Cubic splines overhaul (#10701)
# Objective Improve the `bevy::math::cubic_splines` module by making it more flexible and adding new curve types. Closes #10220 ## Solution Added new spline types and improved existing --- ## Changelog ### Added - `CubicNurbs` rational cubic curve generator, allows setting the knot vector and weights associated with every point - `LinearSpline` curve generator, allows generating a linearly interpolated curve segment - Ability to push additional cubic segments to `CubicCurve` - `IntoIterator` and `Extend` implementations for `CubicCurve` ### Changed - `Point` trait has been implemented for more types: `Quat` and `Vec4`. - `CubicCurve::coefficients` was moved to `CubicSegment::coefficients` because the function returns `CubicSegment`, so it seems logical to be associated with `CubicSegment` instead. The method is still not public. ### Fixed - `CubicBSpline::new` was referencing Cardinal spline instead of B-Spline --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: IQuick 143 <IQuick143cz@gmail.com> Co-authored-by: Miles Silberling-Cook <nth.tensor@gmail.com> Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
This commit is contained in:
parent
f0c41b6135
commit
a543536a34
@ -10,6 +10,7 @@ keywords = ["bevy"]
|
||||
|
||||
[dependencies]
|
||||
glam = { version = "0.25", features = ["bytemuck"] }
|
||||
thiserror = "1.0"
|
||||
serde = { version = "1", features = ["derive"], optional = true }
|
||||
approx = { version = "0.5", optional = true }
|
||||
|
||||
|
@ -1,28 +1,29 @@
|
||||
//! Provides types for building cubic splines for rendering curves and use with animation easing.
|
||||
|
||||
use glam::{Vec2, Vec3, Vec3A};
|
||||
|
||||
use std::{
|
||||
fmt::Debug,
|
||||
iter::Sum,
|
||||
ops::{Add, Mul, Sub},
|
||||
ops::{Add, Div, Mul, Sub},
|
||||
};
|
||||
|
||||
use glam::{Quat, Vec2, Vec3, Vec3A, Vec4};
|
||||
use thiserror::Error;
|
||||
|
||||
/// A point in space of any dimension that supports the math ops needed for cubic spline
|
||||
/// interpolation.
|
||||
pub trait Point:
|
||||
Mul<f32, Output = Self>
|
||||
+ Div<f32, Output = Self>
|
||||
+ Add<Self, Output = Self>
|
||||
+ Sub<Self, Output = Self>
|
||||
+ Add<f32, Output = Self>
|
||||
+ Sum
|
||||
+ Default
|
||||
+ Debug
|
||||
+ Clone
|
||||
+ PartialEq
|
||||
+ Copy
|
||||
{
|
||||
}
|
||||
|
||||
impl Point for Quat {}
|
||||
impl Point for Vec4 {}
|
||||
impl Point for Vec3 {}
|
||||
impl Point for Vec3A {}
|
||||
impl Point for Vec2 {}
|
||||
@ -34,14 +35,20 @@ impl Point for f32 {}
|
||||
/// [`CubicSegment::new_bezier`] for use in easing.
|
||||
///
|
||||
/// ### Interpolation
|
||||
/// The curve only passes through the first and last control point in each set of four points.
|
||||
/// The curve only passes through the first and last control point in each set of four points. The curve
|
||||
/// is divided into "segments" by every fourth control point.
|
||||
///
|
||||
/// ### Tangency
|
||||
/// Manually defined by the two intermediate control points within each set of four points.
|
||||
/// Tangents are manually defined by the two intermediate control points within each set of four points.
|
||||
/// You can think of the control points the curve passes through as "anchors", and as the intermediate
|
||||
/// control points as the anchors displaced along their tangent vectors
|
||||
///
|
||||
/// ### Continuity
|
||||
/// At minimum C0 continuous, up to C2. Continuity greater than C0 can result in a loss of local
|
||||
/// control over the spline due to the curvature constraints.
|
||||
/// A Bezier curve is at minimum C0 continuous, meaning it has no holes or jumps. Each curve segment is
|
||||
/// C2, meaning the tangent vector changes smoothly between each set of four control points, but this
|
||||
/// doesn't hold at the control points between segments. Making the whole curve C1 or C2 requires moving
|
||||
/// the intermediate control points to align the tangent vectors between segments, and can result in a
|
||||
/// loss of local control.
|
||||
///
|
||||
/// ### Usage
|
||||
///
|
||||
@ -71,6 +78,9 @@ impl<P: Point> CubicBezier<P> {
|
||||
impl<P: Point> CubicGenerator<P> for CubicBezier<P> {
|
||||
#[inline]
|
||||
fn to_curve(&self) -> CubicCurve<P> {
|
||||
// A derivation for this matrix can be found in "General Matrix Representations for B-splines" by Kaihuai Qin.
|
||||
// <https://xiaoxingchen.github.io/2020/03/02/bspline_in_so3/general_matrix_representation_for_bsplines.pdf>
|
||||
// See section 4.2 and equation 11.
|
||||
let char_matrix = [
|
||||
[1., 0., 0., 0.],
|
||||
[-3., 3., 0., 0.],
|
||||
@ -81,7 +91,7 @@ impl<P: Point> CubicGenerator<P> for CubicBezier<P> {
|
||||
let segments = self
|
||||
.control_points
|
||||
.iter()
|
||||
.map(|p| CubicCurve::coefficients(*p, 1.0, char_matrix))
|
||||
.map(|p| CubicSegment::coefficients(*p, char_matrix))
|
||||
.collect();
|
||||
|
||||
CubicCurve { segments }
|
||||
@ -99,10 +109,11 @@ impl<P: Point> CubicGenerator<P> for CubicBezier<P> {
|
||||
/// The curve passes through every control point.
|
||||
///
|
||||
/// ### Tangency
|
||||
/// Explicitly defined at each control point.
|
||||
/// Tangents are explicitly defined at each control point.
|
||||
///
|
||||
/// ### Continuity
|
||||
/// At minimum C0 continuous, up to C1.
|
||||
/// The curve is at minimum C0 continuous, meaning it has no holes or jumps. It is also C1, meaning the
|
||||
/// tangent vector has no sudden jumps.
|
||||
///
|
||||
/// ### Usage
|
||||
///
|
||||
@ -152,7 +163,7 @@ impl<P: Point> CubicGenerator<P> for CubicHermite<P> {
|
||||
.windows(2)
|
||||
.map(|p| {
|
||||
let (p0, v0, p1, v1) = (p[0].0, p[0].1, p[1].0, p[1].1);
|
||||
CubicCurve::coefficients([p0, v0, p1, v1], 1.0, char_matrix)
|
||||
CubicSegment::coefficients([p0, v0, p1, v1], char_matrix)
|
||||
})
|
||||
.collect();
|
||||
|
||||
@ -169,10 +180,11 @@ impl<P: Point> CubicGenerator<P> for CubicHermite<P> {
|
||||
/// The curve passes through every control point.
|
||||
///
|
||||
/// ### Tangency
|
||||
/// Automatically defined at each control point.
|
||||
/// Tangents are automatically computed based on the positions of control points.
|
||||
///
|
||||
/// ### Continuity
|
||||
/// C1 continuous.
|
||||
/// The curve is at minimum C0 continuous, meaning it has no holes or jumps. It is also C1, meaning the
|
||||
/// tangent vector has no sudden jumps.
|
||||
///
|
||||
/// ### Usage
|
||||
///
|
||||
@ -223,7 +235,7 @@ impl<P: Point> CubicGenerator<P> for CubicCardinalSpline<P> {
|
||||
let segments = self
|
||||
.control_points
|
||||
.windows(4)
|
||||
.map(|p| CubicCurve::coefficients([p[0], p[1], p[2], p[3]], 1.0, char_matrix))
|
||||
.map(|p| CubicSegment::coefficients([p[0], p[1], p[2], p[3]], char_matrix))
|
||||
.collect();
|
||||
|
||||
CubicCurve { segments }
|
||||
@ -237,10 +249,11 @@ impl<P: Point> CubicGenerator<P> for CubicCardinalSpline<P> {
|
||||
/// The curve does not pass through control points.
|
||||
///
|
||||
/// ### Tangency
|
||||
/// Automatically computed based on the position of control points.
|
||||
/// Tangents are automatically computed based on the position of control points.
|
||||
///
|
||||
/// ### Continuity
|
||||
/// C2 continuous! The acceleration continuity of this spline makes it useful for camera paths.
|
||||
/// The curve is C2 continuous, meaning it has no holes or jumps, and the tangent vector changes smoothly along
|
||||
/// the entire curve length. The acceleration continuity of this spline makes it useful for camera paths.
|
||||
///
|
||||
/// ### Usage
|
||||
///
|
||||
@ -259,7 +272,7 @@ pub struct CubicBSpline<P: Point> {
|
||||
control_points: Vec<P>,
|
||||
}
|
||||
impl<P: Point> CubicBSpline<P> {
|
||||
/// Build a new Cardinal spline.
|
||||
/// Build a new B-Spline.
|
||||
pub fn new(control_points: impl Into<Vec<P>>) -> Self {
|
||||
Self {
|
||||
control_points: control_points.into(),
|
||||
@ -269,30 +282,350 @@ impl<P: Point> CubicBSpline<P> {
|
||||
impl<P: Point> CubicGenerator<P> for CubicBSpline<P> {
|
||||
#[inline]
|
||||
fn to_curve(&self) -> CubicCurve<P> {
|
||||
let char_matrix = [
|
||||
[1., 4., 1., 0.],
|
||||
[-3., 0., 3., 0.],
|
||||
[3., -6., 3., 0.],
|
||||
[-1., 3., -3., 1.],
|
||||
// A derivation for this matrix can be found in "General Matrix Representations for B-splines" by Kaihuai Qin.
|
||||
// <https://xiaoxingchen.github.io/2020/03/02/bspline_in_so3/general_matrix_representation_for_bsplines.pdf>
|
||||
// See section 4.1 and equations 7 and 8.
|
||||
let mut char_matrix = [
|
||||
[1.0, 4.0, 1.0, 0.0],
|
||||
[-3.0, 0.0, 3.0, 0.0],
|
||||
[3.0, -6.0, 3.0, 0.0],
|
||||
[-1.0, 3.0, -3.0, 1.0],
|
||||
];
|
||||
|
||||
char_matrix
|
||||
.iter_mut()
|
||||
.for_each(|r| r.iter_mut().for_each(|c| *c /= 6.0));
|
||||
|
||||
let segments = self
|
||||
.control_points
|
||||
.windows(4)
|
||||
.map(|p| CubicCurve::coefficients([p[0], p[1], p[2], p[3]], 1.0 / 6.0, char_matrix))
|
||||
.map(|p| CubicSegment::coefficients([p[0], p[1], p[2], p[3]], char_matrix))
|
||||
.collect();
|
||||
|
||||
CubicCurve { segments }
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement this on cubic splines that can generate a curve from their spline parameters.
|
||||
/// Error during construction of [`CubicNurbs`]
|
||||
#[derive(Debug, Error)]
|
||||
pub enum CubicNurbsError {
|
||||
/// Provided the wrong number of knots.
|
||||
#[error("Wrong number of knots: expected {expected}, provided {provided}")]
|
||||
KnotsNumberMismatch {
|
||||
/// Expected number of knots
|
||||
expected: usize,
|
||||
/// Provided number of knots
|
||||
provided: usize,
|
||||
},
|
||||
/// The provided knots had a descending knot pair. Subsequent knots must
|
||||
/// either increase or stay the same.
|
||||
#[error("Invalid knots: contains descending knot pair")]
|
||||
DescendingKnots,
|
||||
/// The provided knots were all equal. Knots must contain at least one increasing pair.
|
||||
#[error("Invalid knots: all knots are equal")]
|
||||
ConstantKnots,
|
||||
/// Provided a different number of weights and control points.
|
||||
#[error("Incorrect number of weights: expected {expected}, provided {provided}")]
|
||||
WeightsNumberMismatch {
|
||||
/// Expected number of weights
|
||||
expected: usize,
|
||||
/// Provided number of weights
|
||||
provided: usize,
|
||||
},
|
||||
/// The number of control points provided is less than 4.
|
||||
#[error("Not enough control points, at least 4 are required, {provided} were provided")]
|
||||
NotEnoughControlPoints {
|
||||
/// The number of control points provided
|
||||
provided: usize,
|
||||
},
|
||||
}
|
||||
|
||||
/// Non-uniform Rational B-Splines (NURBS) are a powerful generalization of the [`CubicBSpline`] which can
|
||||
/// represent a much more diverse class of curves (like perfect circles and ellipses).
|
||||
///
|
||||
/// ### Non-uniformity
|
||||
/// The 'NU' part of NURBS stands for "Non-Uniform". This has to do with a parameter called 'knots'.
|
||||
/// The knots are a non-decreasing sequence of floating point numbers. The first and last three pairs of
|
||||
/// knots control the behavior of the curve as it approaches its endpoints. The intermediate pairs
|
||||
/// each control the length of one segment of the curve. Multiple repeated knot values are called
|
||||
/// "knot multiplicity". Knot multiplicity in the intermediate knots causes a "zero-length" segment,
|
||||
/// and can create sharp corners.
|
||||
///
|
||||
/// ### Rationality
|
||||
/// The 'R' part of NURBS stands for "Rational". This has to do with NURBS allowing each control point to
|
||||
/// be assigned a weighting, which controls how much it affects the curve compared to the other points.
|
||||
///
|
||||
/// ### Interpolation
|
||||
/// The curve will not pass through the control points except where a knot has multiplicity four.
|
||||
///
|
||||
/// ### Tangency
|
||||
/// Tangents are automatically computed based on the position of control points.
|
||||
///
|
||||
/// ### Continuity
|
||||
/// When there is no knot multiplicity, the curve is C2 continuous, meaning it has no holes or jumps and the
|
||||
/// tangent vector changes smoothly along the entire curve length. Like the [`CubicBSpline`], the acceleration
|
||||
/// continuity makes it useful for camera paths. Knot multiplicity of 2 in intermediate knots reduces the
|
||||
/// continuity to C2, and knot multiplicity of 3 reduces the continuity to C0. The curve is always at least
|
||||
/// C0, meaning it has no jumps or holes.
|
||||
///
|
||||
/// ### Usage
|
||||
///
|
||||
/// ```
|
||||
/// # use bevy_math::{*, prelude::*};
|
||||
/// let points = [
|
||||
/// vec2(-1.0, -20.0),
|
||||
/// vec2(3.0, 2.0),
|
||||
/// vec2(5.0, 3.0),
|
||||
/// vec2(9.0, 8.0),
|
||||
/// ];
|
||||
/// let weights = [1.0, 1.0, 2.0, 1.0];
|
||||
/// let knots = [0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 5.0];
|
||||
/// let nurbs = CubicNurbs::new(points, Some(weights), Some(knots))
|
||||
/// .expect("NURBS construction failed!")
|
||||
/// .to_curve();
|
||||
/// let positions: Vec<_> = nurbs.iter_positions(100).collect();
|
||||
/// ```
|
||||
pub struct CubicNurbs<P: Point> {
|
||||
control_points: Vec<P>,
|
||||
weights: Vec<f32>,
|
||||
knots: Vec<f32>,
|
||||
}
|
||||
impl<P: Point> CubicNurbs<P> {
|
||||
/// Build a Non-Uniform Rational B-Spline.
|
||||
///
|
||||
/// If provided, weights must be the same length as the control points. Defaults to equal weights.
|
||||
///
|
||||
/// If provided, the number of knots must be n + 4 elements, where n is the amount of control
|
||||
/// points. Defaults to open uniform knots: [`Self::open_uniform_knots`]. Knots cannot
|
||||
/// all be equal.
|
||||
///
|
||||
/// At least 4 points must be provided, otherwise an error will be returned.
|
||||
pub fn new(
|
||||
control_points: impl Into<Vec<P>>,
|
||||
weights: Option<impl Into<Vec<f32>>>,
|
||||
knots: Option<impl Into<Vec<f32>>>,
|
||||
) -> Result<Self, CubicNurbsError> {
|
||||
let mut control_points: Vec<P> = control_points.into();
|
||||
let control_points_len = control_points.len();
|
||||
|
||||
if control_points_len < 4 {
|
||||
return Err(CubicNurbsError::NotEnoughControlPoints {
|
||||
provided: control_points_len,
|
||||
});
|
||||
}
|
||||
|
||||
let weights = weights
|
||||
.map(Into::into)
|
||||
.unwrap_or_else(|| vec![1.0; control_points_len]);
|
||||
|
||||
let mut knots: Vec<f32> = knots.map(Into::into).unwrap_or_else(|| {
|
||||
Self::open_uniform_knots(control_points_len)
|
||||
.expect("The amount of control points was checked")
|
||||
});
|
||||
|
||||
let expected_knots_len = Self::knots_len(control_points_len);
|
||||
|
||||
// Check the number of knots is correct
|
||||
if knots.len() != expected_knots_len {
|
||||
return Err(CubicNurbsError::KnotsNumberMismatch {
|
||||
expected: expected_knots_len,
|
||||
provided: knots.len(),
|
||||
});
|
||||
}
|
||||
|
||||
// Ensure the knots are non-descending (previous element is less than or equal
|
||||
// to the next)
|
||||
if knots.windows(2).any(|win| win[0] > win[1]) {
|
||||
return Err(CubicNurbsError::DescendingKnots);
|
||||
}
|
||||
|
||||
// Ensure the knots are non-constant
|
||||
if knots.windows(2).all(|win| win[0] == win[1]) {
|
||||
return Err(CubicNurbsError::ConstantKnots);
|
||||
}
|
||||
|
||||
// Check that the number of weights equals the number of control points
|
||||
if weights.len() != control_points_len {
|
||||
return Err(CubicNurbsError::WeightsNumberMismatch {
|
||||
expected: control_points_len,
|
||||
provided: weights.len(),
|
||||
});
|
||||
}
|
||||
|
||||
// To align the evaluation behavior of nurbs with the other splines,
|
||||
// make the intervals between knots form an exact cover of [0, N], where N is
|
||||
// the number of segments of the final curve.
|
||||
let curve_length = (control_points.len() - 3) as f32;
|
||||
let min = *knots.first().unwrap();
|
||||
let max = *knots.last().unwrap();
|
||||
let knot_delta = max - min;
|
||||
knots = knots
|
||||
.into_iter()
|
||||
.map(|k| k - min)
|
||||
.map(|k| k * curve_length / knot_delta)
|
||||
.collect();
|
||||
|
||||
control_points
|
||||
.iter_mut()
|
||||
.zip(weights.iter())
|
||||
.for_each(|(p, w)| *p = *p * *w);
|
||||
|
||||
Ok(Self {
|
||||
control_points,
|
||||
weights,
|
||||
knots,
|
||||
})
|
||||
}
|
||||
|
||||
/// Generates uniform knots that will generate the same curve as [`CubicBSpline`].
|
||||
///
|
||||
/// "Uniform" means that the difference between two subsequent knots is the same.
|
||||
///
|
||||
/// Will return `None` if there are less than 4 control points.
|
||||
pub fn uniform_knots(control_points: usize) -> Option<Vec<f32>> {
|
||||
if control_points < 4 {
|
||||
return None;
|
||||
}
|
||||
Some(
|
||||
(0..Self::knots_len(control_points))
|
||||
.map(|v| v as f32)
|
||||
.collect(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Generates open uniform knots, which makes the ends of the curve pass through the
|
||||
/// start and end points.
|
||||
///
|
||||
/// The start and end knots have multiplicity 4, and intermediate knots have multiplicity 0 and
|
||||
/// difference of 1.
|
||||
///
|
||||
/// Will return `None` if there are less than 4 control points.
|
||||
pub fn open_uniform_knots(control_points: usize) -> Option<Vec<f32>> {
|
||||
if control_points < 4 {
|
||||
return None;
|
||||
}
|
||||
let last_knots_value = control_points - 3;
|
||||
Some(
|
||||
std::iter::repeat(0.0)
|
||||
.take(4)
|
||||
.chain((1..last_knots_value).map(|v| v as f32))
|
||||
.chain(std::iter::repeat(last_knots_value as f32).take(4))
|
||||
.collect(),
|
||||
)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
const fn knots_len(control_points_len: usize) -> usize {
|
||||
control_points_len + 4
|
||||
}
|
||||
|
||||
/// Generates a non-uniform B-spline characteristic matrix from a sequence of six knots. Each six
|
||||
/// knots describe the relationship between four successive control points. For padding reasons,
|
||||
/// this takes a vector of 8 knots, but only six are actually used.
|
||||
fn generate_matrix(knots: &[f32; 8]) -> [[f32; 4]; 4] {
|
||||
// A derivation for this matrix can be found in "General Matrix Representations for B-splines" by Kaihuai Qin.
|
||||
// <https://xiaoxingchen.github.io/2020/03/02/bspline_in_so3/general_matrix_representation_for_bsplines.pdf>
|
||||
// See section 3.1.
|
||||
|
||||
let t = knots;
|
||||
// In the notation of the paper:
|
||||
// t[1] := t_i-2
|
||||
// t[2] := t_i-1
|
||||
// t[3] := t_i (the lower extent of the current knot span)
|
||||
// t[4] := t_i+1 (the upper extent of the current knot span)
|
||||
// t[5] := t_i+2
|
||||
// t[6] := t_i+3
|
||||
|
||||
let m00 = (t[4] - t[3]).powi(2) / ((t[4] - t[2]) * (t[4] - t[1]));
|
||||
let m02 = (t[3] - t[2]).powi(2) / ((t[5] - t[2]) * (t[4] - t[2]));
|
||||
let m12 = (3.0 * (t[4] - t[3]) * (t[3] - t[2])) / ((t[5] - t[2]) * (t[4] - t[2]));
|
||||
let m22 = 3.0 * (t[4] - t[3]).powi(2) / ((t[5] - t[2]) * (t[4] - t[2]));
|
||||
let m33 = (t[4] - t[3]).powi(2) / ((t[6] - t[3]) * (t[5] - t[3]));
|
||||
let m32 = -m22 / 3.0 - m33 - (t[4] - t[3]).powi(2) / ((t[5] - t[3]) * (t[5] - t[2]));
|
||||
[
|
||||
[m00, 1.0 - m00 - m02, m02, 0.0],
|
||||
[-3.0 * m00, 3.0 * m00 - m12, m12, 0.0],
|
||||
[3.0 * m00, -3.0 * m00 - m22, m22, 0.0],
|
||||
[-m00, m00 - m32 - m33, m32, m33],
|
||||
]
|
||||
}
|
||||
}
|
||||
impl<P: Point> RationalGenerator<P> for CubicNurbs<P> {
|
||||
#[inline]
|
||||
fn to_curve(&self) -> RationalCurve<P> {
|
||||
let segments = self
|
||||
.control_points
|
||||
.windows(4)
|
||||
.zip(self.weights.windows(4))
|
||||
.zip(self.knots.windows(8))
|
||||
.filter(|(_, knots)| knots[4] - knots[3] > 0.0)
|
||||
.map(|((points, weights), knots)| {
|
||||
// This is curve segment i. It uses control points P_i, P_i+2, P_i+2 and P_i+3,
|
||||
// It is associated with knot span i+3 (which is the interval between knots i+3
|
||||
// and i+4) and it's characteristic matrix uses knots i+1 through i+6 (because
|
||||
// those define the two knot spans on either side).
|
||||
let span = knots[4] - knots[3];
|
||||
let coefficient_knots = knots.try_into().expect("Knot windows are of length 6");
|
||||
let matrix = Self::generate_matrix(coefficient_knots);
|
||||
RationalSegment::coefficients(
|
||||
points.try_into().expect("Point windows are of length 4"),
|
||||
weights.try_into().expect("Weight windows are of length 4"),
|
||||
span,
|
||||
matrix,
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
RationalCurve { segments }
|
||||
}
|
||||
}
|
||||
|
||||
/// A spline interpolated linearly between the nearest 2 points.
|
||||
///
|
||||
/// ### Interpolation
|
||||
/// The curve passes through every control point.
|
||||
///
|
||||
/// ### Tangency
|
||||
/// The curve is not generally differentiable at control points.
|
||||
///
|
||||
/// ### Continuity
|
||||
/// The curve is C0 continuous, meaning it has no holes or jumps.
|
||||
pub struct LinearSpline<P: Point> {
|
||||
points: Vec<P>,
|
||||
}
|
||||
impl<P: Point> LinearSpline<P> {
|
||||
/// Create a new linear spline
|
||||
pub fn new(points: impl Into<Vec<P>>) -> Self {
|
||||
Self {
|
||||
points: points.into(),
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<P: Point> CubicGenerator<P> for LinearSpline<P> {
|
||||
#[inline]
|
||||
fn to_curve(&self) -> CubicCurve<P> {
|
||||
let segments = self
|
||||
.points
|
||||
.windows(2)
|
||||
.map(|points| {
|
||||
let a = points[0];
|
||||
let b = points[1];
|
||||
CubicSegment {
|
||||
coeff: [a, b - a, P::default(), P::default()],
|
||||
}
|
||||
})
|
||||
.collect();
|
||||
CubicCurve { segments }
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement this on cubic splines that can generate a cubic curve from their spline parameters.
|
||||
pub trait CubicGenerator<P: Point> {
|
||||
/// Build a [`CubicCurve`] by computing the interpolation coefficients for each curve segment.
|
||||
fn to_curve(&self) -> CubicCurve<P>;
|
||||
}
|
||||
|
||||
/// A segment of a cubic curve, used to hold precomputed coefficients for fast interpolation.
|
||||
/// Can be evaluated as a parametric curve over the domain `[0, 1)`.
|
||||
///
|
||||
/// Segments can be chained together to form a longer compound curve.
|
||||
#[derive(Clone, Debug, Default, PartialEq)]
|
||||
@ -305,22 +638,40 @@ impl<P: Point> CubicSegment<P> {
|
||||
#[inline]
|
||||
pub fn position(&self, t: f32) -> P {
|
||||
let [a, b, c, d] = self.coeff;
|
||||
a + b * t + c * t.powi(2) + d * t.powi(3)
|
||||
// Evaluate `a + bt + ct^2 + dt^3`, avoiding exponentiation
|
||||
a + (b + (c + d * t) * t) * t
|
||||
}
|
||||
|
||||
/// Instantaneous velocity of a point at parametric value `t`.
|
||||
#[inline]
|
||||
pub fn velocity(&self, t: f32) -> P {
|
||||
let [_, b, c, d] = self.coeff;
|
||||
b + c * 2.0 * t + d * 3.0 * t.powi(2)
|
||||
// Evaluate the derivative, which is `b + 2ct + 3dt^2`, avoiding exponentiation
|
||||
b + (c * 2.0 + d * 3.0 * t) * t
|
||||
}
|
||||
|
||||
/// Instantaneous acceleration of a point at parametric value `t`.
|
||||
#[inline]
|
||||
pub fn acceleration(&self, t: f32) -> P {
|
||||
let [_, _, c, d] = self.coeff;
|
||||
// Evaluate the second derivative, which is `2c + 6dt`
|
||||
c * 2.0 + d * 6.0 * t
|
||||
}
|
||||
|
||||
/// Calculate polynomial coefficients for the cubic curve using a characteristic matrix.
|
||||
#[inline]
|
||||
fn coefficients(p: [P; 4], char_matrix: [[f32; 4]; 4]) -> Self {
|
||||
let [c0, c1, c2, c3] = char_matrix;
|
||||
// These are the polynomial coefficients, computed by multiplying the characteristic
|
||||
// matrix by the point matrix.
|
||||
let coeff = [
|
||||
p[0] * c0[0] + p[1] * c0[1] + p[2] * c0[2] + p[3] * c0[3],
|
||||
p[0] * c1[0] + p[1] * c1[1] + p[2] * c1[2] + p[3] * c1[3],
|
||||
p[0] * c2[0] + p[1] * c2[1] + p[2] * c2[2] + p[3] * c2[3],
|
||||
p[0] * c3[0] + p[1] * c3[1] + p[2] * c3[2] + p[3] * c3[3],
|
||||
];
|
||||
Self { coeff }
|
||||
}
|
||||
}
|
||||
|
||||
/// The `CubicSegment<Vec2>` can be used as a 2-dimensional easing curve for animation.
|
||||
@ -430,7 +781,8 @@ impl CubicSegment<Vec2> {
|
||||
}
|
||||
}
|
||||
|
||||
/// A collection of [`CubicSegment`]s chained into a curve.
|
||||
/// A collection of [`CubicSegment`]s chained into a single parametric curve. Has domain `[0, N)`
|
||||
/// where `N` is the number of attached segments.
|
||||
///
|
||||
/// Use any struct that implements the [`CubicGenerator`] trait to create a new curve, such as
|
||||
/// [`CubicBezier`].
|
||||
@ -522,6 +874,12 @@ impl<P: Point> CubicCurve<P> {
|
||||
self.iter_samples(subdivisions, Self::acceleration)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Adds a segment to the curve
|
||||
pub fn push_segment(&mut self, segment: CubicSegment<P>) {
|
||||
self.segments.push(segment);
|
||||
}
|
||||
|
||||
/// Returns the [`CubicSegment`] and local `t` value given a spline's global `t` value.
|
||||
#[inline]
|
||||
fn segment(&self, t: f32) -> (&CubicSegment<P>, f32) {
|
||||
@ -532,20 +890,317 @@ impl<P: Point> CubicCurve<P> {
|
||||
(&self.segments[i], t - i as f32)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<P: Point> Extend<CubicSegment<P>> for CubicCurve<P> {
|
||||
fn extend<T: IntoIterator<Item = CubicSegment<P>>>(&mut self, iter: T) {
|
||||
self.segments.extend(iter);
|
||||
}
|
||||
}
|
||||
|
||||
impl<P: Point> IntoIterator for CubicCurve<P> {
|
||||
type IntoIter = <Vec<CubicSegment<P>> as IntoIterator>::IntoIter;
|
||||
|
||||
type Item = CubicSegment<P>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
self.segments.into_iter()
|
||||
}
|
||||
}
|
||||
|
||||
/// Implement this on cubic splines that can generate a rational cubic curve from their spline parameters.
|
||||
pub trait RationalGenerator<P: Point> {
|
||||
/// Build a [`RationalCurve`] by computing the interpolation coefficients for each curve segment.
|
||||
fn to_curve(&self) -> RationalCurve<P>;
|
||||
}
|
||||
|
||||
/// A segment of a rational cubic curve, used to hold precomputed coefficients for fast interpolation.
|
||||
/// Can be evaluated as a parametric curve over the domain `[0, knot_span)`.
|
||||
///
|
||||
/// Segments can be chained together to form a longer compound curve.
|
||||
#[derive(Clone, Debug, Default, PartialEq)]
|
||||
pub struct RationalSegment<P: Point> {
|
||||
/// The coefficients matrix of the cubic curve.
|
||||
coeff: [P; 4],
|
||||
/// The homogeneous weight coefficients.
|
||||
weight_coeff: [f32; 4],
|
||||
/// The width of the domain of this segment.
|
||||
knot_span: f32,
|
||||
}
|
||||
|
||||
impl<P: Point> RationalSegment<P> {
|
||||
/// Instantaneous position of a point at parametric value `t` in `[0, knot_span)`.
|
||||
#[inline]
|
||||
fn coefficients(p: [P; 4], multiplier: f32, char_matrix: [[f32; 4]; 4]) -> CubicSegment<P> {
|
||||
pub fn position(&self, t: f32) -> P {
|
||||
let [a, b, c, d] = self.coeff;
|
||||
let [x, y, z, w] = self.weight_coeff;
|
||||
// Compute a cubic polynomial for the control points
|
||||
let numerator = a + (b + (c + d * t) * t) * t;
|
||||
// Compute a cubic polynomial for the weights
|
||||
let denominator = x + (y + (z + w * t) * t) * t;
|
||||
numerator / denominator
|
||||
}
|
||||
|
||||
/// Instantaneous velocity of a point at parametric value `t` in `[0, knot_span)`.
|
||||
#[inline]
|
||||
pub fn velocity(&self, t: f32) -> P {
|
||||
// A derivation for the following equations can be found in "Matrix representation for NURBS
|
||||
// curves and surfaces" by Choi et al. See equation 19.
|
||||
|
||||
let [a, b, c, d] = self.coeff;
|
||||
let [x, y, z, w] = self.weight_coeff;
|
||||
// Compute a cubic polynomial for the control points
|
||||
let numerator = a + (b + (c + d * t) * t) * t;
|
||||
// Compute a cubic polynomial for the weights
|
||||
let denominator = x + (y + (z + w * t) * t) * t;
|
||||
|
||||
// Compute the derivative of the control point polynomial
|
||||
let numerator_derivative = b + (c * 2.0 + d * 3.0 * t) * t;
|
||||
// Compute the derivative of the weight polynomial
|
||||
let denominator_derivative = y + (z * 2.0 + w * 3.0 * t) * t;
|
||||
|
||||
// Velocity is the first derivative (wrt to the parameter `t`)
|
||||
// Position = N/D therefore
|
||||
// Velocity = (N/D)' = N'/D - N * D'/D^2 = (N' * D - N * D')/D^2
|
||||
numerator_derivative / denominator
|
||||
- numerator * (denominator_derivative / denominator.powi(2))
|
||||
}
|
||||
|
||||
/// Instantaneous acceleration of a point at parametric value `t` in `[0, knot_span)`.
|
||||
#[inline]
|
||||
pub fn acceleration(&self, t: f32) -> P {
|
||||
// A derivation for the following equations can be found in "Matrix representation for NURBS
|
||||
// curves and surfaces" by Choi et al. See equation 20. Note: In come copies of this paper, equation 20
|
||||
// is printed with the following two errors:
|
||||
// + The first term has incorrect sign.
|
||||
// + The second term uses R when it should use the first derivative.
|
||||
|
||||
let [a, b, c, d] = self.coeff;
|
||||
let [x, y, z, w] = self.weight_coeff;
|
||||
// Compute a cubic polynomial for the control points
|
||||
let numerator = a + (b + (c + d * t) * t) * t;
|
||||
// Compute a cubic polynomial for the weights
|
||||
let denominator = x + (y + (z + w * t) * t) * t;
|
||||
|
||||
// Compute the derivative of the control point polynomial
|
||||
let numerator_derivative = b + (c * 2.0 + d * 3.0 * t) * t;
|
||||
// Compute the derivative of the weight polynomial
|
||||
let denominator_derivative = y + (z * 2.0 + w * 3.0 * t) * t;
|
||||
|
||||
// Compute the second derivative of the control point polynomial
|
||||
let numerator_second_derivative = c * 2.0 + d * 6.0 * t;
|
||||
// Compute the second derivative of the weight polynomial
|
||||
let denominator_second_derivative = z * 2.0 + w * 6.0 * t;
|
||||
|
||||
// Velocity is the first derivative (wrt to the parameter `t`)
|
||||
// Position = N/D therefore
|
||||
// Velocity = (N/D)' = N'/D - N * D'/D^2 = (N' * D - N * D')/D^2
|
||||
// Acceleration = (N/D)'' = ((N' * D - N * D')/D^2)' = N''/D + N' * (-2D'/D^2) + N * (-D''/D^2 + 2D'^2/D^3)
|
||||
numerator_second_derivative / denominator
|
||||
+ numerator_derivative * (-2.0 * denominator_derivative / denominator.powi(2))
|
||||
+ numerator
|
||||
* (-denominator_second_derivative / denominator.powi(2)
|
||||
+ 2.0 * denominator_derivative.powi(2) / denominator.powi(3))
|
||||
}
|
||||
|
||||
/// Calculate polynomial coefficients for the cubic polynomials using a characteristic matrix.
|
||||
#[inline]
|
||||
fn coefficients(
|
||||
control_points: [P; 4],
|
||||
weights: [f32; 4],
|
||||
knot_span: f32,
|
||||
char_matrix: [[f32; 4]; 4],
|
||||
) -> Self {
|
||||
// An explanation of this use can be found in "Matrix representation for NURBS curves and surfaces"
|
||||
// by Choi et al. See section "Evaluation of NURB Curves and Surfaces", and equation 16.
|
||||
|
||||
let [c0, c1, c2, c3] = char_matrix;
|
||||
// These are the polynomial coefficients, computed by multiplying the characteristic
|
||||
let p = control_points;
|
||||
let w = weights;
|
||||
// These are the control point polynomial coefficients, computed by multiplying the characteristic
|
||||
// matrix by the point matrix.
|
||||
let mut coeff = [
|
||||
let coeff = [
|
||||
p[0] * c0[0] + p[1] * c0[1] + p[2] * c0[2] + p[3] * c0[3],
|
||||
p[0] * c1[0] + p[1] * c1[1] + p[2] * c1[2] + p[3] * c1[3],
|
||||
p[0] * c2[0] + p[1] * c2[1] + p[2] * c2[2] + p[3] * c2[3],
|
||||
p[0] * c3[0] + p[1] * c3[1] + p[2] * c3[2] + p[3] * c3[3],
|
||||
];
|
||||
coeff.iter_mut().for_each(|c| *c = *c * multiplier);
|
||||
CubicSegment { coeff }
|
||||
// These are the weight polynomial coefficients, computed by multiplying the characteristic
|
||||
// matrix by the weight matrix.
|
||||
let weight_coeff = [
|
||||
w[0] * c0[0] + w[1] * c0[1] + w[2] * c0[2] + w[3] * c0[3],
|
||||
w[0] * c1[0] + w[1] * c1[1] + w[2] * c1[2] + w[3] * c1[3],
|
||||
w[0] * c2[0] + w[1] * c2[1] + w[2] * c2[2] + w[3] * c2[3],
|
||||
w[0] * c3[0] + w[1] * c3[1] + w[2] * c3[2] + w[3] * c3[3],
|
||||
];
|
||||
Self {
|
||||
coeff,
|
||||
weight_coeff,
|
||||
knot_span,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A collection of [`RationalSegment`]s chained into a single parametric curve.
|
||||
///
|
||||
/// Use any struct that implements the [`RationalGenerator`] trait to create a new curve, such as
|
||||
/// [`CubicNurbs`], or convert [`CubicCurve`] using `into/from`.
|
||||
#[derive(Clone, Debug, PartialEq)]
|
||||
pub struct RationalCurve<P: Point> {
|
||||
segments: Vec<RationalSegment<P>>,
|
||||
}
|
||||
|
||||
impl<P: Point> RationalCurve<P> {
|
||||
/// Compute the position of a point on the curve at the parametric value `t`.
|
||||
///
|
||||
/// Note that `t` varies from `0..=(n_points - 3)`.
|
||||
#[inline]
|
||||
pub fn position(&self, t: f32) -> P {
|
||||
let (segment, t) = self.segment(t);
|
||||
segment.position(t)
|
||||
}
|
||||
|
||||
/// Compute the first derivative with respect to t at `t`. This is the instantaneous velocity of
|
||||
/// a point on the curve at `t`.
|
||||
///
|
||||
/// Note that `t` varies from `0..=(n_points - 3)`.
|
||||
#[inline]
|
||||
pub fn velocity(&self, t: f32) -> P {
|
||||
let (segment, t) = self.segment(t);
|
||||
segment.velocity(t)
|
||||
}
|
||||
|
||||
/// Compute the second derivative with respect to t at `t`. This is the instantaneous
|
||||
/// acceleration of a point on the curve at `t`.
|
||||
///
|
||||
/// Note that `t` varies from `0..=(n_points - 3)`.
|
||||
#[inline]
|
||||
pub fn acceleration(&self, t: f32) -> P {
|
||||
let (segment, t) = self.segment(t);
|
||||
segment.acceleration(t)
|
||||
}
|
||||
|
||||
/// A flexible iterator used to sample curves with arbitrary functions.
|
||||
///
|
||||
/// This splits the curve into `subdivisions` of evenly spaced `t` values across the
|
||||
/// length of the curve from start (t = 0) to end (t = n), where `n = self.segment_count()`,
|
||||
/// returning an iterator evaluating the curve with the supplied `sample_function` at each `t`.
|
||||
///
|
||||
/// For `subdivisions = 2`, this will split the curve into two lines, or three points, and
|
||||
/// return an iterator with 3 items, the three points, one at the start, middle, and end.
|
||||
#[inline]
|
||||
pub fn iter_samples<'a, 'b: 'a>(
|
||||
&'b self,
|
||||
subdivisions: usize,
|
||||
mut sample_function: impl FnMut(&Self, f32) -> P + 'a,
|
||||
) -> impl Iterator<Item = P> + 'a {
|
||||
self.iter_uniformly(subdivisions)
|
||||
.map(move |t| sample_function(self, t))
|
||||
}
|
||||
|
||||
/// An iterator that returns values of `t` uniformly spaced over `0..=subdivisions`.
|
||||
#[inline]
|
||||
fn iter_uniformly(&self, subdivisions: usize) -> impl Iterator<Item = f32> {
|
||||
let domain = self.domain();
|
||||
let step = domain / subdivisions as f32;
|
||||
(0..=subdivisions).map(move |i| i as f32 * step)
|
||||
}
|
||||
|
||||
/// The list of segments contained in this `RationalCurve`.
|
||||
///
|
||||
/// This spline's global `t` value is equal to how many segments it has.
|
||||
///
|
||||
/// All method accepting `t` on `RationalCurve` depends on the global `t`.
|
||||
/// When sampling over the entire curve, you should either use one of the
|
||||
/// `iter_*` methods or account for the segment count using `curve.segments().len()`.
|
||||
#[inline]
|
||||
pub fn segments(&self) -> &[RationalSegment<P>] {
|
||||
&self.segments
|
||||
}
|
||||
|
||||
/// Iterate over the curve split into `subdivisions`, sampling the position at each step.
|
||||
pub fn iter_positions(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
|
||||
self.iter_samples(subdivisions, Self::position)
|
||||
}
|
||||
|
||||
/// Iterate over the curve split into `subdivisions`, sampling the velocity at each step.
|
||||
pub fn iter_velocities(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
|
||||
self.iter_samples(subdivisions, Self::velocity)
|
||||
}
|
||||
|
||||
/// Iterate over the curve split into `subdivisions`, sampling the acceleration at each step.
|
||||
pub fn iter_accelerations(&self, subdivisions: usize) -> impl Iterator<Item = P> + '_ {
|
||||
self.iter_samples(subdivisions, Self::acceleration)
|
||||
}
|
||||
|
||||
/// Adds a segment to the curve.
|
||||
#[inline]
|
||||
pub fn push_segment(&mut self, segment: RationalSegment<P>) {
|
||||
self.segments.push(segment);
|
||||
}
|
||||
|
||||
/// Returns the [`RationalSegment`] and local `t` value given a spline's global `t` value.
|
||||
/// Input `t` will be clamped to the domain of the curve. Returned value will be in `[0, 1]`.
|
||||
#[inline]
|
||||
fn segment(&self, mut t: f32) -> (&RationalSegment<P>, f32) {
|
||||
if t <= 0.0 {
|
||||
(&self.segments[0], 0.0)
|
||||
} else if self.segments.len() == 1 {
|
||||
(&self.segments[0], t / self.segments[0].knot_span)
|
||||
} else {
|
||||
// Try to fit t into each segment domain
|
||||
for segment in self.segments.iter() {
|
||||
if t < segment.knot_span {
|
||||
// The division here makes t a normalized parameter in [0, 1] that can be properly
|
||||
// evaluated against a cubic curve segment. See equations 6 & 16 from "Matrix representation
|
||||
// of NURBS curves and surfaces" by Choi et al. or equation 3 from "General Matrix
|
||||
// Representations for B-Splines" by Qin.
|
||||
return (segment, t / segment.knot_span);
|
||||
}
|
||||
t -= segment.knot_span;
|
||||
}
|
||||
return (self.segments.last().unwrap(), 1.0);
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the length of of the domain of the parametric curve.
|
||||
#[inline]
|
||||
pub fn domain(&self) -> f32 {
|
||||
self.segments.iter().map(|segment| segment.knot_span).sum()
|
||||
}
|
||||
}
|
||||
|
||||
impl<P: Point> Extend<RationalSegment<P>> for RationalCurve<P> {
|
||||
fn extend<T: IntoIterator<Item = RationalSegment<P>>>(&mut self, iter: T) {
|
||||
self.segments.extend(iter);
|
||||
}
|
||||
}
|
||||
|
||||
impl<P: Point> IntoIterator for RationalCurve<P> {
|
||||
type IntoIter = <Vec<RationalSegment<P>> as IntoIterator>::IntoIter;
|
||||
|
||||
type Item = RationalSegment<P>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
self.segments.into_iter()
|
||||
}
|
||||
}
|
||||
|
||||
impl<P: Point> From<CubicSegment<P>> for RationalSegment<P> {
|
||||
fn from(value: CubicSegment<P>) -> Self {
|
||||
Self {
|
||||
coeff: value.coeff,
|
||||
weight_coeff: [1.0, 0.0, 0.0, 0.0],
|
||||
knot_span: 1.0, // Cubic curves are uniform, so every segment has domain [0, 1).
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<P: Point> From<CubicCurve<P>> for RationalCurve<P> {
|
||||
fn from(value: CubicCurve<P>) -> Self {
|
||||
Self {
|
||||
segments: value.segments.into_iter().map(Into::into).collect(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -553,7 +1208,10 @@ impl<P: Point> CubicCurve<P> {
|
||||
mod tests {
|
||||
use glam::{vec2, Vec2};
|
||||
|
||||
use crate::cubic_splines::{CubicBezier, CubicGenerator, CubicSegment};
|
||||
use crate::cubic_splines::{
|
||||
CubicBSpline, CubicBezier, CubicGenerator, CubicNurbs, CubicSegment, RationalCurve,
|
||||
RationalGenerator,
|
||||
};
|
||||
|
||||
/// How close two floats can be and still be considered equal
|
||||
const FLOAT_EQ: f32 = 1e-5;
|
||||
@ -616,4 +1274,87 @@ mod tests {
|
||||
assert!(bezier.ease(0.5) < -0.5);
|
||||
assert_eq!(bezier.ease(1.0), 1.0);
|
||||
}
|
||||
|
||||
/// Test that [`RationalCurve`] properly generalizes [`CubicCurve`]. A Cubic upgraded to a rational
|
||||
/// should produce pretty much the same output.
|
||||
#[test]
|
||||
fn cubic_to_rational() {
|
||||
const EPSILON: f32 = 0.00001;
|
||||
|
||||
let points = [
|
||||
vec2(0.0, 0.0),
|
||||
vec2(1.0, 1.0),
|
||||
vec2(1.0, 1.0),
|
||||
vec2(2.0, -1.0),
|
||||
vec2(3.0, 1.0),
|
||||
vec2(0.0, 0.0),
|
||||
];
|
||||
|
||||
let b_spline = CubicBSpline::new(points).to_curve();
|
||||
let rational_b_spline = RationalCurve::from(b_spline.clone());
|
||||
|
||||
/// Tests if two vectors of points are approximately the same
|
||||
fn compare_vectors(cubic_curve: Vec<Vec2>, rational_curve: Vec<Vec2>, name: &str) {
|
||||
assert_eq!(
|
||||
cubic_curve.len(),
|
||||
rational_curve.len(),
|
||||
"{name} vector lengths mismatch"
|
||||
);
|
||||
for (i, (a, b)) in cubic_curve.iter().zip(rational_curve.iter()).enumerate() {
|
||||
assert!(
|
||||
a.distance(*b) < EPSILON,
|
||||
"Mismatch at {name} value {i}. CubicCurve: {} Converted RationalCurve: {}",
|
||||
a,
|
||||
b
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Both curves should yield the same values
|
||||
let cubic_positions: Vec<_> = b_spline.iter_positions(10).collect();
|
||||
let rational_positions: Vec<_> = rational_b_spline.iter_positions(10).collect();
|
||||
compare_vectors(cubic_positions, rational_positions, "position");
|
||||
|
||||
let cubic_velocities: Vec<_> = b_spline.iter_velocities(10).collect();
|
||||
let rational_velocities: Vec<_> = rational_b_spline.iter_velocities(10).collect();
|
||||
compare_vectors(cubic_velocities, rational_velocities, "velocity");
|
||||
|
||||
let cubic_accelerations: Vec<_> = b_spline.iter_accelerations(10).collect();
|
||||
let rational_accelerations: Vec<_> = rational_b_spline.iter_accelerations(10).collect();
|
||||
compare_vectors(cubic_accelerations, rational_accelerations, "acceleration");
|
||||
}
|
||||
|
||||
/// Test that a nurbs curve can approximate a portion of a circle.
|
||||
#[test]
|
||||
fn nurbs_circular_arc() {
|
||||
use std::f32::consts::FRAC_PI_2;
|
||||
const EPSILON: f32 = 0.0000001;
|
||||
|
||||
// The following NURBS parameters were determined by constraining the first two
|
||||
// points to the line y=1, the second two points to the line x=1, and the distance
|
||||
// between each pair of points to be equal. One can solve the weights by assuming the
|
||||
// first and last weights to be one, the intermediate weights to be equal, and
|
||||
// subjecting ones self to a lot of tedious matrix algebra.
|
||||
|
||||
let alpha = FRAC_PI_2;
|
||||
let leg = 2.0 * f32::sin(alpha / 2.0) / (1.0 + 2.0 * f32::cos(alpha / 2.0));
|
||||
let weight = (1.0 + 2.0 * f32::cos(alpha / 2.0)) / 3.0;
|
||||
let points = [
|
||||
vec2(1.0, 0.0),
|
||||
vec2(1.0, leg),
|
||||
vec2(leg, 1.0),
|
||||
vec2(0.0, 1.0),
|
||||
];
|
||||
let weights = [1.0, weight, weight, 1.0];
|
||||
let knots = [0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0];
|
||||
let spline = CubicNurbs::new(points, Some(weights), Some(knots)).unwrap();
|
||||
let curve = spline.to_curve();
|
||||
for (i, point) in curve.iter_positions(10).enumerate() {
|
||||
assert!(
|
||||
f32::abs(point.length() - 1.0) < EPSILON,
|
||||
"Point {i} is not on the unit circle: {point:?} has length {}",
|
||||
point.length()
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -24,8 +24,9 @@ pub mod prelude {
|
||||
#[doc(hidden)]
|
||||
pub use crate::{
|
||||
cubic_splines::{
|
||||
CubicBSpline, CubicBezier, CubicCardinalSpline, CubicGenerator, CubicHermite,
|
||||
CubicSegment,
|
||||
CubicBSpline, CubicBezier, CubicCardinalSpline, CubicCurve, CubicGenerator,
|
||||
CubicHermite, CubicNurbs, CubicNurbsError, CubicSegment, RationalCurve,
|
||||
RationalGenerator, RationalSegment,
|
||||
},
|
||||
direction::{Direction2d, Direction3d, Direction3dA},
|
||||
primitives::*,
|
||||
|
Loading…
Reference in New Issue
Block a user