Web support for atmosphere (#18582)
# Objective Add web support to atmosphere by gating dual source blending and using a macro to determine the target platform. The main objective of this PR is to ensure that users of Bevy's atmosphere feature can also run it in a web-based context where WebGPU support is enabled. ## Solution - Make use of the `#[cfg(not(target_arch = "wasm32"))]` macro to gate the dual source blending, as this is not (yet) supported in web browsers. - Rename the function `sample_sun_illuminance` to `sample_sun_radiance` and move calls out of conditionals to ensure the shader compiles and runs in both native and web-based contexts. - Moved the multiplication of the transmittance out when calculating the sun color, because calling the `sample_sun_illuminance` function was causing issues in web. Overall this results in cleaner code and more readable. ## Testing - Tested by building a wasm target and loading it in a web page with Vite dev server using `mate-h/bevy-webgpu` repo template. - Tested the native build with `cargo run --example atmosphere` to ensure it still works with dual source blending. --- ## Showcase Screenshots show the atmosphere example running in two different contexts: <img width="1281" alt="atmosphere-web-showcase" src="https://github.com/user-attachments/assets/40b1ee91-89ae-41a6-8189-89630d1ca1a6" /> --------- Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
This commit is contained in:
parent
a1fd3a4c69
commit
a616ffa8ac
@ -277,11 +277,11 @@ fn sample_local_inscattering(local_atmosphere: AtmosphereSample, ray_dir: vec3<f
|
|||||||
|
|
||||||
const SUN_ANGULAR_SIZE: f32 = 0.0174533; // angular diameter of sun in radians
|
const SUN_ANGULAR_SIZE: f32 = 0.0174533; // angular diameter of sun in radians
|
||||||
|
|
||||||
fn sample_sun_illuminance(ray_dir_ws: vec3<f32>, transmittance: vec3<f32>) -> vec3<f32> {
|
fn sample_sun_radiance(ray_dir_ws: vec3<f32>) -> vec3<f32> {
|
||||||
let r = view_radius();
|
let r = view_radius();
|
||||||
let mu_view = ray_dir_ws.y;
|
let mu_view = ray_dir_ws.y;
|
||||||
let shadow_factor = f32(!ray_intersects_ground(r, mu_view));
|
let shadow_factor = f32(!ray_intersects_ground(r, mu_view));
|
||||||
var sun_illuminance = vec3(0.0);
|
var sun_radiance = vec3(0.0);
|
||||||
for (var light_i: u32 = 0u; light_i < lights.n_directional_lights; light_i++) {
|
for (var light_i: u32 = 0u; light_i < lights.n_directional_lights; light_i++) {
|
||||||
let light = &lights.directional_lights[light_i];
|
let light = &lights.directional_lights[light_i];
|
||||||
let neg_LdotV = dot((*light).direction_to_light, ray_dir_ws);
|
let neg_LdotV = dot((*light).direction_to_light, ray_dir_ws);
|
||||||
@ -289,9 +289,9 @@ fn sample_sun_illuminance(ray_dir_ws: vec3<f32>, transmittance: vec3<f32>) -> ve
|
|||||||
let pixel_size = fwidth(angle_to_sun);
|
let pixel_size = fwidth(angle_to_sun);
|
||||||
let factor = smoothstep(0.0, -pixel_size * ROOT_2, angle_to_sun - SUN_ANGULAR_SIZE * 0.5);
|
let factor = smoothstep(0.0, -pixel_size * ROOT_2, angle_to_sun - SUN_ANGULAR_SIZE * 0.5);
|
||||||
let sun_solid_angle = (SUN_ANGULAR_SIZE * SUN_ANGULAR_SIZE) * 4.0 * FRAC_PI;
|
let sun_solid_angle = (SUN_ANGULAR_SIZE * SUN_ANGULAR_SIZE) * 4.0 * FRAC_PI;
|
||||||
sun_illuminance += ((*light).color.rgb / sun_solid_angle) * factor * shadow_factor;
|
sun_radiance += ((*light).color.rgb / sun_solid_angle) * factor * shadow_factor;
|
||||||
}
|
}
|
||||||
return sun_illuminance * transmittance * view.exposure;
|
return sun_radiance;
|
||||||
}
|
}
|
||||||
|
|
||||||
// TRANSFORM UTILITIES
|
// TRANSFORM UTILITIES
|
||||||
|
@ -25,6 +25,10 @@
|
|||||||
//! at once is untested, and might not be physically accurate. These may be
|
//! at once is untested, and might not be physically accurate. These may be
|
||||||
//! integrated into a single module in the future.
|
//! integrated into a single module in the future.
|
||||||
//!
|
//!
|
||||||
|
//! On web platforms, atmosphere rendering will look slightly different. Specifically, when calculating how light travels
|
||||||
|
//! through the atmosphere, we use a simpler averaging technique instead of the more
|
||||||
|
//! complex blending operations. This difference will be resolved for WebGPU in a future release.
|
||||||
|
//!
|
||||||
//! [Shadertoy]: https://www.shadertoy.com/view/slSXRW
|
//! [Shadertoy]: https://www.shadertoy.com/view/slSXRW
|
||||||
//!
|
//!
|
||||||
//! [Unreal Engine Implementation]: https://github.com/sebh/UnrealEngineSkyAtmosphere
|
//! [Unreal Engine Implementation]: https://github.com/sebh/UnrealEngineSkyAtmosphere
|
||||||
@ -46,8 +50,6 @@ use bevy_reflect::{std_traits::ReflectDefault, Reflect};
|
|||||||
use bevy_render::{
|
use bevy_render::{
|
||||||
extract_component::UniformComponentPlugin,
|
extract_component::UniformComponentPlugin,
|
||||||
render_resource::{DownlevelFlags, ShaderType, SpecializedRenderPipelines},
|
render_resource::{DownlevelFlags, ShaderType, SpecializedRenderPipelines},
|
||||||
renderer::RenderDevice,
|
|
||||||
settings::WgpuFeatures,
|
|
||||||
};
|
};
|
||||||
use bevy_render::{
|
use bevy_render::{
|
||||||
extract_component::{ExtractComponent, ExtractComponentPlugin},
|
extract_component::{ExtractComponent, ExtractComponentPlugin},
|
||||||
@ -159,15 +161,6 @@ impl Plugin for AtmospherePlugin {
|
|||||||
};
|
};
|
||||||
|
|
||||||
let render_adapter = render_app.world().resource::<RenderAdapter>();
|
let render_adapter = render_app.world().resource::<RenderAdapter>();
|
||||||
let render_device = render_app.world().resource::<RenderDevice>();
|
|
||||||
|
|
||||||
if !render_device
|
|
||||||
.features()
|
|
||||||
.contains(WgpuFeatures::DUAL_SOURCE_BLENDING)
|
|
||||||
{
|
|
||||||
warn!("AtmospherePlugin not loaded. GPU lacks support for dual-source blending.");
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if !render_adapter
|
if !render_adapter
|
||||||
.get_downlevel_capabilities()
|
.get_downlevel_capabilities()
|
||||||
|
@ -5,7 +5,7 @@
|
|||||||
sample_transmittance_lut, sample_transmittance_lut_segment,
|
sample_transmittance_lut, sample_transmittance_lut_segment,
|
||||||
sample_sky_view_lut, direction_world_to_atmosphere,
|
sample_sky_view_lut, direction_world_to_atmosphere,
|
||||||
uv_to_ray_direction, uv_to_ndc, sample_aerial_view_lut,
|
uv_to_ray_direction, uv_to_ndc, sample_aerial_view_lut,
|
||||||
view_radius, sample_sun_illuminance, ndc_to_camera_dist
|
view_radius, sample_sun_radiance, ndc_to_camera_dist
|
||||||
},
|
},
|
||||||
};
|
};
|
||||||
#import bevy_render::view::View;
|
#import bevy_render::view::View;
|
||||||
@ -20,7 +20,9 @@
|
|||||||
|
|
||||||
struct RenderSkyOutput {
|
struct RenderSkyOutput {
|
||||||
@location(0) inscattering: vec4<f32>,
|
@location(0) inscattering: vec4<f32>,
|
||||||
|
#ifdef DUAL_SOURCE_BLENDING
|
||||||
@location(0) @second_blend_source transmittance: vec4<f32>,
|
@location(0) @second_blend_source transmittance: vec4<f32>,
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
@fragment
|
@fragment
|
||||||
@ -33,15 +35,24 @@ fn main(in: FullscreenVertexOutput) -> RenderSkyOutput {
|
|||||||
|
|
||||||
var transmittance: vec3<f32>;
|
var transmittance: vec3<f32>;
|
||||||
var inscattering: vec3<f32>;
|
var inscattering: vec3<f32>;
|
||||||
|
|
||||||
|
let sun_radiance = sample_sun_radiance(ray_dir_ws.xyz);
|
||||||
|
|
||||||
if depth == 0.0 {
|
if depth == 0.0 {
|
||||||
let ray_dir_as = direction_world_to_atmosphere(ray_dir_ws.xyz);
|
let ray_dir_as = direction_world_to_atmosphere(ray_dir_ws.xyz);
|
||||||
transmittance = sample_transmittance_lut(r, mu);
|
transmittance = sample_transmittance_lut(r, mu);
|
||||||
inscattering += sample_sky_view_lut(r, ray_dir_as);
|
inscattering += sample_sky_view_lut(r, ray_dir_as);
|
||||||
inscattering += sample_sun_illuminance(ray_dir_ws.xyz, transmittance);
|
inscattering += sun_radiance * transmittance * view.exposure;
|
||||||
} else {
|
} else {
|
||||||
let t = ndc_to_camera_dist(vec3(uv_to_ndc(in.uv), depth));
|
let t = ndc_to_camera_dist(vec3(uv_to_ndc(in.uv), depth));
|
||||||
inscattering = sample_aerial_view_lut(in.uv, t);
|
inscattering = sample_aerial_view_lut(in.uv, t);
|
||||||
transmittance = sample_transmittance_lut_segment(r, mu, t);
|
transmittance = sample_transmittance_lut_segment(r, mu, t);
|
||||||
}
|
}
|
||||||
|
#ifdef DUAL_SOURCE_BLENDING
|
||||||
return RenderSkyOutput(vec4(inscattering, 0.0), vec4(transmittance, 1.0));
|
return RenderSkyOutput(vec4(inscattering, 0.0), vec4(transmittance, 1.0));
|
||||||
|
#else
|
||||||
|
let mean_transmittance = (transmittance.r + transmittance.g + transmittance.b) / 3.0;
|
||||||
|
return RenderSkyOutput(vec4(inscattering, mean_transmittance));
|
||||||
|
#endif
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -326,6 +326,7 @@ pub(crate) struct RenderSkyPipelineId(pub CachedRenderPipelineId);
|
|||||||
pub(crate) struct RenderSkyPipelineKey {
|
pub(crate) struct RenderSkyPipelineKey {
|
||||||
pub msaa_samples: u32,
|
pub msaa_samples: u32,
|
||||||
pub hdr: bool,
|
pub hdr: bool,
|
||||||
|
pub dual_source_blending: bool,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl SpecializedRenderPipeline for RenderSkyBindGroupLayouts {
|
impl SpecializedRenderPipeline for RenderSkyBindGroupLayouts {
|
||||||
@ -340,6 +341,15 @@ impl SpecializedRenderPipeline for RenderSkyBindGroupLayouts {
|
|||||||
if key.hdr {
|
if key.hdr {
|
||||||
shader_defs.push("TONEMAP_IN_SHADER".into());
|
shader_defs.push("TONEMAP_IN_SHADER".into());
|
||||||
}
|
}
|
||||||
|
if key.dual_source_blending {
|
||||||
|
shader_defs.push("DUAL_SOURCE_BLENDING".into());
|
||||||
|
}
|
||||||
|
|
||||||
|
let dst_factor = if key.dual_source_blending {
|
||||||
|
BlendFactor::Src1
|
||||||
|
} else {
|
||||||
|
BlendFactor::SrcAlpha
|
||||||
|
};
|
||||||
|
|
||||||
RenderPipelineDescriptor {
|
RenderPipelineDescriptor {
|
||||||
label: Some(format!("render_sky_pipeline_{}", key.msaa_samples).into()),
|
label: Some(format!("render_sky_pipeline_{}", key.msaa_samples).into()),
|
||||||
@ -367,7 +377,7 @@ impl SpecializedRenderPipeline for RenderSkyBindGroupLayouts {
|
|||||||
blend: Some(BlendState {
|
blend: Some(BlendState {
|
||||||
color: BlendComponent {
|
color: BlendComponent {
|
||||||
src_factor: BlendFactor::One,
|
src_factor: BlendFactor::One,
|
||||||
dst_factor: BlendFactor::Src1,
|
dst_factor,
|
||||||
operation: BlendOperation::Add,
|
operation: BlendOperation::Add,
|
||||||
},
|
},
|
||||||
alpha: BlendComponent {
|
alpha: BlendComponent {
|
||||||
@ -388,6 +398,7 @@ pub(super) fn queue_render_sky_pipelines(
|
|||||||
pipeline_cache: Res<PipelineCache>,
|
pipeline_cache: Res<PipelineCache>,
|
||||||
layouts: Res<RenderSkyBindGroupLayouts>,
|
layouts: Res<RenderSkyBindGroupLayouts>,
|
||||||
mut specializer: ResMut<SpecializedRenderPipelines<RenderSkyBindGroupLayouts>>,
|
mut specializer: ResMut<SpecializedRenderPipelines<RenderSkyBindGroupLayouts>>,
|
||||||
|
render_device: Res<RenderDevice>,
|
||||||
mut commands: Commands,
|
mut commands: Commands,
|
||||||
) {
|
) {
|
||||||
for (entity, camera, msaa) in &views {
|
for (entity, camera, msaa) in &views {
|
||||||
@ -397,6 +408,9 @@ pub(super) fn queue_render_sky_pipelines(
|
|||||||
RenderSkyPipelineKey {
|
RenderSkyPipelineKey {
|
||||||
msaa_samples: msaa.samples(),
|
msaa_samples: msaa.samples(),
|
||||||
hdr: camera.hdr,
|
hdr: camera.hdr,
|
||||||
|
dual_source_blending: render_device
|
||||||
|
.features()
|
||||||
|
.contains(WgpuFeatures::DUAL_SOURCE_BLENDING),
|
||||||
},
|
},
|
||||||
);
|
);
|
||||||
commands.entity(entity).insert(RenderSkyPipelineId(id));
|
commands.entity(entity).insert(RenderSkyPipelineId(id));
|
||||||
|
Loading…
Reference in New Issue
Block a user