Solari: Merge reservoir file, reformulate confidence weight (#19895)

Some misc cleanup in preparation for future PRs.

* Merge reservoir.wgsl with restir_di.wgsl, as the reservoir is going to
be DI-specific and won't be reused for GI
* Reformulate confidence weights to not multiply by INITIAL_SAMPLES. The
multiplication cancels out, it doesn't matter.
This commit is contained in:
JMS55 2025-06-30 21:17:16 -07:00 committed by GitHub
parent 6ad93ede86
commit 8351da45f8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 86 additions and 94 deletions

View File

@ -13,7 +13,6 @@ use bevy_ecs::{component::Component, reflect::ReflectComponent, schedule::IntoSc
use bevy_pbr::DefaultOpaqueRendererMethod;
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use bevy_render::{
load_shader_library,
render_graph::{RenderGraphApp, ViewNodeRunner},
renderer::RenderDevice,
view::Hdr,
@ -29,7 +28,6 @@ pub struct SolariLightingPlugin;
impl Plugin for SolariLightingPlugin {
fn build(&self, app: &mut App) {
embedded_asset!(app, "restir_di.wgsl");
load_shader_library!(app, "reservoir.wgsl");
app.register_type::<SolariLighting>()
.insert_resource(DefaultOpaqueRendererMethod::deferred());

View File

@ -1,88 +0,0 @@
// https://intro-to-restir.cwyman.org/presentations/2023ReSTIR_Course_Notes.pdf
#define_import_path bevy_solari::reservoir
#import bevy_core_pipeline::tonemapping::tonemapping_luminance as luminance
#import bevy_pbr::utils::rand_f
#import bevy_solari::sampling::{LightSample, calculate_light_contribution}
const NULL_RESERVOIR_SAMPLE = 0xFFFFFFFFu;
// Don't adjust the size of this struct without also adjusting RESERVOIR_STRUCT_SIZE.
struct Reservoir {
sample: LightSample,
weight_sum: f32,
confidence_weight: f32,
unbiased_contribution_weight: f32,
visibility: f32,
}
fn empty_reservoir() -> Reservoir {
return Reservoir(
LightSample(vec2(NULL_RESERVOIR_SAMPLE, 0u), vec2(0.0)),
0.0,
0.0,
0.0,
0.0
);
}
fn reservoir_valid(reservoir: Reservoir) -> bool {
return reservoir.sample.light_id.x != NULL_RESERVOIR_SAMPLE;
}
struct ReservoirMergeResult {
merged_reservoir: Reservoir,
selected_sample_radiance: vec3<f32>,
}
fn merge_reservoirs(
canonical_reservoir: Reservoir,
other_reservoir: Reservoir,
world_position: vec3<f32>,
world_normal: vec3<f32>,
diffuse_brdf: vec3<f32>,
rng: ptr<function, u32>,
) -> ReservoirMergeResult {
// TODO: Balance heuristic MIS weights
let mis_weight_denominator = 1.0 / (canonical_reservoir.confidence_weight + other_reservoir.confidence_weight);
let canonical_mis_weight = canonical_reservoir.confidence_weight * mis_weight_denominator;
let canonical_target_function = reservoir_target_function(canonical_reservoir, world_position, world_normal, diffuse_brdf);
let canonical_resampling_weight = canonical_mis_weight * (canonical_target_function.a * canonical_reservoir.unbiased_contribution_weight);
let other_mis_weight = other_reservoir.confidence_weight * mis_weight_denominator;
let other_target_function = reservoir_target_function(other_reservoir, world_position, world_normal, diffuse_brdf);
let other_resampling_weight = other_mis_weight * (other_target_function.a * other_reservoir.unbiased_contribution_weight);
var combined_reservoir = empty_reservoir();
combined_reservoir.weight_sum = canonical_resampling_weight + other_resampling_weight;
combined_reservoir.confidence_weight = canonical_reservoir.confidence_weight + other_reservoir.confidence_weight;
// https://yusuketokuyoshi.com/papers/2024/Efficient_Visibility_Reuse_for_Real-time_ReSTIR_(Supplementary_Document).pdf
combined_reservoir.visibility = max(0.0, (canonical_reservoir.visibility * canonical_resampling_weight
+ other_reservoir.visibility * other_resampling_weight) / combined_reservoir.weight_sum);
if rand_f(rng) < other_resampling_weight / combined_reservoir.weight_sum {
combined_reservoir.sample = other_reservoir.sample;
let inverse_target_function = select(0.0, 1.0 / other_target_function.a, other_target_function.a > 0.0);
combined_reservoir.unbiased_contribution_weight = combined_reservoir.weight_sum * inverse_target_function;
return ReservoirMergeResult(combined_reservoir, other_target_function.rgb);
} else {
combined_reservoir.sample = canonical_reservoir.sample;
let inverse_target_function = select(0.0, 1.0 / canonical_target_function.a, canonical_target_function.a > 0.0);
combined_reservoir.unbiased_contribution_weight = combined_reservoir.weight_sum * inverse_target_function;
return ReservoirMergeResult(combined_reservoir, canonical_target_function.rgb);
}
}
fn reservoir_target_function(reservoir: Reservoir, world_position: vec3<f32>, world_normal: vec3<f32>, diffuse_brdf: vec3<f32>) -> vec4<f32> {
if !reservoir_valid(reservoir) { return vec4(0.0); }
let light_contribution = calculate_light_contribution(reservoir.sample, world_position, world_normal).radiance;
let target_function = luminance(light_contribution * diffuse_brdf);
return vec4(light_contribution, target_function);
}

View File

@ -1,3 +1,5 @@
// https://intro-to-restir.cwyman.org/presentations/2023ReSTIR_Course_Notes.pdf
#import bevy_core_pipeline::tonemapping::tonemapping_luminance as luminance
#import bevy_pbr::pbr_deferred_types::unpack_24bit_normal
#import bevy_pbr::prepass_bindings::PreviousViewUniforms
@ -5,8 +7,7 @@
#import bevy_pbr::utils::{rand_f, octahedral_decode}
#import bevy_render::maths::PI
#import bevy_render::view::View
#import bevy_solari::reservoir::{Reservoir, empty_reservoir, reservoir_valid, merge_reservoirs}
#import bevy_solari::sampling::{generate_random_light_sample, calculate_light_contribution, trace_light_visibility, sample_disk}
#import bevy_solari::sampling::{LightSample, generate_random_light_sample, calculate_light_contribution, trace_light_visibility, sample_disk}
#import bevy_solari::scene_bindings::{previous_frame_light_id_translations, LIGHT_NOT_PRESENT_THIS_FRAME}
@group(1) @binding(0) var view_output: texture_storage_2d<rgba16float, write>;
@ -24,7 +25,9 @@ var<push_constant> constants: PushConstants;
const INITIAL_SAMPLES = 32u;
const SPATIAL_REUSE_RADIUS_PIXELS = 30.0;
const CONFIDENCE_WEIGHT_CAP = 20.0 * f32(INITIAL_SAMPLES);
const CONFIDENCE_WEIGHT_CAP = 20.0;
const NULL_RESERVOIR_SAMPLE = 0xFFFFFFFFu;
@compute @workgroup_size(8, 8, 1)
fn initial_and_temporal(@builtin(global_invocation_id) global_id: vec3<u32>) {
@ -112,7 +115,7 @@ fn generate_initial_reservoir(world_position: vec3<f32>, world_normal: vec3<f32>
reservoir.unbiased_contribution_weight *= reservoir.visibility;
}
reservoir.confidence_weight = f32(INITIAL_SAMPLES);
reservoir.confidence_weight = 1.0;
return reservoir;
}
@ -205,3 +208,82 @@ fn depth_ndc_to_view_z(ndc_depth: f32) -> f32 {
return view_pos.z / view_pos.w;
#endif
}
// Don't adjust the size of this struct without also adjusting RESERVOIR_STRUCT_SIZE.
struct Reservoir {
sample: LightSample,
weight_sum: f32,
confidence_weight: f32,
unbiased_contribution_weight: f32,
visibility: f32,
}
fn empty_reservoir() -> Reservoir {
return Reservoir(
LightSample(vec2(NULL_RESERVOIR_SAMPLE, 0u), vec2(0.0)),
0.0,
0.0,
0.0,
0.0
);
}
fn reservoir_valid(reservoir: Reservoir) -> bool {
return reservoir.sample.light_id.x != NULL_RESERVOIR_SAMPLE;
}
struct ReservoirMergeResult {
merged_reservoir: Reservoir,
selected_sample_radiance: vec3<f32>,
}
fn merge_reservoirs(
canonical_reservoir: Reservoir,
other_reservoir: Reservoir,
world_position: vec3<f32>,
world_normal: vec3<f32>,
diffuse_brdf: vec3<f32>,
rng: ptr<function, u32>,
) -> ReservoirMergeResult {
// TODO: Balance heuristic MIS weights
let mis_weight_denominator = 1.0 / (canonical_reservoir.confidence_weight + other_reservoir.confidence_weight);
let canonical_mis_weight = canonical_reservoir.confidence_weight * mis_weight_denominator;
let canonical_target_function = reservoir_target_function(canonical_reservoir, world_position, world_normal, diffuse_brdf);
let canonical_resampling_weight = canonical_mis_weight * (canonical_target_function.a * canonical_reservoir.unbiased_contribution_weight);
let other_mis_weight = other_reservoir.confidence_weight * mis_weight_denominator;
let other_target_function = reservoir_target_function(other_reservoir, world_position, world_normal, diffuse_brdf);
let other_resampling_weight = other_mis_weight * (other_target_function.a * other_reservoir.unbiased_contribution_weight);
var combined_reservoir = empty_reservoir();
combined_reservoir.weight_sum = canonical_resampling_weight + other_resampling_weight;
combined_reservoir.confidence_weight = canonical_reservoir.confidence_weight + other_reservoir.confidence_weight;
// https://yusuketokuyoshi.com/papers/2024/Efficient_Visibility_Reuse_for_Real-time_ReSTIR_(Supplementary_Document).pdf
combined_reservoir.visibility = max(0.0, (canonical_reservoir.visibility * canonical_resampling_weight
+ other_reservoir.visibility * other_resampling_weight) / combined_reservoir.weight_sum);
if rand_f(rng) < other_resampling_weight / combined_reservoir.weight_sum {
combined_reservoir.sample = other_reservoir.sample;
let inverse_target_function = select(0.0, 1.0 / other_target_function.a, other_target_function.a > 0.0);
combined_reservoir.unbiased_contribution_weight = combined_reservoir.weight_sum * inverse_target_function;
return ReservoirMergeResult(combined_reservoir, other_target_function.rgb);
} else {
combined_reservoir.sample = canonical_reservoir.sample;
let inverse_target_function = select(0.0, 1.0 / canonical_target_function.a, canonical_target_function.a > 0.0);
combined_reservoir.unbiased_contribution_weight = combined_reservoir.weight_sum * inverse_target_function;
return ReservoirMergeResult(combined_reservoir, canonical_target_function.rgb);
}
}
fn reservoir_target_function(reservoir: Reservoir, world_position: vec3<f32>, world_normal: vec3<f32>, diffuse_brdf: vec3<f32>) -> vec4<f32> {
if !reservoir_valid(reservoir) { return vec4(0.0); }
let light_contribution = calculate_light_contribution(reservoir.sample, world_position, world_normal).radiance;
let target_function = luminance(light_contribution * diffuse_brdf);
return vec4(light_contribution, target_function);
}