2, Vec3A, Vec3Swizzles};
|
||||
|
||||
use crate::bounding::{BoundingCircle, BoundingVolume};
|
||||
use crate::primitives::{
|
||||
BoxedPolygon, BoxedPolyline2d, Capsule2d, Cuboid, Cylinder, Ellipse, Extrusion, Line2d,
|
||||
Polygon, Polyline2d, Primitive2d, Rectangle, RegularPolygon, Segment2d, Triangle2d,
|
||||
};
|
||||
use crate::{Quat, Vec3};
|
||||
|
||||
use crate::{bounding::Bounded2d, primitives::Circle};
|
||||
|
||||
use super::{Aabb3d, Bounded3d, BoundingSphere};
|
||||
|
||||
impl Bounded3d for Extrusion<Circle> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
// Reference: http://iquilezles.org/articles/diskbbox/
|
||||
|
||||
let segment_dir = rotation * Vec3::Z;
|
||||
let top = (segment_dir * self.half_depth).abs();
|
||||
|
||||
let e = Vec3::ONE - segment_dir * segment_dir;
|
||||
let half_size = self.base_shape.radius * Vec3::new(e.x.sqrt(), e.y.sqrt(), e.z.sqrt());
|
||||
|
||||
Aabb3d {
|
||||
min: (translation - half_size - top).into(),
|
||||
max: (translation + half_size + top).into(),
|
||||
}
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
|
||||
extrusion_bounding_sphere(self, translation, rotation)
|
||||
}
|
||||
}
|
||||
|
||||
impl Bounded3d for Extrusion<Ellipse> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
let Vec2 { x: a, y: b } = self.base_shape.half_size;
|
||||
let normal = rotation * Vec3::Z;
|
||||
let conjugate_rot = rotation.conjugate();
|
||||
|
||||
let [max_x, max_y, max_z] = Vec3::AXES.map(|axis: Vec3| {
|
||||
let Some(axis) = (conjugate_rot * axis.reject_from(normal))
|
||||
.xy()
|
||||
.try_normalize()
|
||||
else {
|
||||
return Vec3::ZERO;
|
||||
};
|
||||
|
||||
if axis.element_product() == 0. {
|
||||
return rotation * Vec3::new(a * axis.y, b * axis.x, 0.);
|
||||
}
|
||||
let m = -axis.x / axis.y;
|
||||
let signum = axis.signum();
|
||||
|
||||
let y = signum.y * b * b / (b * b + m * m * a * a).sqrt();
|
||||
let x = signum.x * a * (1. - y * y / b / b).sqrt();
|
||||
rotation * Vec3::new(x, y, 0.)
|
||||
});
|
||||
|
||||
let half_size =
|
||||
Vec3::new(max_x.x, max_y.y, max_z.z).abs() + (normal * self.half_depth).abs();
|
||||
Aabb3d::new(translation, half_size)
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
|
||||
extrusion_bounding_sphere(self, translation, rotation)
|
||||
}
|
||||
}
|
||||
|
||||
impl Bounded3d for Extrusion<Line2d> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
let dir = rotation * self.base_shape.direction.extend(0.);
|
||||
let half_depth = (rotation * Vec3::new(0., 0., self.half_depth)).abs();
|
||||
|
||||
let max = f32::MAX / 2.;
|
||||
let half_size = Vec3::new(
|
||||
if dir.x == 0. { half_depth.x } else { max },
|
||||
if dir.y == 0. { half_depth.y } else { max },
|
||||
if dir.z == 0. { half_depth.z } else { max },
|
||||
);
|
||||
|
||||
Aabb3d::new(translation, half_size)
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, _rotation: Quat) -> BoundingSphere {
|
||||
BoundingSphere::new(translation, f32::MAX / 2.)
|
||||
}
|
||||
}
|
||||
|
||||
impl Bounded3d for Extrusion<Segment2d> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
let half_size = rotation * self.base_shape.point1().extend(0.);
|
||||
let depth = rotation * Vec3::new(0., 0., self.half_depth);
|
||||
|
||||
Aabb3d::new(translation, half_size.abs() + depth.abs())
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
|
||||
extrusion_bounding_sphere(self, translation, rotation)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> Bounded3d for Extrusion<Polyline2d<N>> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
let aabb = Aabb3d::from_point_cloud(
|
||||
translation,
|
||||
rotation,
|
||||
self.base_shape.vertices.map(|v| v.extend(0.)).into_iter(),
|
||||
);
|
||||
let depth = rotation * Vec3A::new(0., 0., self.half_depth);
|
||||
|
||||
aabb.grow(depth.abs())
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
|
||||
extrusion_bounding_sphere(self, translation, rotation)
|
||||
}
|
||||
}
|
||||
|
||||
impl Bounded3d for Extrusion<BoxedPolyline2d> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
let aabb = Aabb3d::from_point_cloud(
|
||||
translation,
|
||||
rotation,
|
||||
self.base_shape.vertices.iter().map(|v| v.extend(0.)),
|
||||
);
|
||||
let depth = rotation * Vec3A::new(0., 0., self.half_depth);
|
||||
|
||||
aabb.grow(depth.abs())
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
|
||||
extrusion_bounding_sphere(self, translation, rotation)
|
||||
}
|
||||
}
|
||||
|
||||
impl Bounded3d for Extrusion<Triangle2d> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
let aabb = Aabb3d::from_point_cloud(
|
||||
translation,
|
||||
rotation,
|
||||
self.base_shape.vertices.iter().map(|v| v.extend(0.)),
|
||||
);
|
||||
let depth = rotation * Vec3A::new(0., 0., self.half_depth);
|
||||
|
||||
aabb.grow(depth.abs())
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
|
||||
extrusion_bounding_sphere(self, translation, rotation)
|
||||
}
|
||||
}
|
||||
|
||||
impl Bounded3d for Extrusion<Rectangle> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
Cuboid {
|
||||
half_size: self.base_shape.half_size.extend(self.half_depth),
|
||||
}
|
||||
.aabb_3d(translation, rotation)
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
|
||||
extrusion_bounding_sphere(self, translation, rotation)
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> Bounded3d for Extrusion<Polygon<N>> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
let aabb = Aabb3d::from_point_cloud(
|
||||
translation,
|
||||
rotation,
|
||||
self.base_shape.vertices.map(|v| v.extend(0.)).into_iter(),
|
||||
);
|
||||
let depth = rotation * Vec3A::new(0., 0., self.half_depth);
|
||||
|
||||
aabb.grow(depth.abs())
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
|
||||
extrusion_bounding_sphere(self, translation, rotation)
|
||||
}
|
||||
}
|
||||
|
||||
impl Bounded3d for Extrusion<BoxedPolygon> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
let aabb = Aabb3d::from_point_cloud(
|
||||
translation,
|
||||
rotation,
|
||||
self.base_shape.vertices.iter().map(|v| v.extend(0.)),
|
||||
);
|
||||
let depth = rotation * Vec3A::new(0., 0., self.half_depth);
|
||||
|
||||
aabb.grow(depth.abs())
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
|
||||
extrusion_bounding_sphere(self, translation, rotation)
|
||||
}
|
||||
}
|
||||
|
||||
impl Bounded3d for Extrusion<RegularPolygon> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
let aabb = Aabb3d::from_point_cloud(
|
||||
translation,
|
||||
rotation,
|
||||
self.base_shape
|
||||
.vertices(0.)
|
||||
.into_iter()
|
||||
.map(|v| v.extend(0.)),
|
||||
);
|
||||
let depth = rotation * Vec3A::new(0., 0., self.half_depth);
|
||||
|
||||
aabb.grow(depth.abs())
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
|
||||
extrusion_bounding_sphere(self, translation, rotation)
|
||||
}
|
||||
}
|
||||
|
||||
impl Bounded3d for Extrusion<Capsule2d> {
|
||||
fn aabb_3d(&self, translation: Vec3, rotation: Quat) -> Aabb3d {
|
||||
let aabb = Cylinder {
|
||||
half_height: self.half_depth,
|
||||
radius: self.base_shape.radius,
|
||||
}
|
||||
.aabb_3d(Vec3::ZERO, rotation * Quat::from_rotation_x(FRAC_PI_2));
|
||||
|
||||
let up = rotation * Vec3::new(0., self.base_shape.half_length, 0.);
|
||||
let half_size = Into::<Vec3>::into(aabb.max) + up.abs();
|
||||
Aabb3d::new(translation, half_size)
|
||||
}
|
||||
|
||||
fn bounding_sphere(&self, translation: Vec3, rotation: Quat) -> BoundingSphere {
|
||||
extrusion_bounding_sphere(self, translation, rotation)
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes the axis aligned bounding box ([`Aabb3d`]) for an extrusion given its translation and rotation.
|
||||
pub fn extrusion_bounding_box<T: Primitive2d + Bounded2d>(
|
||||
extrusion: &Extrusion<T>,
|
||||
translation: Vec3,
|
||||
rotation: Quat,
|
||||
) -> Aabb3d {
|
||||
let cap_normal = rotation * Vec3::Z;
|
||||
let conjugate_rot = rotation.conjugate();
|
||||
|
||||
// The `(halfsize, offset)` for each axis
|
||||
let axis_values = Vec3::AXES.map(|ax| {
|
||||
// This is the direction of the line of intersection of a plane with the `ax` normal and the plane containing the cap of the extrusion.
|
||||
let intersect_line = ax.cross(cap_normal);
|
||||
if intersect_line.length_squared() <= f32::EPSILON {
|
||||
return (0., 0.);
|
||||
};
|
||||
|
||||
// This is the normal vector of the intersection line rotated to be in the XY-plane
|
||||
let line_normal = (conjugate_rot * intersect_line).yx();
|
||||
let angle = line_normal.to_angle();
|
||||
|
||||
// Since the plane containing the caps of the extrusion is not guaranteed to be orthgonal to the `ax` plane, only a certain "scale" factor
|
||||
// of the `Aabb2d` will actually go towards the dimensions of the `Aabb3d`
|
||||
let scale = cap_normal.reject_from(ax).length();
|
||||
|
||||
// Calculate the `Aabb2d` of the base shape. The shape is rotated so that the line of intersection is parallel to the Y axis in the `Aabb2d` calculations.
|
||||
// This guarantees that the X value of the `Aabb2d` is closest to the `ax` plane
|
||||
let aabb2d = extrusion.base_shape.aabb_2d(Vec2::ZERO, angle);
|
||||
(aabb2d.half_size().x * scale, aabb2d.center().x * scale)
|
||||
});
|
||||
|
||||
let offset = Vec3A::from_array(axis_values.map(|(_, offset)| offset));
|
||||
let cap_size = Vec3A::from_array(axis_values.map(|(max_val, _)| max_val)).abs();
|
||||
let depth = rotation * Vec3A::new(0., 0., extrusion.half_depth);
|
||||
|
||||
Aabb3d::new(Vec3A::from(translation) - offset, cap_size + depth.abs())
|
||||
}
|
||||
|
||||
/// Computes the [`BoundingSphere`] for an extrusion given its translation and rotation.
|
||||
pub fn extrusion_bounding_sphere<T: Primitive2d + Bounded2d>(
|
||||
extrusion: &Extrusion<T>,
|
||||
translation: Vec3,
|
||||
rotation: Quat,
|
||||
) -> BoundingSphere {
|
||||
// We calculate the bounding circle of the base shape.
|
||||
// Since each of the extrusions bases will have the same distance from its center,
|
||||
// and they are just shifted along the Z-axis, the minimum bounding sphere will be the bounding sphere
|
||||
// of the cylinder defined by the two bounding circles of the bases for any base shape
|
||||
let BoundingCircle {
|
||||
center,
|
||||
circle: Circle { radius },
|
||||
} = extrusion.base_shape.bounding_circle(Vec2::ZERO, 0.);
|
||||
let radius = radius.hypot(extrusion.half_depth);
|
||||
let center = translation + rotation * center.extend(0.);
|
||||
|
||||
BoundingSphere::new(center, radius)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::f32::consts::FRAC_PI_4;
|
||||
|
||||
use glam::{EulerRot, Quat, Vec2, Vec3, Vec3A};
|
||||
|
||||
use crate::{
|
||||
bounding::{Bounded3d, BoundingVolume},
|
||||
primitives::{
|
||||
Capsule2d, Circle, Ellipse, Extrusion, Line2d, Polygon, Polyline2d, Rectangle,
|
||||
RegularPolygon, Segment2d, Triangle2d,
|
||||
},
|
||||
Dir2,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn circle() {
|
||||
let cylinder = Extrusion::new(Circle::new(0.5), 2.0);
|
||||
let translation = Vec3::new(2.0, 1.0, 0.0);
|
||||
|
||||
let aabb = cylinder.aabb_3d(translation, Quat::IDENTITY);
|
||||
assert_eq!(aabb.center(), Vec3A::from(translation));
|
||||
assert_eq!(aabb.half_size(), Vec3A::new(0.5, 0.5, 1.0));
|
||||
|
||||
let bounding_sphere = cylinder.bounding_sphere(translation, Quat::IDENTITY);
|
||||
assert_eq!(bounding_sphere.center, translation.into());
|
||||
assert_eq!(bounding_sphere.radius(), 1f32.hypot(0.5));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn ellipse() {
|
||||
let extrusion = Extrusion::new(Ellipse::new(2.0, 0.5), 4.0);
|
||||
let translation = Vec3::new(3., 4., 5.);
|
||||
let rotation = Quat::from_euler(EulerRot::ZYX, FRAC_PI_4, FRAC_PI_4, FRAC_PI_4);
|
||||
|
||||
let aabb = extrusion.aabb_3d(translation, rotation);
|
||||
assert_eq!(aabb.center(), Vec3A::from(translation));
|
||||
assert_eq!(aabb.half_size(), Vec3A::new(2.709784, 1.3801551, 2.436141));
|
||||
|
||||
let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
|
||||
assert_eq!(bounding_sphere.center, translation.into());
|
||||
assert_eq!(bounding_sphere.radius(), 8f32.sqrt());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn line() {
|
||||
let extrusion = Extrusion::new(
|
||||
Line2d {
|
||||
direction: Dir2::new_unchecked(Vec2::Y),
|
||||
},
|
||||
4.,
|
||||
);
|
||||
let translation = Vec3::new(3., 4., 5.);
|
||||
let rotation = Quat::from_rotation_y(FRAC_PI_4);
|
||||
|
||||
let aabb = extrusion.aabb_3d(translation, rotation);
|
||||
assert_eq!(aabb.min, Vec3A::new(1.5857864, f32::MIN / 2., 3.5857865));
|
||||
assert_eq!(aabb.max, Vec3A::new(4.4142136, f32::MAX / 2., 6.414213));
|
||||
|
||||
let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
|
||||
assert_eq!(bounding_sphere.center(), translation.into());
|
||||
assert_eq!(bounding_sphere.radius(), f32::MAX / 2.);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn rectangle() {
|
||||
let extrusion = Extrusion::new(Rectangle::new(2.0, 1.0), 4.0);
|
||||
let translation = Vec3::new(3., 4., 5.);
|
||||
let rotation = Quat::from_rotation_z(std::f32::consts::FRAC_PI_4);
|
||||
|
||||
let aabb = extrusion.aabb_3d(translation, rotation);
|
||||
assert_eq!(aabb.center(), translation.into());
|
||||
assert_eq!(aabb.half_size(), Vec3A::new(1.0606602, 1.0606602, 2.));
|
||||
|
||||
let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
|
||||
assert_eq!(bounding_sphere.center, translation.into());
|
||||
assert_eq!(bounding_sphere.radius(), 2.291288);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn segment() {
|
||||
let extrusion = Extrusion::new(Segment2d::new(Dir2::new_unchecked(Vec2::NEG_Y), 3.), 4.0);
|
||||
let translation = Vec3::new(3., 4., 5.);
|
||||
let rotation = Quat::from_rotation_x(FRAC_PI_4);
|
||||
|
||||
let aabb = extrusion.aabb_3d(translation, rotation);
|
||||
assert_eq!(aabb.center(), translation.into());
|
||||
assert_eq!(aabb.half_size(), Vec3A::new(0., 2.4748735, 2.4748735));
|
||||
|
||||
let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
|
||||
assert_eq!(bounding_sphere.center, translation.into());
|
||||
assert_eq!(bounding_sphere.radius(), 2.5);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn polyline() {
|
||||
let polyline = Polyline2d::<4>::new([
|
||||
Vec2::ONE,
|
||||
Vec2::new(-1.0, 1.0),
|
||||
Vec2::NEG_ONE,
|
||||
Vec2::new(1.0, -1.0),
|
||||
]);
|
||||
let extrusion = Extrusion::new(polyline, 3.0);
|
||||
let translation = Vec3::new(3., 4., 5.);
|
||||
let rotation = Quat::from_rotation_x(FRAC_PI_4);
|
||||
|
||||
let aabb = extrusion.aabb_3d(translation, rotation);
|
||||
assert_eq!(aabb.center(), translation.into());
|
||||
assert_eq!(aabb.half_size(), Vec3A::new(1., 1.7677668, 1.7677668));
|
||||
|
||||
let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
|
||||
assert_eq!(bounding_sphere.center, translation.into());
|
||||
assert_eq!(bounding_sphere.radius(), 2.0615528);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn triangle() {
|
||||
let triangle = Triangle2d::new(
|
||||
Vec2::new(0.0, 1.0),
|
||||
Vec2::new(-10.0, -1.0),
|
||||
Vec2::new(10.0, -1.0),
|
||||
);
|
||||
let extrusion = Extrusion::new(triangle, 3.0);
|
||||
let translation = Vec3::new(3., 4., 5.);
|
||||
let rotation = Quat::from_rotation_x(FRAC_PI_4);
|
||||
|
||||
let aabb = extrusion.aabb_3d(translation, rotation);
|
||||
assert_eq!(aabb.center(), translation.into());
|
||||
assert_eq!(aabb.half_size(), Vec3A::new(10., 1.7677668, 1.7677668));
|
||||
|
||||
let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
|
||||
assert_eq!(
|
||||
bounding_sphere.center,
|
||||
Vec3A::new(3.0, 3.2928934, 4.2928934)
|
||||
);
|
||||
assert_eq!(bounding_sphere.radius(), 10.111875);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn polygon() {
|
||||
let polygon = Polygon::<4>::new([
|
||||
Vec2::ONE,
|
||||
Vec2::new(-1.0, 1.0),
|
||||
Vec2::NEG_ONE,
|
||||
Vec2::new(1.0, -1.0),
|
||||
]);
|
||||
let extrusion = Extrusion::new(polygon, 3.0);
|
||||
let translation = Vec3::new(3., 4., 5.);
|
||||
let rotation = Quat::from_rotation_x(FRAC_PI_4);
|
||||
|
||||
let aabb = extrusion.aabb_3d(translation, rotation);
|
||||
assert_eq!(aabb.center(), translation.into());
|
||||
assert_eq!(aabb.half_size(), Vec3A::new(1., 1.7677668, 1.7677668));
|
||||
|
||||
let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
|
||||
assert_eq!(bounding_sphere.center, translation.into());
|
||||
assert_eq!(bounding_sphere.radius(), 2.0615528);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn regular_polygon() {
|
||||
let extrusion = Extrusion::new(RegularPolygon::new(2.0, 7), 4.0);
|
||||
let translation = Vec3::new(3., 4., 5.);
|
||||
let rotation = Quat::from_rotation_x(FRAC_PI_4);
|
||||
|
||||
let aabb = extrusion.aabb_3d(translation, rotation);
|
||||
assert_eq!(
|
||||
aabb.center(),
|
||||
Vec3A::from(translation) + Vec3A::new(0., 0.0700254, 0.0700254)
|
||||
);
|
||||
assert_eq!(
|
||||
aabb.half_size(),
|
||||
Vec3A::new(1.9498558, 2.7584014, 2.7584019)
|
||||
);
|
||||
|
||||
let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
|
||||
assert_eq!(bounding_sphere.center, translation.into());
|
||||
assert_eq!(bounding_sphere.radius(), 8f32.sqrt());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn capsule() {
|
||||
let extrusion = Extrusion::new(Capsule2d::new(0.5, 2.0), 4.0);
|
||||
let translation = Vec3::new(3., 4., 5.);
|
||||
let rotation = Quat::from_rotation_x(FRAC_PI_4);
|
||||
|
||||
let aabb = extrusion.aabb_3d(translation, rotation);
|
||||
assert_eq!(aabb.center(), translation.into());
|
||||
assert_eq!(aabb.half_size(), Vec3A::new(0.5, 2.4748735, 2.4748735));
|
||||
|
||||
let bounding_sphere = extrusion.bounding_sphere(translation, rotation);
|
||||
assert_eq!(bounding_sphere.center, translation.into());
|
||||
assert_eq!(bounding_sphere.radius(), 2.5);
|
||||
}
|
||||
}
|
||||
@ -1,3 +1,4 @@
|
||||
mod extrusion;
|
||||
mod primitive_impls;
|
||||
|
||||
use glam::Mat3;
|
||||
@ -7,6 +8,7 @@ use crate::{Quat, Vec3, Vec3A};
|
||||
|
||||
#[cfg(feature = "bevy_reflect")]
|
||||
use bevy_reflect::Reflect;
|
||||
pub use extrusion::{extrusion_bounding_box, extrusion_bounding_sphere};
|
||||
|
||||
/// Computes the geometric center of the given set of points.
|
||||
#[inline(always)]
|
||||
|
||||
Loading…
Reference in New Issue
Block a user