extract cluster extract to a separate module (#19973)

# Objective

- prepare bevy_light for split

## Solution

- split render world extract related cluster code from main world ecs
stuff

re-exports make this not breaking
This commit is contained in:
atlv 2025-07-06 13:19:36 -04:00 committed by GitHub
parent c5fe7f0975
commit b5cefe2b5d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 589 additions and 583 deletions

View File

@ -0,0 +1,578 @@
use core::num::NonZero;
use bevy_camera::Camera;
use bevy_ecs::{entity::EntityHashMap, prelude::*};
use bevy_math::{uvec4, UVec3, UVec4, Vec4};
use bevy_render::{
render_resource::{
BindingResource, BufferBindingType, ShaderSize, ShaderType, StorageBuffer, UniformBuffer,
},
renderer::{RenderAdapter, RenderDevice, RenderQueue},
sync_world::RenderEntity,
Extract,
};
use tracing::warn;
use crate::{cluster::ClusterableObjectCounts, Clusters, GlobalClusterSettings, MeshPipeline};
// NOTE: this must be kept in sync with the same constants in
// `mesh_view_types.wgsl`.
pub const MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS: usize = 204;
// Make sure that the clusterable object buffer doesn't overflow the maximum
// size of a UBO on WebGL 2.
const _: () =
assert!(size_of::<GpuClusterableObject>() * MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS <= 16384);
// NOTE: Clustered-forward rendering requires 3 storage buffer bindings so check that
// at least that many are supported using this constant and SupportedBindingType::from_device()
pub const CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT: u32 = 3;
// this must match CLUSTER_COUNT_SIZE in pbr.wgsl
// and must be large enough to contain MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS
const CLUSTER_COUNT_SIZE: u32 = 9;
const CLUSTER_OFFSET_MASK: u32 = (1 << (32 - (CLUSTER_COUNT_SIZE * 2))) - 1;
const CLUSTER_COUNT_MASK: u32 = (1 << CLUSTER_COUNT_SIZE) - 1;
pub(crate) fn make_global_cluster_settings(world: &World) -> GlobalClusterSettings {
let device = world.resource::<RenderDevice>();
let adapter = world.resource::<RenderAdapter>();
let clustered_decals_are_usable =
crate::decal::clustered::clustered_decals_are_usable(device, adapter);
let supports_storage_buffers = matches!(
device.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT),
BufferBindingType::Storage { .. }
);
GlobalClusterSettings {
supports_storage_buffers,
clustered_decals_are_usable,
}
}
#[derive(Copy, Clone, ShaderType, Default, Debug)]
pub struct GpuClusterableObject {
// For point lights: the lower-right 2x2 values of the projection matrix [2][2] [2][3] [3][2] [3][3]
// For spot lights: 2 components of the direction (x,z), spot_scale and spot_offset
pub(crate) light_custom_data: Vec4,
pub(crate) color_inverse_square_range: Vec4,
pub(crate) position_radius: Vec4,
pub(crate) flags: u32,
pub(crate) shadow_depth_bias: f32,
pub(crate) shadow_normal_bias: f32,
pub(crate) spot_light_tan_angle: f32,
pub(crate) soft_shadow_size: f32,
pub(crate) shadow_map_near_z: f32,
pub(crate) decal_index: u32,
pub(crate) pad: f32,
}
#[derive(Resource)]
pub struct GlobalClusterableObjectMeta {
pub gpu_clusterable_objects: GpuClusterableObjects,
pub entity_to_index: EntityHashMap<usize>,
}
pub enum GpuClusterableObjects {
Uniform(UniformBuffer<GpuClusterableObjectsUniform>),
Storage(StorageBuffer<GpuClusterableObjectsStorage>),
}
#[derive(ShaderType)]
pub struct GpuClusterableObjectsUniform {
data: Box<[GpuClusterableObject; MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS]>,
}
#[derive(ShaderType, Default)]
pub struct GpuClusterableObjectsStorage {
#[size(runtime)]
data: Vec<GpuClusterableObject>,
}
#[derive(Component)]
pub struct ExtractedClusterConfig {
/// Special near value for cluster calculations
pub(crate) near: f32,
pub(crate) far: f32,
/// Number of clusters in `X` / `Y` / `Z` in the view frustum
pub(crate) dimensions: UVec3,
}
enum ExtractedClusterableObjectElement {
ClusterHeader(ClusterableObjectCounts),
ClusterableObjectEntity(Entity),
}
#[derive(Component)]
pub struct ExtractedClusterableObjects {
data: Vec<ExtractedClusterableObjectElement>,
}
#[derive(ShaderType)]
struct GpuClusterOffsetsAndCountsUniform {
data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
}
#[derive(ShaderType, Default)]
struct GpuClusterableObjectIndexListsStorage {
#[size(runtime)]
data: Vec<u32>,
}
#[derive(ShaderType, Default)]
struct GpuClusterOffsetsAndCountsStorage {
/// The starting offset, followed by the number of point lights, spot
/// lights, reflection probes, and irradiance volumes in each cluster, in
/// that order. The remaining fields are filled with zeroes.
#[size(runtime)]
data: Vec<[UVec4; 2]>,
}
enum ViewClusterBuffers {
Uniform {
// NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
clusterable_object_index_lists: UniformBuffer<GpuClusterableObjectIndexListsUniform>,
// NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
cluster_offsets_and_counts: UniformBuffer<GpuClusterOffsetsAndCountsUniform>,
},
Storage {
clusterable_object_index_lists: StorageBuffer<GpuClusterableObjectIndexListsStorage>,
cluster_offsets_and_counts: StorageBuffer<GpuClusterOffsetsAndCountsStorage>,
},
}
#[derive(Component)]
pub struct ViewClusterBindings {
n_indices: usize,
n_offsets: usize,
buffers: ViewClusterBuffers,
}
impl FromWorld for GlobalClusterableObjectMeta {
fn from_world(world: &mut World) -> Self {
Self::new(
world
.resource::<RenderDevice>()
.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT),
)
}
}
impl GlobalClusterableObjectMeta {
pub fn new(buffer_binding_type: BufferBindingType) -> Self {
Self {
gpu_clusterable_objects: GpuClusterableObjects::new(buffer_binding_type),
entity_to_index: EntityHashMap::default(),
}
}
}
impl GpuClusterableObjects {
fn new(buffer_binding_type: BufferBindingType) -> Self {
match buffer_binding_type {
BufferBindingType::Storage { .. } => Self::storage(),
BufferBindingType::Uniform => Self::uniform(),
}
}
fn uniform() -> Self {
Self::Uniform(UniformBuffer::default())
}
fn storage() -> Self {
Self::Storage(StorageBuffer::default())
}
pub(crate) fn set(&mut self, mut clusterable_objects: Vec<GpuClusterableObject>) {
match self {
GpuClusterableObjects::Uniform(buffer) => {
let len = clusterable_objects
.len()
.min(MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS);
let src = &clusterable_objects[..len];
let dst = &mut buffer.get_mut().data[..len];
dst.copy_from_slice(src);
}
GpuClusterableObjects::Storage(buffer) => {
buffer.get_mut().data.clear();
buffer.get_mut().data.append(&mut clusterable_objects);
}
}
}
pub(crate) fn write_buffer(
&mut self,
render_device: &RenderDevice,
render_queue: &RenderQueue,
) {
match self {
GpuClusterableObjects::Uniform(buffer) => {
buffer.write_buffer(render_device, render_queue);
}
GpuClusterableObjects::Storage(buffer) => {
buffer.write_buffer(render_device, render_queue);
}
}
}
pub fn binding(&self) -> Option<BindingResource> {
match self {
GpuClusterableObjects::Uniform(buffer) => buffer.binding(),
GpuClusterableObjects::Storage(buffer) => buffer.binding(),
}
}
pub fn min_size(buffer_binding_type: BufferBindingType) -> NonZero<u64> {
match buffer_binding_type {
BufferBindingType::Storage { .. } => GpuClusterableObjectsStorage::min_size(),
BufferBindingType::Uniform => GpuClusterableObjectsUniform::min_size(),
}
}
}
impl Default for GpuClusterableObjectsUniform {
fn default() -> Self {
Self {
data: Box::new(
[GpuClusterableObject::default(); MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS],
),
}
}
}
/// Extracts clusters from the main world from the render world.
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(RenderEntity, &Clusters, &Camera)>>,
mapper: Extract<Query<RenderEntity>>,
) {
for (entity, clusters, camera) in &views {
let mut entity_commands = commands
.get_entity(entity)
.expect("Clusters entity wasn't synced.");
if !camera.is_active {
entity_commands.remove::<(ExtractedClusterableObjects, ExtractedClusterConfig)>();
continue;
}
let entity_count: usize = clusters
.clusterable_objects
.iter()
.map(|l| l.entities.len())
.sum();
let mut data = Vec::with_capacity(clusters.clusterable_objects.len() + entity_count);
for cluster_objects in &clusters.clusterable_objects {
data.push(ExtractedClusterableObjectElement::ClusterHeader(
cluster_objects.counts,
));
for clusterable_entity in &cluster_objects.entities {
if let Ok(entity) = mapper.get(*clusterable_entity) {
data.push(ExtractedClusterableObjectElement::ClusterableObjectEntity(
entity,
));
}
}
}
entity_commands.insert((
ExtractedClusterableObjects { data },
ExtractedClusterConfig {
near: clusters.near,
far: clusters.far,
dimensions: clusters.dimensions,
},
));
}
}
pub fn prepare_clusters(
mut commands: Commands,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mesh_pipeline: Res<MeshPipeline>,
global_clusterable_object_meta: Res<GlobalClusterableObjectMeta>,
views: Query<(Entity, &ExtractedClusterableObjects)>,
) {
let render_device = render_device.into_inner();
let supports_storage_buffers = matches!(
mesh_pipeline.clustered_forward_buffer_binding_type,
BufferBindingType::Storage { .. }
);
for (entity, extracted_clusters) in &views {
let mut view_clusters_bindings =
ViewClusterBindings::new(mesh_pipeline.clustered_forward_buffer_binding_type);
view_clusters_bindings.clear();
for record in &extracted_clusters.data {
match record {
ExtractedClusterableObjectElement::ClusterHeader(counts) => {
let offset = view_clusters_bindings.n_indices();
view_clusters_bindings.push_offset_and_counts(offset, counts);
}
ExtractedClusterableObjectElement::ClusterableObjectEntity(entity) => {
if let Some(clusterable_object_index) =
global_clusterable_object_meta.entity_to_index.get(entity)
{
if view_clusters_bindings.n_indices() >= ViewClusterBindings::MAX_INDICES
&& !supports_storage_buffers
{
warn!(
"Clusterable object index lists are full! The clusterable \
objects in the view are present in too many clusters."
);
break;
}
view_clusters_bindings.push_index(*clusterable_object_index);
}
}
}
}
view_clusters_bindings.write_buffers(render_device, &render_queue);
commands.entity(entity).insert(view_clusters_bindings);
}
}
impl ViewClusterBindings {
pub const MAX_OFFSETS: usize = 16384 / 4;
const MAX_UNIFORM_ITEMS: usize = Self::MAX_OFFSETS / 4;
pub const MAX_INDICES: usize = 16384;
pub fn new(buffer_binding_type: BufferBindingType) -> Self {
Self {
n_indices: 0,
n_offsets: 0,
buffers: ViewClusterBuffers::new(buffer_binding_type),
}
}
pub fn clear(&mut self) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
cluster_offsets_and_counts,
} => {
*clusterable_object_index_lists.get_mut().data =
[UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
*cluster_offsets_and_counts.get_mut().data = [UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
}
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
cluster_offsets_and_counts,
..
} => {
clusterable_object_index_lists.get_mut().data.clear();
cluster_offsets_and_counts.get_mut().data.clear();
}
}
}
fn push_offset_and_counts(&mut self, offset: usize, counts: &ClusterableObjectCounts) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
cluster_offsets_and_counts,
..
} => {
let array_index = self.n_offsets >> 2; // >> 2 is equivalent to / 4
if array_index >= Self::MAX_UNIFORM_ITEMS {
warn!("cluster offset and count out of bounds!");
return;
}
let component = self.n_offsets & ((1 << 2) - 1);
let packed =
pack_offset_and_counts(offset, counts.point_lights, counts.spot_lights);
cluster_offsets_and_counts.get_mut().data[array_index][component] = packed;
}
ViewClusterBuffers::Storage {
cluster_offsets_and_counts,
..
} => {
cluster_offsets_and_counts.get_mut().data.push([
uvec4(
offset as u32,
counts.point_lights,
counts.spot_lights,
counts.reflection_probes,
),
uvec4(counts.irradiance_volumes, counts.decals, 0, 0),
]);
}
}
self.n_offsets += 1;
}
pub fn n_indices(&self) -> usize {
self.n_indices
}
pub fn push_index(&mut self, index: usize) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
..
} => {
let array_index = self.n_indices >> 4; // >> 4 is equivalent to / 16
let component = (self.n_indices >> 2) & ((1 << 2) - 1);
let sub_index = self.n_indices & ((1 << 2) - 1);
let index = index as u32;
clusterable_object_index_lists.get_mut().data[array_index][component] |=
index << (8 * sub_index);
}
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
..
} => {
clusterable_object_index_lists
.get_mut()
.data
.push(index as u32);
}
}
self.n_indices += 1;
}
pub fn write_buffers(&mut self, render_device: &RenderDevice, render_queue: &RenderQueue) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
cluster_offsets_and_counts,
} => {
clusterable_object_index_lists.write_buffer(render_device, render_queue);
cluster_offsets_and_counts.write_buffer(render_device, render_queue);
}
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
cluster_offsets_and_counts,
} => {
clusterable_object_index_lists.write_buffer(render_device, render_queue);
cluster_offsets_and_counts.write_buffer(render_device, render_queue);
}
}
}
pub fn clusterable_object_index_lists_binding(&self) -> Option<BindingResource> {
match &self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
..
} => clusterable_object_index_lists.binding(),
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
..
} => clusterable_object_index_lists.binding(),
}
}
pub fn offsets_and_counts_binding(&self) -> Option<BindingResource> {
match &self.buffers {
ViewClusterBuffers::Uniform {
cluster_offsets_and_counts,
..
} => cluster_offsets_and_counts.binding(),
ViewClusterBuffers::Storage {
cluster_offsets_and_counts,
..
} => cluster_offsets_and_counts.binding(),
}
}
pub fn min_size_clusterable_object_index_lists(
buffer_binding_type: BufferBindingType,
) -> NonZero<u64> {
match buffer_binding_type {
BufferBindingType::Storage { .. } => GpuClusterableObjectIndexListsStorage::min_size(),
BufferBindingType::Uniform => GpuClusterableObjectIndexListsUniform::min_size(),
}
}
pub fn min_size_cluster_offsets_and_counts(
buffer_binding_type: BufferBindingType,
) -> NonZero<u64> {
match buffer_binding_type {
BufferBindingType::Storage { .. } => GpuClusterOffsetsAndCountsStorage::min_size(),
BufferBindingType::Uniform => GpuClusterOffsetsAndCountsUniform::min_size(),
}
}
}
impl ViewClusterBuffers {
fn new(buffer_binding_type: BufferBindingType) -> Self {
match buffer_binding_type {
BufferBindingType::Storage { .. } => Self::storage(),
BufferBindingType::Uniform => Self::uniform(),
}
}
fn uniform() -> Self {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists: UniformBuffer::default(),
cluster_offsets_and_counts: UniformBuffer::default(),
}
}
fn storage() -> Self {
ViewClusterBuffers::Storage {
clusterable_object_index_lists: StorageBuffer::default(),
cluster_offsets_and_counts: StorageBuffer::default(),
}
}
}
// Compresses the offset and counts of point and spot lights so that they fit in
// a UBO.
//
// This function is only used if storage buffers are unavailable on this
// platform: typically, on WebGL 2.
//
// NOTE: With uniform buffer max binding size as 16384 bytes
// that means we can fit 204 clusterable objects in one uniform
// buffer, which means the count can be at most 204 so it
// needs 9 bits.
// The array of indices can also use u8 and that means the
// offset in to the array of indices needs to be able to address
// 16384 values. log2(16384) = 14 bits.
// We use 32 bits to store the offset and counts so
// we pack the offset into the upper 14 bits of a u32,
// the point light count into bits 9-17, and the spot light count into bits 0-8.
// [ 31 .. 18 | 17 .. 9 | 8 .. 0 ]
// [ offset | point light count | spot light count ]
//
// NOTE: This assumes CPU and GPU endianness are the same which is true
// for all common and tested x86/ARM CPUs and AMD/NVIDIA/Intel/Apple/etc GPUs
//
// NOTE: On platforms that use this function, we don't cluster light probes, so
// the number of light probes is irrelevant.
fn pack_offset_and_counts(offset: usize, point_count: u32, spot_count: u32) -> u32 {
((offset as u32 & CLUSTER_OFFSET_MASK) << (CLUSTER_COUNT_SIZE * 2))
| ((point_count & CLUSTER_COUNT_MASK) << CLUSTER_COUNT_SIZE)
| (spot_count & CLUSTER_COUNT_MASK)
}
#[derive(ShaderType)]
struct GpuClusterableObjectIndexListsUniform {
data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
}
// NOTE: Assert at compile time that GpuClusterableObjectIndexListsUniform
// fits within the maximum uniform buffer binding size
const _: () = assert!(GpuClusterableObjectIndexListsUniform::SHADER_SIZE.get() <= 16384);
impl Default for GpuClusterableObjectIndexListsUniform {
fn default() -> Self {
Self {
data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
}
}
}
impl Default for GpuClusterOffsetsAndCountsUniform {
fn default() -> Self {
Self {
data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
}
}
}

View File

@ -1,65 +1,36 @@
//! Spatial clustering of objects, currently just point and spot lights.
use core::num::NonZero;
use bevy_asset::Handle;
use bevy_camera::visibility;
use bevy_core_pipeline::core_3d::Camera3d;
use bevy_camera::{
visibility::{self, Visibility, VisibilityClass},
Camera, Camera3d,
};
use bevy_ecs::{
component::Component,
entity::{Entity, EntityHashMap},
entity::Entity,
query::{With, Without},
reflect::ReflectComponent,
resource::Resource,
system::{Commands, Query, Res},
world::{FromWorld, World},
system::{Commands, Query},
};
use bevy_image::Image;
use bevy_math::{uvec4, AspectRatio, UVec2, UVec3, UVec4, Vec3Swizzles as _, Vec4};
use bevy_math::{AspectRatio, UVec2, UVec3, Vec3Swizzles as _};
use bevy_platform::collections::HashSet;
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use bevy_render::{
camera::Camera,
extract_component::ExtractComponent,
render_resource::{
BindingResource, BufferBindingType, ShaderSize as _, ShaderType, StorageBuffer,
UniformBuffer,
},
renderer::{RenderAdapter, RenderDevice, RenderQueue},
sync_world::RenderEntity,
view::{Visibility, VisibilityClass},
Extract,
};
use bevy_render::extract_component::ExtractComponent;
use bevy_transform::components::Transform;
use tracing::warn;
pub(crate) use crate::cluster::assign::assign_objects_to_clusters;
use crate::{LightVisibilityClass, MeshPipeline};
use crate::LightVisibilityClass;
pub(crate) mod assign;
mod extract_and_prepare;
pub use extract_and_prepare::*;
#[cfg(test)]
mod test;
// NOTE: this must be kept in sync with the same constants in
// `mesh_view_types.wgsl`.
pub const MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS: usize = 204;
// Make sure that the clusterable object buffer doesn't overflow the maximum
// size of a UBO on WebGL 2.
const _: () =
assert!(size_of::<GpuClusterableObject>() * MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS <= 16384);
// NOTE: Clustered-forward rendering requires 3 storage buffer bindings so check that
// at least that many are supported using this constant and SupportedBindingType::from_device()
pub const CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT: u32 = 3;
// this must match CLUSTER_COUNT_SIZE in pbr.wgsl
// and must be large enough to contain MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS
const CLUSTER_COUNT_SIZE: u32 = 9;
const CLUSTER_OFFSET_MASK: u32 = (1 << (32 - (CLUSTER_COUNT_SIZE * 2))) - 1;
const CLUSTER_COUNT_MASK: u32 = (1 << CLUSTER_COUNT_SIZE) - 1;
// Clustered-forward rendering notes
// The main initial reference material used was this rather accessible article:
// http://www.aortiz.me/2018/12/21/CG.html
@ -75,21 +46,6 @@ pub struct GlobalClusterSettings {
pub clustered_decals_are_usable: bool,
}
pub(crate) fn make_global_cluster_settings(world: &World) -> GlobalClusterSettings {
let device = world.resource::<RenderDevice>();
let adapter = world.resource::<RenderAdapter>();
let clustered_decals_are_usable =
crate::decal::clustered::clustered_decals_are_usable(device, adapter);
let supports_storage_buffers = matches!(
device.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT),
BufferBindingType::Storage { .. }
);
GlobalClusterSettings {
supports_storage_buffers,
clustered_decals_are_usable,
}
}
/// Configure the far z-plane mode used for the furthest depth slice for clustered forward
/// rendering
#[derive(Debug, Copy, Clone, Reflect)]
@ -170,54 +126,6 @@ pub struct GlobalVisibleClusterableObjects {
pub(crate) entities: HashSet<Entity>,
}
#[derive(Resource)]
pub struct GlobalClusterableObjectMeta {
pub gpu_clusterable_objects: GpuClusterableObjects,
pub entity_to_index: EntityHashMap<usize>,
}
#[derive(Copy, Clone, ShaderType, Default, Debug)]
pub struct GpuClusterableObject {
// For point lights: the lower-right 2x2 values of the projection matrix [2][2] [2][3] [3][2] [3][3]
// For spot lights: 2 components of the direction (x,z), spot_scale and spot_offset
pub(crate) light_custom_data: Vec4,
pub(crate) color_inverse_square_range: Vec4,
pub(crate) position_radius: Vec4,
pub(crate) flags: u32,
pub(crate) shadow_depth_bias: f32,
pub(crate) shadow_normal_bias: f32,
pub(crate) spot_light_tan_angle: f32,
pub(crate) soft_shadow_size: f32,
pub(crate) shadow_map_near_z: f32,
pub(crate) decal_index: u32,
pub(crate) pad: f32,
}
pub enum GpuClusterableObjects {
Uniform(UniformBuffer<GpuClusterableObjectsUniform>),
Storage(StorageBuffer<GpuClusterableObjectsStorage>),
}
#[derive(ShaderType)]
pub struct GpuClusterableObjectsUniform {
data: Box<[GpuClusterableObject; MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS]>,
}
#[derive(ShaderType, Default)]
pub struct GpuClusterableObjectsStorage {
#[size(runtime)]
data: Vec<GpuClusterableObject>,
}
#[derive(Component)]
pub struct ExtractedClusterConfig {
/// Special near value for cluster calculations
pub(crate) near: f32,
pub(crate) far: f32,
/// Number of clusters in `X` / `Y` / `Z` in the view frustum
pub(crate) dimensions: UVec3,
}
/// Stores the number of each type of clusterable object in a single cluster.
///
/// Note that `reflection_probes` and `irradiance_volumes` won't be clustered if
@ -264,56 +172,6 @@ pub struct ClusteredDecal {
pub tag: u32,
}
enum ExtractedClusterableObjectElement {
ClusterHeader(ClusterableObjectCounts),
ClusterableObjectEntity(Entity),
}
#[derive(Component)]
pub struct ExtractedClusterableObjects {
data: Vec<ExtractedClusterableObjectElement>,
}
#[derive(ShaderType)]
struct GpuClusterOffsetsAndCountsUniform {
data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
}
#[derive(ShaderType, Default)]
struct GpuClusterableObjectIndexListsStorage {
#[size(runtime)]
data: Vec<u32>,
}
#[derive(ShaderType, Default)]
struct GpuClusterOffsetsAndCountsStorage {
/// The starting offset, followed by the number of point lights, spot
/// lights, reflection probes, and irradiance volumes in each cluster, in
/// that order. The remaining fields are filled with zeroes.
#[size(runtime)]
data: Vec<[UVec4; 2]>,
}
enum ViewClusterBuffers {
Uniform {
// NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
clusterable_object_index_lists: UniformBuffer<GpuClusterableObjectIndexListsUniform>,
// NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
cluster_offsets_and_counts: UniformBuffer<GpuClusterOffsetsAndCountsUniform>,
},
Storage {
clusterable_object_index_lists: StorageBuffer<GpuClusterableObjectIndexListsStorage>,
cluster_offsets_and_counts: StorageBuffer<GpuClusterOffsetsAndCountsStorage>,
},
}
#[derive(Component)]
pub struct ViewClusterBindings {
n_indices: usize,
n_offsets: usize,
buffers: ViewClusterBuffers,
}
impl Default for ClusterZConfig {
fn default() -> Self {
Self {
@ -482,433 +340,3 @@ impl GlobalVisibleClusterableObjects {
self.entities.contains(&entity)
}
}
impl FromWorld for GlobalClusterableObjectMeta {
fn from_world(world: &mut World) -> Self {
Self::new(
world
.resource::<RenderDevice>()
.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT),
)
}
}
impl GlobalClusterableObjectMeta {
pub fn new(buffer_binding_type: BufferBindingType) -> Self {
Self {
gpu_clusterable_objects: GpuClusterableObjects::new(buffer_binding_type),
entity_to_index: EntityHashMap::default(),
}
}
}
impl GpuClusterableObjects {
fn new(buffer_binding_type: BufferBindingType) -> Self {
match buffer_binding_type {
BufferBindingType::Storage { .. } => Self::storage(),
BufferBindingType::Uniform => Self::uniform(),
}
}
fn uniform() -> Self {
Self::Uniform(UniformBuffer::default())
}
fn storage() -> Self {
Self::Storage(StorageBuffer::default())
}
pub(crate) fn set(&mut self, mut clusterable_objects: Vec<GpuClusterableObject>) {
match self {
GpuClusterableObjects::Uniform(buffer) => {
let len = clusterable_objects
.len()
.min(MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS);
let src = &clusterable_objects[..len];
let dst = &mut buffer.get_mut().data[..len];
dst.copy_from_slice(src);
}
GpuClusterableObjects::Storage(buffer) => {
buffer.get_mut().data.clear();
buffer.get_mut().data.append(&mut clusterable_objects);
}
}
}
pub(crate) fn write_buffer(
&mut self,
render_device: &RenderDevice,
render_queue: &RenderQueue,
) {
match self {
GpuClusterableObjects::Uniform(buffer) => {
buffer.write_buffer(render_device, render_queue);
}
GpuClusterableObjects::Storage(buffer) => {
buffer.write_buffer(render_device, render_queue);
}
}
}
pub fn binding(&self) -> Option<BindingResource> {
match self {
GpuClusterableObjects::Uniform(buffer) => buffer.binding(),
GpuClusterableObjects::Storage(buffer) => buffer.binding(),
}
}
pub fn min_size(buffer_binding_type: BufferBindingType) -> NonZero<u64> {
match buffer_binding_type {
BufferBindingType::Storage { .. } => GpuClusterableObjectsStorage::min_size(),
BufferBindingType::Uniform => GpuClusterableObjectsUniform::min_size(),
}
}
}
impl Default for GpuClusterableObjectsUniform {
fn default() -> Self {
Self {
data: Box::new(
[GpuClusterableObject::default(); MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS],
),
}
}
}
/// Extracts clusters from the main world from the render world.
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(RenderEntity, &Clusters, &Camera)>>,
mapper: Extract<Query<RenderEntity>>,
) {
for (entity, clusters, camera) in &views {
let mut entity_commands = commands
.get_entity(entity)
.expect("Clusters entity wasn't synced.");
if !camera.is_active {
entity_commands.remove::<(ExtractedClusterableObjects, ExtractedClusterConfig)>();
continue;
}
let entity_count: usize = clusters
.clusterable_objects
.iter()
.map(|l| l.entities.len())
.sum();
let mut data = Vec::with_capacity(clusters.clusterable_objects.len() + entity_count);
for cluster_objects in &clusters.clusterable_objects {
data.push(ExtractedClusterableObjectElement::ClusterHeader(
cluster_objects.counts,
));
for clusterable_entity in &cluster_objects.entities {
if let Ok(entity) = mapper.get(*clusterable_entity) {
data.push(ExtractedClusterableObjectElement::ClusterableObjectEntity(
entity,
));
}
}
}
entity_commands.insert((
ExtractedClusterableObjects { data },
ExtractedClusterConfig {
near: clusters.near,
far: clusters.far,
dimensions: clusters.dimensions,
},
));
}
}
pub fn prepare_clusters(
mut commands: Commands,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mesh_pipeline: Res<MeshPipeline>,
global_clusterable_object_meta: Res<GlobalClusterableObjectMeta>,
views: Query<(Entity, &ExtractedClusterableObjects)>,
) {
let render_device = render_device.into_inner();
let supports_storage_buffers = matches!(
mesh_pipeline.clustered_forward_buffer_binding_type,
BufferBindingType::Storage { .. }
);
for (entity, extracted_clusters) in &views {
let mut view_clusters_bindings =
ViewClusterBindings::new(mesh_pipeline.clustered_forward_buffer_binding_type);
view_clusters_bindings.clear();
for record in &extracted_clusters.data {
match record {
ExtractedClusterableObjectElement::ClusterHeader(counts) => {
let offset = view_clusters_bindings.n_indices();
view_clusters_bindings.push_offset_and_counts(offset, counts);
}
ExtractedClusterableObjectElement::ClusterableObjectEntity(entity) => {
if let Some(clusterable_object_index) =
global_clusterable_object_meta.entity_to_index.get(entity)
{
if view_clusters_bindings.n_indices() >= ViewClusterBindings::MAX_INDICES
&& !supports_storage_buffers
{
warn!(
"Clusterable object index lists are full! The clusterable \
objects in the view are present in too many clusters."
);
break;
}
view_clusters_bindings.push_index(*clusterable_object_index);
}
}
}
}
view_clusters_bindings.write_buffers(render_device, &render_queue);
commands.entity(entity).insert(view_clusters_bindings);
}
}
impl ViewClusterBindings {
pub const MAX_OFFSETS: usize = 16384 / 4;
const MAX_UNIFORM_ITEMS: usize = Self::MAX_OFFSETS / 4;
pub const MAX_INDICES: usize = 16384;
pub fn new(buffer_binding_type: BufferBindingType) -> Self {
Self {
n_indices: 0,
n_offsets: 0,
buffers: ViewClusterBuffers::new(buffer_binding_type),
}
}
pub fn clear(&mut self) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
cluster_offsets_and_counts,
} => {
*clusterable_object_index_lists.get_mut().data =
[UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
*cluster_offsets_and_counts.get_mut().data = [UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
}
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
cluster_offsets_and_counts,
..
} => {
clusterable_object_index_lists.get_mut().data.clear();
cluster_offsets_and_counts.get_mut().data.clear();
}
}
}
fn push_offset_and_counts(&mut self, offset: usize, counts: &ClusterableObjectCounts) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
cluster_offsets_and_counts,
..
} => {
let array_index = self.n_offsets >> 2; // >> 2 is equivalent to / 4
if array_index >= Self::MAX_UNIFORM_ITEMS {
warn!("cluster offset and count out of bounds!");
return;
}
let component = self.n_offsets & ((1 << 2) - 1);
let packed =
pack_offset_and_counts(offset, counts.point_lights, counts.spot_lights);
cluster_offsets_and_counts.get_mut().data[array_index][component] = packed;
}
ViewClusterBuffers::Storage {
cluster_offsets_and_counts,
..
} => {
cluster_offsets_and_counts.get_mut().data.push([
uvec4(
offset as u32,
counts.point_lights,
counts.spot_lights,
counts.reflection_probes,
),
uvec4(counts.irradiance_volumes, counts.decals, 0, 0),
]);
}
}
self.n_offsets += 1;
}
pub fn n_indices(&self) -> usize {
self.n_indices
}
pub fn push_index(&mut self, index: usize) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
..
} => {
let array_index = self.n_indices >> 4; // >> 4 is equivalent to / 16
let component = (self.n_indices >> 2) & ((1 << 2) - 1);
let sub_index = self.n_indices & ((1 << 2) - 1);
let index = index as u32;
clusterable_object_index_lists.get_mut().data[array_index][component] |=
index << (8 * sub_index);
}
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
..
} => {
clusterable_object_index_lists
.get_mut()
.data
.push(index as u32);
}
}
self.n_indices += 1;
}
pub fn write_buffers(&mut self, render_device: &RenderDevice, render_queue: &RenderQueue) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
cluster_offsets_and_counts,
} => {
clusterable_object_index_lists.write_buffer(render_device, render_queue);
cluster_offsets_and_counts.write_buffer(render_device, render_queue);
}
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
cluster_offsets_and_counts,
} => {
clusterable_object_index_lists.write_buffer(render_device, render_queue);
cluster_offsets_and_counts.write_buffer(render_device, render_queue);
}
}
}
pub fn clusterable_object_index_lists_binding(&self) -> Option<BindingResource> {
match &self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
..
} => clusterable_object_index_lists.binding(),
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
..
} => clusterable_object_index_lists.binding(),
}
}
pub fn offsets_and_counts_binding(&self) -> Option<BindingResource> {
match &self.buffers {
ViewClusterBuffers::Uniform {
cluster_offsets_and_counts,
..
} => cluster_offsets_and_counts.binding(),
ViewClusterBuffers::Storage {
cluster_offsets_and_counts,
..
} => cluster_offsets_and_counts.binding(),
}
}
pub fn min_size_clusterable_object_index_lists(
buffer_binding_type: BufferBindingType,
) -> NonZero<u64> {
match buffer_binding_type {
BufferBindingType::Storage { .. } => GpuClusterableObjectIndexListsStorage::min_size(),
BufferBindingType::Uniform => GpuClusterableObjectIndexListsUniform::min_size(),
}
}
pub fn min_size_cluster_offsets_and_counts(
buffer_binding_type: BufferBindingType,
) -> NonZero<u64> {
match buffer_binding_type {
BufferBindingType::Storage { .. } => GpuClusterOffsetsAndCountsStorage::min_size(),
BufferBindingType::Uniform => GpuClusterOffsetsAndCountsUniform::min_size(),
}
}
}
impl ViewClusterBuffers {
fn new(buffer_binding_type: BufferBindingType) -> Self {
match buffer_binding_type {
BufferBindingType::Storage { .. } => Self::storage(),
BufferBindingType::Uniform => Self::uniform(),
}
}
fn uniform() -> Self {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists: UniformBuffer::default(),
cluster_offsets_and_counts: UniformBuffer::default(),
}
}
fn storage() -> Self {
ViewClusterBuffers::Storage {
clusterable_object_index_lists: StorageBuffer::default(),
cluster_offsets_and_counts: StorageBuffer::default(),
}
}
}
// Compresses the offset and counts of point and spot lights so that they fit in
// a UBO.
//
// This function is only used if storage buffers are unavailable on this
// platform: typically, on WebGL 2.
//
// NOTE: With uniform buffer max binding size as 16384 bytes
// that means we can fit 204 clusterable objects in one uniform
// buffer, which means the count can be at most 204 so it
// needs 9 bits.
// The array of indices can also use u8 and that means the
// offset in to the array of indices needs to be able to address
// 16384 values. log2(16384) = 14 bits.
// We use 32 bits to store the offset and counts so
// we pack the offset into the upper 14 bits of a u32,
// the point light count into bits 9-17, and the spot light count into bits 0-8.
// [ 31 .. 18 | 17 .. 9 | 8 .. 0 ]
// [ offset | point light count | spot light count ]
//
// NOTE: This assumes CPU and GPU endianness are the same which is true
// for all common and tested x86/ARM CPUs and AMD/NVIDIA/Intel/Apple/etc GPUs
//
// NOTE: On platforms that use this function, we don't cluster light probes, so
// the number of light probes is irrelevant.
fn pack_offset_and_counts(offset: usize, point_count: u32, spot_count: u32) -> u32 {
((offset as u32 & CLUSTER_OFFSET_MASK) << (CLUSTER_COUNT_SIZE * 2))
| ((point_count & CLUSTER_COUNT_MASK) << CLUSTER_COUNT_SIZE)
| (spot_count & CLUSTER_COUNT_MASK)
}
#[derive(ShaderType)]
struct GpuClusterableObjectIndexListsUniform {
data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
}
// NOTE: Assert at compile time that GpuClusterableObjectIndexListsUniform
// fits within the maximum uniform buffer binding size
const _: () = assert!(GpuClusterableObjectIndexListsUniform::SHADER_SIZE.get() <= 16384);
impl Default for GpuClusterableObjectIndexListsUniform {
fn default() -> Self {
Self {
data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
}
}
}
impl Default for GpuClusterOffsetsAndCountsUniform {
fn default() -> Self {
Self {
data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
}
}
}