Approximate indirect specular occlusion (#11152)
# Objective - The current PBR renderer over-brightens indirect specular reflections, which tends to cause objects to appear to glow, because specular occlusion is not accounted for. ## Solution - Attenuate indirect specular term with an approximation for specular occlusion, using [[Lagarde et al., 2014] (pg. 76)](https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf). | Before | After | Animation | | --- | --- | --- | | <img width="1840" alt="before bike" src="https://github.com/bevyengine/bevy/assets/2632925/b6e10d15-a998-4a94-875a-1c2b1e98348a"> | <img width="1840" alt="after bike" src="https://github.com/bevyengine/bevy/assets/2632925/53b1479c-b1e4-427f-b140-53df26ca7193"> |  | | <img width="1840" alt="classroom before" src="https://github.com/bevyengine/bevy/assets/2632925/b16c0e74-741e-4f40-a7df-8863eaa62596"> | <img width="1840" alt="classroom after" src="https://github.com/bevyengine/bevy/assets/2632925/26f9e971-0c63-4ee9-9544-964e5703d65e"> |  | --- ## Changelog - Ambient occlusion now applies to indirect specular reflections to approximate how objects occlude specular light. ## Migration Guide - Renamed `PbrInput::occlusion` to `diffuse_occlusion`, and added `specular_occlusion`.
This commit is contained in:
parent
4695b82f6b
commit
839d2f8353
@ -4,6 +4,7 @@
|
|||||||
pbr_functions,
|
pbr_functions,
|
||||||
pbr_deferred_functions::pbr_input_from_deferred_gbuffer,
|
pbr_deferred_functions::pbr_input_from_deferred_gbuffer,
|
||||||
pbr_deferred_types::unpack_unorm3x4_plus_unorm_20_,
|
pbr_deferred_types::unpack_unorm3x4_plus_unorm_20_,
|
||||||
|
lighting,
|
||||||
mesh_view_bindings::deferred_prepass_texture,
|
mesh_view_bindings::deferred_prepass_texture,
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -64,7 +65,15 @@ fn fragment(in: FullscreenVertexOutput) -> @location(0) vec4<f32> {
|
|||||||
#ifdef SCREEN_SPACE_AMBIENT_OCCLUSION
|
#ifdef SCREEN_SPACE_AMBIENT_OCCLUSION
|
||||||
let ssao = textureLoad(screen_space_ambient_occlusion_texture, vec2<i32>(in.position.xy), 0i).r;
|
let ssao = textureLoad(screen_space_ambient_occlusion_texture, vec2<i32>(in.position.xy), 0i).r;
|
||||||
let ssao_multibounce = gtao_multibounce(ssao, pbr_input.material.base_color.rgb);
|
let ssao_multibounce = gtao_multibounce(ssao, pbr_input.material.base_color.rgb);
|
||||||
pbr_input.occlusion = min(pbr_input.occlusion, ssao_multibounce);
|
pbr_input.diffuse_occlusion = min(pbr_input.diffuse_occlusion, ssao_multibounce);
|
||||||
|
|
||||||
|
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
|
||||||
|
let NdotV = max(dot(pbr_input.N, pbr_input.V), 0.0001);
|
||||||
|
var perceptual_roughness: f32 = pbr_input.material.perceptual_roughness;
|
||||||
|
let roughness = lighting::perceptualRoughnessToRoughness(perceptual_roughness);
|
||||||
|
// Use SSAO to estimate the specular occlusion.
|
||||||
|
// Lagarde and Rousiers 2014, "Moving Frostbite to Physically Based Rendering"
|
||||||
|
pbr_input.specular_occlusion = saturate(pow(NdotV + ssao, exp2(-16.0 * roughness - 1.0)) - 1.0 + ssao);
|
||||||
#endif // SCREEN_SPACE_AMBIENT_OCCLUSION
|
#endif // SCREEN_SPACE_AMBIENT_OCCLUSION
|
||||||
|
|
||||||
output_color = pbr_functions::apply_pbr_lighting(pbr_input);
|
output_color = pbr_functions::apply_pbr_lighting(pbr_input);
|
||||||
|
|||||||
@ -22,18 +22,18 @@ fn deferred_gbuffer_from_pbr_input(in: PbrInput) -> vec4<u32> {
|
|||||||
// Real time occlusion is applied in the deferred lighting pass.
|
// Real time occlusion is applied in the deferred lighting pass.
|
||||||
// Deriving luminance via Rec. 709. coefficients
|
// Deriving luminance via Rec. 709. coefficients
|
||||||
// https://en.wikipedia.org/wiki/Rec._709
|
// https://en.wikipedia.org/wiki/Rec._709
|
||||||
let occlusion = dot(in.occlusion, vec3<f32>(0.2126, 0.7152, 0.0722));
|
let diffuse_occlusion = dot(in.diffuse_occlusion, vec3<f32>(0.2126, 0.7152, 0.0722));
|
||||||
#ifdef WEBGL2 // More crunched for webgl so we can also fit depth.
|
#ifdef WEBGL2 // More crunched for webgl so we can also fit depth.
|
||||||
var props = deferred_types::pack_unorm3x4_plus_unorm_20_(vec4(
|
var props = deferred_types::pack_unorm3x4_plus_unorm_20_(vec4(
|
||||||
in.material.reflectance,
|
in.material.reflectance,
|
||||||
in.material.metallic,
|
in.material.metallic,
|
||||||
occlusion,
|
diffuse_occlusion,
|
||||||
in.frag_coord.z));
|
in.frag_coord.z));
|
||||||
#else
|
#else
|
||||||
var props = deferred_types::pack_unorm4x8_(vec4(
|
var props = deferred_types::pack_unorm4x8_(vec4(
|
||||||
in.material.reflectance, // could be fewer bits
|
in.material.reflectance, // could be fewer bits
|
||||||
in.material.metallic, // could be fewer bits
|
in.material.metallic, // could be fewer bits
|
||||||
occlusion, // is this worth including?
|
diffuse_occlusion, // is this worth including?
|
||||||
0.0)); // spare
|
0.0)); // spare
|
||||||
#endif // WEBGL2
|
#endif // WEBGL2
|
||||||
let flags = deferred_types::deferred_flags_from_mesh_material_flags(in.flags, in.material.flags);
|
let flags = deferred_types::deferred_flags_from_mesh_material_flags(in.flags, in.material.flags);
|
||||||
@ -85,7 +85,7 @@ fn pbr_input_from_deferred_gbuffer(frag_coord: vec4<f32>, gbuffer: vec4<u32>) ->
|
|||||||
pbr.material.reflectance = props.r;
|
pbr.material.reflectance = props.r;
|
||||||
#endif // WEBGL2
|
#endif // WEBGL2
|
||||||
pbr.material.metallic = props.g;
|
pbr.material.metallic = props.g;
|
||||||
pbr.occlusion = vec3(props.b);
|
pbr.diffuse_occlusion = vec3(props.b);
|
||||||
let octahedral_normal = deferred_types::unpack_24bit_normal(gbuffer.a);
|
let octahedral_normal = deferred_types::unpack_24bit_normal(gbuffer.a);
|
||||||
let N = octahedral_decode(octahedral_normal);
|
let N = octahedral_decode(octahedral_normal);
|
||||||
|
|
||||||
|
|||||||
@ -5,6 +5,7 @@
|
|||||||
pbr_bindings,
|
pbr_bindings,
|
||||||
pbr_types,
|
pbr_types,
|
||||||
prepass_utils,
|
prepass_utils,
|
||||||
|
lighting,
|
||||||
mesh_bindings::mesh,
|
mesh_bindings::mesh,
|
||||||
mesh_view_bindings::view,
|
mesh_view_bindings::view,
|
||||||
parallax_mapping::parallaxed_uv,
|
parallax_mapping::parallaxed_uv,
|
||||||
@ -68,6 +69,9 @@ fn pbr_input_from_standard_material(
|
|||||||
pbr_input.material.base_color *= pbr_bindings::material.base_color;
|
pbr_input.material.base_color *= pbr_bindings::material.base_color;
|
||||||
pbr_input.material.deferred_lighting_pass_id = pbr_bindings::material.deferred_lighting_pass_id;
|
pbr_input.material.deferred_lighting_pass_id = pbr_bindings::material.deferred_lighting_pass_id;
|
||||||
|
|
||||||
|
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
|
||||||
|
let NdotV = max(dot(pbr_input.N, pbr_input.V), 0.0001);
|
||||||
|
|
||||||
#ifdef VERTEX_UVS
|
#ifdef VERTEX_UVS
|
||||||
var uv = in.uv;
|
var uv = in.uv;
|
||||||
|
|
||||||
@ -120,6 +124,7 @@ fn pbr_input_from_standard_material(
|
|||||||
// metallic and perceptual roughness
|
// metallic and perceptual roughness
|
||||||
var metallic: f32 = pbr_bindings::material.metallic;
|
var metallic: f32 = pbr_bindings::material.metallic;
|
||||||
var perceptual_roughness: f32 = pbr_bindings::material.perceptual_roughness;
|
var perceptual_roughness: f32 = pbr_bindings::material.perceptual_roughness;
|
||||||
|
let roughness = lighting::perceptualRoughnessToRoughness(perceptual_roughness);
|
||||||
#ifdef VERTEX_UVS
|
#ifdef VERTEX_UVS
|
||||||
if ((pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_METALLIC_ROUGHNESS_TEXTURE_BIT) != 0u) {
|
if ((pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_METALLIC_ROUGHNESS_TEXTURE_BIT) != 0u) {
|
||||||
let metallic_roughness = textureSampleBias(pbr_bindings::metallic_roughness_texture, pbr_bindings::metallic_roughness_sampler, uv, view.mip_bias);
|
let metallic_roughness = textureSampleBias(pbr_bindings::metallic_roughness_texture, pbr_bindings::metallic_roughness_sampler, uv, view.mip_bias);
|
||||||
@ -159,20 +164,23 @@ fn pbr_input_from_standard_material(
|
|||||||
#endif
|
#endif
|
||||||
pbr_input.material.diffuse_transmission = diffuse_transmission;
|
pbr_input.material.diffuse_transmission = diffuse_transmission;
|
||||||
|
|
||||||
// occlusion
|
var diffuse_occlusion: vec3<f32> = vec3(1.0);
|
||||||
// TODO: Split into diffuse/specular occlusion?
|
var specular_occlusion: f32 = 1.0;
|
||||||
var occlusion: vec3<f32> = vec3(1.0);
|
|
||||||
#ifdef VERTEX_UVS
|
#ifdef VERTEX_UVS
|
||||||
if ((pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_OCCLUSION_TEXTURE_BIT) != 0u) {
|
if ((pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_OCCLUSION_TEXTURE_BIT) != 0u) {
|
||||||
occlusion = vec3(textureSampleBias(pbr_bindings::occlusion_texture, pbr_bindings::occlusion_sampler, uv, view.mip_bias).r);
|
diffuse_occlusion = vec3(textureSampleBias(pbr_bindings::occlusion_texture, pbr_bindings::occlusion_sampler, uv, view.mip_bias).r);
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
#ifdef SCREEN_SPACE_AMBIENT_OCCLUSION
|
#ifdef SCREEN_SPACE_AMBIENT_OCCLUSION
|
||||||
let ssao = textureLoad(screen_space_ambient_occlusion_texture, vec2<i32>(in.position.xy), 0i).r;
|
let ssao = textureLoad(screen_space_ambient_occlusion_texture, vec2<i32>(in.position.xy), 0i).r;
|
||||||
let ssao_multibounce = gtao_multibounce(ssao, pbr_input.material.base_color.rgb);
|
let ssao_multibounce = gtao_multibounce(ssao, pbr_input.material.base_color.rgb);
|
||||||
occlusion = min(occlusion, ssao_multibounce);
|
diffuse_occlusion = min(diffuse_occlusion, ssao_multibounce);
|
||||||
|
// Use SSAO to estimate the specular occlusion.
|
||||||
|
// Lagarde and Rousiers 2014, "Moving Frostbite to Physically Based Rendering"
|
||||||
|
specular_occlusion = saturate(pow(NdotV + ssao, exp2(-16.0 * roughness - 1.0)) - 1.0 + ssao);
|
||||||
#endif
|
#endif
|
||||||
pbr_input.occlusion = occlusion;
|
pbr_input.diffuse_occlusion = diffuse_occlusion;
|
||||||
|
pbr_input.specular_occlusion = specular_occlusion;
|
||||||
|
|
||||||
// N (normal vector)
|
// N (normal vector)
|
||||||
#ifndef LOAD_PREPASS_NORMALS
|
#ifndef LOAD_PREPASS_NORMALS
|
||||||
|
|||||||
@ -164,7 +164,8 @@ fn apply_pbr_lighting(
|
|||||||
|
|
||||||
let specular_transmissive_color = specular_transmission * in.material.base_color.rgb;
|
let specular_transmissive_color = specular_transmission * in.material.base_color.rgb;
|
||||||
|
|
||||||
let occlusion = in.occlusion;
|
let diffuse_occlusion = in.diffuse_occlusion;
|
||||||
|
let specular_occlusion = in.specular_occlusion;
|
||||||
|
|
||||||
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
|
// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
|
||||||
let NdotV = max(dot(in.N, in.V), 0.0001);
|
let NdotV = max(dot(in.N, in.V), 0.0001);
|
||||||
@ -306,7 +307,7 @@ fn apply_pbr_lighting(
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Ambient light (indirect)
|
// Ambient light (indirect)
|
||||||
var indirect_light = ambient::ambient_light(in.world_position, in.N, in.V, NdotV, diffuse_color, F0, perceptual_roughness, occlusion);
|
var indirect_light = ambient::ambient_light(in.world_position, in.N, in.V, NdotV, diffuse_color, F0, perceptual_roughness, diffuse_occlusion);
|
||||||
|
|
||||||
if diffuse_transmission > 0.0 {
|
if diffuse_transmission > 0.0 {
|
||||||
// NOTE: We use the diffuse transmissive color, the second Lambertian lobe's calculated
|
// NOTE: We use the diffuse transmissive color, the second Lambertian lobe's calculated
|
||||||
@ -316,14 +317,14 @@ fn apply_pbr_lighting(
|
|||||||
// perceptual_roughness = 1.0;
|
// perceptual_roughness = 1.0;
|
||||||
// NdotV = 1.0;
|
// NdotV = 1.0;
|
||||||
// F0 = vec3<f32>(0.0)
|
// F0 = vec3<f32>(0.0)
|
||||||
// occlusion = vec3<f32>(1.0)
|
// diffuse_occlusion = vec3<f32>(1.0)
|
||||||
transmitted_light += ambient::ambient_light(diffuse_transmissive_lobe_world_position, -in.N, -in.V, 1.0, diffuse_transmissive_color, vec3<f32>(0.0), 1.0, vec3<f32>(1.0));
|
transmitted_light += ambient::ambient_light(diffuse_transmissive_lobe_world_position, -in.N, -in.V, 1.0, diffuse_transmissive_color, vec3<f32>(0.0), 1.0, vec3<f32>(1.0));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Environment map light (indirect)
|
// Environment map light (indirect)
|
||||||
#ifdef ENVIRONMENT_MAP
|
#ifdef ENVIRONMENT_MAP
|
||||||
let environment_light = environment_map::environment_map_light(perceptual_roughness, roughness, diffuse_color, NdotV, f_ab, in.N, R, F0);
|
let environment_light = environment_map::environment_map_light(perceptual_roughness, roughness, diffuse_color, NdotV, f_ab, in.N, R, F0);
|
||||||
indirect_light += (environment_light.diffuse * occlusion) + environment_light.specular;
|
indirect_light += (environment_light.diffuse * diffuse_occlusion) + (environment_light.specular * specular_occlusion);
|
||||||
|
|
||||||
// we'll use the specular component of the transmitted environment
|
// we'll use the specular component of the transmitted environment
|
||||||
// light in the call to `specular_transmissive_light()` below
|
// light in the call to `specular_transmissive_light()` below
|
||||||
@ -338,7 +339,7 @@ fn apply_pbr_lighting(
|
|||||||
// NdotV = 1.0;
|
// NdotV = 1.0;
|
||||||
// R = T // see definition below
|
// R = T // see definition below
|
||||||
// F0 = vec3<f32>(1.0)
|
// F0 = vec3<f32>(1.0)
|
||||||
// occlusion = 1.0
|
// diffuse_occlusion = 1.0
|
||||||
//
|
//
|
||||||
// (This one is slightly different from the other light types above, because the environment
|
// (This one is slightly different from the other light types above, because the environment
|
||||||
// map light returns both diffuse and specular components separately, and we want to use both)
|
// map light returns both diffuse and specular components separately, and we want to use both)
|
||||||
|
|||||||
@ -80,7 +80,8 @@ fn standard_material_new() -> StandardMaterial {
|
|||||||
|
|
||||||
struct PbrInput {
|
struct PbrInput {
|
||||||
material: StandardMaterial,
|
material: StandardMaterial,
|
||||||
occlusion: vec3<f32>,
|
diffuse_occlusion: vec3<f32>,
|
||||||
|
specular_occlusion: f32,
|
||||||
frag_coord: vec4<f32>,
|
frag_coord: vec4<f32>,
|
||||||
world_position: vec4<f32>,
|
world_position: vec4<f32>,
|
||||||
// Normalized world normal used for shadow mapping as normal-mapping is not used for shadow
|
// Normalized world normal used for shadow mapping as normal-mapping is not used for shadow
|
||||||
@ -101,7 +102,8 @@ fn pbr_input_new() -> PbrInput {
|
|||||||
var pbr_input: PbrInput;
|
var pbr_input: PbrInput;
|
||||||
|
|
||||||
pbr_input.material = standard_material_new();
|
pbr_input.material = standard_material_new();
|
||||||
pbr_input.occlusion = vec3<f32>(1.0);
|
pbr_input.diffuse_occlusion = vec3<f32>(1.0);
|
||||||
|
pbr_input.specular_occlusion = 1.0;
|
||||||
|
|
||||||
pbr_input.frag_coord = vec4<f32>(0.0, 0.0, 0.0, 1.0);
|
pbr_input.frag_coord = vec4<f32>(0.0, 0.0, 0.0, 1.0);
|
||||||
pbr_input.world_position = vec4<f32>(0.0, 0.0, 0.0, 1.0);
|
pbr_input.world_position = vec4<f32>(0.0, 0.0, 0.0, 1.0);
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user