prepare bevy_light for split (#19965)

# Objective

- prepare bevy_light for split

## Solution

- extract cascade module (this is not strictly necessary for bevy_light)
- clean up imports to be less globby and tangled
- move light specific stuff into light modules
- move light system and type init from pbr into new LightPlugin

## Testing

- 3d_scene, lighting

NOTE TO REVIEWERS: it may help to review commits independently.
This commit is contained in:
atlv 2025-07-06 00:11:46 -04:00 committed by GitHub
parent 0b771d9f59
commit dd57db44d9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 676 additions and 622 deletions

View File

@ -122,6 +122,7 @@ pub mod graph {
}
}
pub use crate::cascade::{CascadeShadowConfig, CascadeShadowConfigBuilder, Cascades};
use crate::{deferred::DeferredPbrLightingPlugin, graph::NodePbr};
use bevy_app::prelude::*;
use bevy_asset::{AssetApp, AssetPath, Assets, Handle};
@ -130,19 +131,16 @@ use bevy_ecs::prelude::*;
use bevy_image::Image;
use bevy_render::{
alpha::AlphaMode,
camera::{sort_cameras, CameraUpdateSystems, Projection},
camera::{sort_cameras, Projection},
extract_component::ExtractComponentPlugin,
extract_resource::ExtractResourcePlugin,
load_shader_library,
render_graph::RenderGraph,
render_resource::ShaderRef,
sync_component::SyncComponentPlugin,
view::VisibilitySystems,
ExtractSchedule, Render, RenderApp, RenderDebugFlags, RenderSystems,
};
use bevy_transform::TransformSystems;
use std::path::PathBuf;
fn shader_ref(path: PathBuf) -> ShaderRef {
@ -205,22 +203,8 @@ impl Plugin for PbrPlugin {
load_shader_library!(app, "meshlet/dummy_visibility_buffer_resolve.wgsl");
app.register_asset_reflect::<StandardMaterial>()
.register_type::<AmbientLight>()
.register_type::<CascadeShadowConfig>()
.register_type::<Cascades>()
.register_type::<ClusterConfig>()
.register_type::<DirectionalLight>()
.register_type::<DirectionalLightShadowMap>()
.register_type::<NotShadowCaster>()
.register_type::<NotShadowReceiver>()
.register_type::<PointLight>()
.register_type::<PointLightShadowMap>()
.register_type::<SpotLight>()
.register_type::<ShadowFilteringMethod>()
.init_resource::<AmbientLight>()
.init_resource::<GlobalVisibleClusterableObjects>()
.init_resource::<DirectionalLightShadowMap>()
.init_resource::<PointLightShadowMap>()
.register_type::<DefaultOpaqueRendererMethod>()
.init_resource::<DefaultOpaqueRendererMethod>()
.add_plugins((
@ -243,7 +227,7 @@ impl Plugin for PbrPlugin {
ExtractComponentPlugin::<ShadowFilteringMethod>::default(),
LightmapPlugin,
LightProbePlugin,
PbrProjectionPlugin,
LightPlugin,
GpuMeshPreprocessPlugin {
use_gpu_instance_buffer_builder: self.use_gpu_instance_buffer_builder,
},
@ -266,64 +250,6 @@ impl Plugin for PbrPlugin {
SimulationLightSystems::AssignLightsToClusters,
)
.chain(),
)
.configure_sets(
PostUpdate,
SimulationLightSystems::UpdateDirectionalLightCascades
.ambiguous_with(SimulationLightSystems::UpdateDirectionalLightCascades),
)
.configure_sets(
PostUpdate,
SimulationLightSystems::CheckLightVisibility
.ambiguous_with(SimulationLightSystems::CheckLightVisibility),
)
.add_systems(
PostUpdate,
(
add_clusters
.in_set(SimulationLightSystems::AddClusters)
.after(CameraUpdateSystems),
assign_objects_to_clusters
.in_set(SimulationLightSystems::AssignLightsToClusters)
.after(TransformSystems::Propagate)
.after(VisibilitySystems::CheckVisibility)
.after(CameraUpdateSystems),
clear_directional_light_cascades
.in_set(SimulationLightSystems::UpdateDirectionalLightCascades)
.after(TransformSystems::Propagate)
.after(CameraUpdateSystems),
update_directional_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
// This must run after CheckVisibility because it relies on `ViewVisibility`
.after(VisibilitySystems::CheckVisibility)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::UpdateDirectionalLightCascades)
// We assume that no entity will be both a directional light and a spot light,
// so these systems will run independently of one another.
// FIXME: Add an archetype invariant for this https://github.com/bevyengine/bevy/issues/1481.
.ambiguous_with(update_spot_light_frusta),
update_point_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::AssignLightsToClusters),
update_spot_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::AssignLightsToClusters),
(
check_dir_light_mesh_visibility,
check_point_light_mesh_visibility,
)
.in_set(SimulationLightSystems::CheckLightVisibility)
.after(VisibilitySystems::CalculateBounds)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::UpdateLightFrusta)
// NOTE: This MUST be scheduled AFTER the core renderer visibility check
// because that resets entity `ViewVisibility` for the first view
// which would override any results from this otherwise
.after(VisibilitySystems::CheckVisibility)
.before(VisibilitySystems::MarkNewlyHiddenEntitiesInvisible),
),
);
if self.add_default_deferred_lighting_plugin {
@ -401,17 +327,3 @@ impl Plugin for PbrPlugin {
app.insert_resource(global_cluster_settings);
}
}
/// Camera projection PBR functionality.
#[derive(Default)]
pub struct PbrProjectionPlugin;
impl Plugin for PbrProjectionPlugin {
fn build(&self, app: &mut App) {
app.add_systems(
PostUpdate,
build_directional_light_cascades
.in_set(SimulationLightSystems::UpdateDirectionalLightCascades)
.after(clear_directional_light_cascades),
);
}
}

View File

@ -1,8 +1,12 @@
use super::*;
use bevy_camera::Camera;
use bevy_color::Color;
use bevy_ecs::prelude::*;
use bevy_reflect::prelude::*;
use bevy_render::{extract_component::ExtractComponent, extract_resource::ExtractResource};
/// An ambient light, which lights the entire scene equally.
///
/// This resource is inserted by the [`PbrPlugin`] and by default it is set to a low ambient light.
/// This resource is inserted by the [`LightPlugin`] and by default it is set to a low ambient light.
///
/// It can also be added to a camera to override the resource (or default) ambient for that camera only.
///
@ -17,6 +21,8 @@ use super::*;
/// ambient_light.brightness = 100.0;
/// }
/// ```
///
/// [`LightPlugin`]: crate::LightPlugin
#[derive(Resource, Component, Clone, Debug, ExtractResource, ExtractComponent, Reflect)]
#[reflect(Resource, Component, Debug, Default, Clone)]
#[require(Camera)]

View File

@ -0,0 +1,333 @@
pub use bevy_camera::primitives::{face_index_to_name, CubeMapFace, CUBE_MAP_FACES};
use bevy_camera::{Camera, Projection};
use bevy_ecs::{entity::EntityHashMap, prelude::*};
use bevy_math::{ops, Mat4, Vec3A, Vec4};
use bevy_reflect::prelude::*;
use bevy_transform::components::GlobalTransform;
use crate::{DirectionalLight, DirectionalLightShadowMap};
/// Controls how cascaded shadow mapping works.
/// Prefer using [`CascadeShadowConfigBuilder`] to construct an instance.
///
/// ```
/// # use bevy_pbr::CascadeShadowConfig;
/// # use bevy_pbr::CascadeShadowConfigBuilder;
/// # use bevy_utils::default;
/// #
/// let config: CascadeShadowConfig = CascadeShadowConfigBuilder {
/// maximum_distance: 100.0,
/// ..default()
/// }.into();
/// ```
#[derive(Component, Clone, Debug, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
pub struct CascadeShadowConfig {
/// The (positive) distance to the far boundary of each cascade.
pub bounds: Vec<f32>,
/// The proportion of overlap each cascade has with the previous cascade.
pub overlap_proportion: f32,
/// The (positive) distance to the near boundary of the first cascade.
pub minimum_distance: f32,
}
impl Default for CascadeShadowConfig {
fn default() -> Self {
CascadeShadowConfigBuilder::default().into()
}
}
fn calculate_cascade_bounds(
num_cascades: usize,
nearest_bound: f32,
shadow_maximum_distance: f32,
) -> Vec<f32> {
if num_cascades == 1 {
return vec![shadow_maximum_distance];
}
let base = ops::powf(
shadow_maximum_distance / nearest_bound,
1.0 / (num_cascades - 1) as f32,
);
(0..num_cascades)
.map(|i| nearest_bound * ops::powf(base, i as f32))
.collect()
}
/// Builder for [`CascadeShadowConfig`].
pub struct CascadeShadowConfigBuilder {
/// The number of shadow cascades.
/// More cascades increases shadow quality by mitigating perspective aliasing - a phenomenon where areas
/// nearer the camera are covered by fewer shadow map texels than areas further from the camera, causing
/// blocky looking shadows.
///
/// This does come at the cost increased rendering overhead, however this overhead is still less
/// than if you were to use fewer cascades and much larger shadow map textures to achieve the
/// same quality level.
///
/// In case rendered geometry covers a relatively narrow and static depth relative to camera, it may
/// make more sense to use fewer cascades and a higher resolution shadow map texture as perspective aliasing
/// is not as much an issue. Be sure to adjust `minimum_distance` and `maximum_distance` appropriately.
pub num_cascades: usize,
/// The minimum shadow distance, which can help improve the texel resolution of the first cascade.
/// Areas nearer to the camera than this will likely receive no shadows.
///
/// NOTE: Due to implementation details, this usually does not impact shadow quality as much as
/// `first_cascade_far_bound` and `maximum_distance`. At many view frustum field-of-views, the
/// texel resolution of the first cascade is dominated by the width / height of the view frustum plane
/// at `first_cascade_far_bound` rather than the depth of the frustum from `minimum_distance` to
/// `first_cascade_far_bound`.
pub minimum_distance: f32,
/// The maximum shadow distance.
/// Areas further from the camera than this will likely receive no shadows.
pub maximum_distance: f32,
/// Sets the far bound of the first cascade, relative to the view origin.
/// In-between cascades will be exponentially spaced relative to the maximum shadow distance.
/// NOTE: This is ignored if there is only one cascade, the maximum distance takes precedence.
pub first_cascade_far_bound: f32,
/// Sets the overlap proportion between cascades.
/// The overlap is used to make the transition from one cascade's shadow map to the next
/// less abrupt by blending between both shadow maps.
pub overlap_proportion: f32,
}
impl CascadeShadowConfigBuilder {
/// Returns the cascade config as specified by this builder.
pub fn build(&self) -> CascadeShadowConfig {
assert!(
self.num_cascades > 0,
"num_cascades must be positive, but was {}",
self.num_cascades
);
assert!(
self.minimum_distance >= 0.0,
"maximum_distance must be non-negative, but was {}",
self.minimum_distance
);
assert!(
self.num_cascades == 1 || self.minimum_distance < self.first_cascade_far_bound,
"minimum_distance must be less than first_cascade_far_bound, but was {}",
self.minimum_distance
);
assert!(
self.maximum_distance > self.minimum_distance,
"maximum_distance must be greater than minimum_distance, but was {}",
self.maximum_distance
);
assert!(
(0.0..1.0).contains(&self.overlap_proportion),
"overlap_proportion must be in [0.0, 1.0) but was {}",
self.overlap_proportion
);
CascadeShadowConfig {
bounds: calculate_cascade_bounds(
self.num_cascades,
self.first_cascade_far_bound,
self.maximum_distance,
),
overlap_proportion: self.overlap_proportion,
minimum_distance: self.minimum_distance,
}
}
}
impl Default for CascadeShadowConfigBuilder {
fn default() -> Self {
// The defaults are chosen to be similar to be Unity, Unreal, and Godot.
// Unity: first cascade far bound = 10.05, maximum distance = 150.0
// Unreal Engine 5: maximum distance = 200.0
// Godot: first cascade far bound = 10.0, maximum distance = 100.0
Self {
// Currently only support one cascade in WebGL 2.
num_cascades: if cfg!(all(
feature = "webgl",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
1
} else {
4
},
minimum_distance: 0.1,
maximum_distance: 150.0,
first_cascade_far_bound: 10.0,
overlap_proportion: 0.2,
}
}
}
impl From<CascadeShadowConfigBuilder> for CascadeShadowConfig {
fn from(builder: CascadeShadowConfigBuilder) -> Self {
builder.build()
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Debug, Default, Clone)]
pub struct Cascades {
/// Map from a view to the configuration of each of its [`Cascade`]s.
pub cascades: EntityHashMap<Vec<Cascade>>,
}
#[derive(Clone, Debug, Default, Reflect)]
#[reflect(Clone, Default)]
pub struct Cascade {
/// The transform of the light, i.e. the view to world matrix.
pub world_from_cascade: Mat4,
/// The orthographic projection for this cascade.
pub clip_from_cascade: Mat4,
/// The view-projection matrix for this cascade, converting world space into light clip space.
/// Importantly, this is derived and stored separately from `view_transform` and `projection` to
/// ensure shadow stability.
pub clip_from_world: Mat4,
/// Size of each shadow map texel in world units.
pub texel_size: f32,
}
pub fn clear_directional_light_cascades(mut lights: Query<(&DirectionalLight, &mut Cascades)>) {
for (directional_light, mut cascades) in lights.iter_mut() {
if !directional_light.shadows_enabled {
continue;
}
cascades.cascades.clear();
}
}
pub fn build_directional_light_cascades(
directional_light_shadow_map: Res<DirectionalLightShadowMap>,
views: Query<(Entity, &GlobalTransform, &Projection, &Camera)>,
mut lights: Query<(
&GlobalTransform,
&DirectionalLight,
&CascadeShadowConfig,
&mut Cascades,
)>,
) {
let views = views
.iter()
.filter_map(|(entity, transform, projection, camera)| {
if camera.is_active {
Some((entity, projection, transform.to_matrix()))
} else {
None
}
})
.collect::<Vec<_>>();
for (transform, directional_light, cascades_config, mut cascades) in &mut lights {
if !directional_light.shadows_enabled {
continue;
}
// It is very important to the numerical and thus visual stability of shadows that
// light_to_world has orthogonal upper-left 3x3 and zero translation.
// Even though only the direction (i.e. rotation) of the light matters, we don't constrain
// users to not change any other aspects of the transform - there's no guarantee
// `transform.to_matrix()` will give us a matrix with our desired properties.
// Instead, we directly create a good matrix from just the rotation.
let world_from_light = Mat4::from_quat(transform.compute_transform().rotation);
let light_to_world_inverse = world_from_light.inverse();
for (view_entity, projection, view_to_world) in views.iter().copied() {
let camera_to_light_view = light_to_world_inverse * view_to_world;
let view_cascades = cascades_config
.bounds
.iter()
.enumerate()
.map(|(idx, far_bound)| {
// Negate bounds as -z is camera forward direction.
let z_near = if idx > 0 {
(1.0 - cascades_config.overlap_proportion)
* -cascades_config.bounds[idx - 1]
} else {
-cascades_config.minimum_distance
};
let z_far = -far_bound;
let corners = projection.get_frustum_corners(z_near, z_far);
calculate_cascade(
corners,
directional_light_shadow_map.size as f32,
world_from_light,
camera_to_light_view,
)
})
.collect();
cascades.cascades.insert(view_entity, view_cascades);
}
}
}
/// Returns a [`Cascade`] for the frustum defined by `frustum_corners`.
///
/// The corner vertices should be specified in the following order:
/// first the bottom right, top right, top left, bottom left for the near plane, then similar for the far plane.
fn calculate_cascade(
frustum_corners: [Vec3A; 8],
cascade_texture_size: f32,
world_from_light: Mat4,
light_from_camera: Mat4,
) -> Cascade {
let mut min = Vec3A::splat(f32::MAX);
let mut max = Vec3A::splat(f32::MIN);
for corner_camera_view in frustum_corners {
let corner_light_view = light_from_camera.transform_point3a(corner_camera_view);
min = min.min(corner_light_view);
max = max.max(corner_light_view);
}
// NOTE: Use the larger of the frustum slice far plane diagonal and body diagonal lengths as this
// will be the maximum possible projection size. Use the ceiling to get an integer which is
// very important for floating point stability later. It is also important that these are
// calculated using the original camera space corner positions for floating point precision
// as even though the lengths using corner_light_view above should be the same, precision can
// introduce small but significant differences.
// NOTE: The size remains the same unless the view frustum or cascade configuration is modified.
let cascade_diameter = (frustum_corners[0] - frustum_corners[6])
.length()
.max((frustum_corners[4] - frustum_corners[6]).length())
.ceil();
// NOTE: If we ensure that cascade_texture_size is a power of 2, then as we made cascade_diameter an
// integer, cascade_texel_size is then an integer multiple of a power of 2 and can be
// exactly represented in a floating point value.
let cascade_texel_size = cascade_diameter / cascade_texture_size;
// NOTE: For shadow stability it is very important that the near_plane_center is at integer
// multiples of the texel size to be exactly representable in a floating point value.
let near_plane_center = Vec3A::new(
(0.5 * (min.x + max.x) / cascade_texel_size).floor() * cascade_texel_size,
(0.5 * (min.y + max.y) / cascade_texel_size).floor() * cascade_texel_size,
// NOTE: max.z is the near plane for right-handed y-up
max.z,
);
// It is critical for `world_to_cascade` to be stable. So rather than forming `cascade_to_world`
// and inverting it, which risks instability due to numerical precision, we directly form
// `world_to_cascade` as the reference material suggests.
let light_to_world_transpose = world_from_light.transpose();
let cascade_from_world = Mat4::from_cols(
light_to_world_transpose.x_axis,
light_to_world_transpose.y_axis,
light_to_world_transpose.z_axis,
(-near_plane_center).extend(1.0),
);
// Right-handed orthographic projection, centered at `near_plane_center`.
// NOTE: This is different from the reference material, as we use reverse Z.
let r = (max.z - min.z).recip();
let clip_from_cascade = Mat4::from_cols(
Vec4::new(2.0 / cascade_diameter, 0.0, 0.0, 0.0),
Vec4::new(0.0, 2.0 / cascade_diameter, 0.0, 0.0),
Vec4::new(0.0, 0.0, r, 0.0),
Vec4::new(0.0, 0.0, 1.0, 1.0),
);
let clip_from_world = clip_from_cascade * cascade_from_world;
Cascade {
world_from_cascade: cascade_from_world.inverse(),
clip_from_cascade,
clip_from_world,
texel_size: cascade_texel_size,
}
}

View File

@ -1,6 +1,16 @@
use bevy_render::view::{self, Visibility};
use bevy_asset::Handle;
use bevy_camera::{
primitives::{CascadesFrusta, Frustum},
visibility::{self, CascadesVisibleEntities, ViewVisibility, Visibility, VisibilityClass},
Camera,
};
use bevy_color::Color;
use bevy_ecs::prelude::*;
use bevy_image::Image;
use bevy_reflect::prelude::*;
use bevy_transform::components::Transform;
use super::*;
use crate::{cascade::CascadeShadowConfig, light_consts, Cascades, LightVisibilityClass};
/// A Directional light.
///
@ -53,7 +63,7 @@ use super::*;
Visibility,
VisibilityClass
)]
#[component(on_add = view::add_visibility_class::<LightVisibilityClass>)]
#[component(on_add = visibility::add_visibility_class::<LightVisibilityClass>)]
pub struct DirectionalLight {
/// The color of the light.
///
@ -90,6 +100,8 @@ pub struct DirectionalLight {
///
/// Note that soft shadows are significantly more expensive to render than
/// hard shadows.
///
/// [`ShadowFilteringMethod::Temporal`]: crate::ShadowFilteringMethod::Temporal
#[cfg(feature = "experimental_pbr_pcss")]
pub soft_shadow_size: Option<f32>,
@ -154,3 +166,64 @@ pub struct DirectionalLightTexture {
/// Whether to tile the image infinitely, or use only a single tile centered at the light's translation
pub tiled: bool,
}
/// Controls the resolution of [`DirectionalLight`] shadow maps.
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_pbr::DirectionalLightShadowMap;
/// App::new()
/// .insert_resource(DirectionalLightShadowMap { size: 4096 });
/// ```
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource, Debug, Default, Clone)]
pub struct DirectionalLightShadowMap {
// The width and height of each cascade.
///
/// Defaults to `2048`.
pub size: usize,
}
impl Default for DirectionalLightShadowMap {
fn default() -> Self {
Self { size: 2048 }
}
}
pub fn update_directional_light_frusta(
mut views: Query<
(
&Cascades,
&DirectionalLight,
&ViewVisibility,
&mut CascadesFrusta,
),
(
// Prevents this query from conflicting with camera queries.
Without<Camera>,
),
>,
) {
for (cascades, directional_light, visibility, mut frusta) in &mut views {
// The frustum is used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frustum is
// not needed.
if !directional_light.shadows_enabled || !visibility.get() {
continue;
}
frusta.frusta = cascades
.cascades
.iter()
.map(|(view, cascades)| {
(
*view,
cascades
.iter()
.map(|c| Frustum::from_clip_from_world(&c.clip_from_world))
.collect::<Vec<_>>(),
)
})
.collect();
}
}

View File

@ -1,36 +1,43 @@
use bevy_ecs::{
entity::{EntityHashMap, EntityHashSet},
prelude::*,
};
use bevy_math::{ops, Mat4, Vec3A, Vec4};
use bevy_reflect::prelude::*;
use bevy_render::{
camera::{Camera, Projection},
extract_component::ExtractComponent,
extract_resource::ExtractResource,
mesh::Mesh3d,
use bevy_app::{App, Plugin, PostUpdate};
use bevy_camera::{
primitives::{Aabb, CascadesFrusta, CubemapFrusta, Frustum, Sphere},
view::{
InheritedVisibility, NoFrustumCulling, PreviousVisibleEntities, RenderLayers,
ViewVisibility, VisibilityClass, VisibilityRange, VisibleEntityRanges,
visibility::{
CascadesVisibleEntities, CubemapVisibleEntities, InheritedVisibility, NoFrustumCulling,
PreviousVisibleEntities, RenderLayers, ViewVisibility, VisibilityRange, VisibilitySystems,
VisibleEntityRanges, VisibleMeshEntities,
},
CameraUpdateSystems,
};
use bevy_transform::components::{GlobalTransform, Transform};
use bevy_ecs::{entity::EntityHashSet, prelude::*};
use bevy_math::Vec3A;
use bevy_reflect::prelude::*;
use bevy_render::{extract_component::ExtractComponent, mesh::Mesh3d};
use bevy_transform::{components::GlobalTransform, TransformSystems};
use bevy_utils::Parallel;
use core::ops::DerefMut;
use crate::*;
pub use light::spot_light::{spot_light_clip_from_view, spot_light_world_from_view};
pub use crate::light::spot_light::{spot_light_clip_from_view, spot_light_world_from_view};
use crate::{
add_clusters, assign_objects_to_clusters,
cascade::{build_directional_light_cascades, clear_directional_light_cascades},
CascadeShadowConfig, Cascades, VisibleClusterableObjects,
};
mod ambient_light;
pub use ambient_light::AmbientLight;
pub mod cascade;
mod point_light;
pub use point_light::{PointLight, PointLightTexture};
pub use point_light::{
update_point_light_frusta, PointLight, PointLightShadowMap, PointLightTexture,
};
mod spot_light;
pub use spot_light::{SpotLight, SpotLightTexture};
pub use spot_light::{update_spot_light_frusta, SpotLight, SpotLightTexture};
mod directional_light;
pub use directional_light::{DirectionalLight, DirectionalLightTexture};
pub use directional_light::{
update_directional_light_frusta, DirectionalLight, DirectionalLightShadowMap,
DirectionalLightTexture,
};
/// Constants for operating with the light units: lumens, and lux.
pub mod light_consts {
@ -91,26 +98,85 @@ pub mod light_consts {
}
}
/// Controls the resolution of [`PointLight`] shadow maps.
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_pbr::PointLightShadowMap;
/// App::new()
/// .insert_resource(PointLightShadowMap { size: 2048 });
/// ```
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource, Debug, Default, Clone)]
pub struct PointLightShadowMap {
/// The width and height of each of the 6 faces of the cubemap.
///
/// Defaults to `1024`.
pub size: usize,
}
pub struct LightPlugin;
impl Default for PointLightShadowMap {
fn default() -> Self {
Self { size: 1024 }
impl Plugin for LightPlugin {
fn build(&self, app: &mut App) {
app.register_type::<AmbientLight>()
.register_type::<CascadeShadowConfig>()
.register_type::<Cascades>()
.register_type::<DirectionalLight>()
.register_type::<DirectionalLightShadowMap>()
.register_type::<NotShadowCaster>()
.register_type::<NotShadowReceiver>()
.register_type::<PointLight>()
.register_type::<PointLightShadowMap>()
.register_type::<SpotLight>()
.register_type::<ShadowFilteringMethod>()
.init_resource::<AmbientLight>()
.init_resource::<DirectionalLightShadowMap>()
.init_resource::<PointLightShadowMap>()
.configure_sets(
PostUpdate,
SimulationLightSystems::UpdateDirectionalLightCascades
.ambiguous_with(SimulationLightSystems::UpdateDirectionalLightCascades),
)
.configure_sets(
PostUpdate,
SimulationLightSystems::CheckLightVisibility
.ambiguous_with(SimulationLightSystems::CheckLightVisibility),
)
.add_systems(
PostUpdate,
(
add_clusters
.in_set(SimulationLightSystems::AddClusters)
.after(CameraUpdateSystems),
assign_objects_to_clusters
.in_set(SimulationLightSystems::AssignLightsToClusters)
.after(TransformSystems::Propagate)
.after(VisibilitySystems::CheckVisibility)
.after(CameraUpdateSystems),
clear_directional_light_cascades
.in_set(SimulationLightSystems::UpdateDirectionalLightCascades)
.after(TransformSystems::Propagate)
.after(CameraUpdateSystems),
update_directional_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
// This must run after CheckVisibility because it relies on `ViewVisibility`
.after(VisibilitySystems::CheckVisibility)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::UpdateDirectionalLightCascades)
// We assume that no entity will be both a directional light and a spot light,
// so these systems will run independently of one another.
// FIXME: Add an archetype invariant for this https://github.com/bevyengine/bevy/issues/1481.
.ambiguous_with(update_spot_light_frusta),
update_point_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::AssignLightsToClusters),
update_spot_light_frusta
.in_set(SimulationLightSystems::UpdateLightFrusta)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::AssignLightsToClusters),
(
check_dir_light_mesh_visibility,
check_point_light_mesh_visibility,
)
.in_set(SimulationLightSystems::CheckLightVisibility)
.after(VisibilitySystems::CalculateBounds)
.after(TransformSystems::Propagate)
.after(SimulationLightSystems::UpdateLightFrusta)
// NOTE: This MUST be scheduled AFTER the core renderer visibility check
// because that resets entity `ViewVisibility` for the first view
// which would override any results from this otherwise
.after(VisibilitySystems::CheckVisibility)
.before(VisibilitySystems::MarkNewlyHiddenEntitiesInvisible),
build_directional_light_cascades
.in_set(SimulationLightSystems::UpdateDirectionalLightCascades)
.after(clear_directional_light_cascades),
),
);
}
}
@ -118,353 +184,6 @@ impl Default for PointLightShadowMap {
/// With<DirectionalLight>)>`, for use with [`bevy_render::view::VisibleEntities`].
pub type WithLight = Or<(With<PointLight>, With<SpotLight>, With<DirectionalLight>)>;
/// Controls the resolution of [`DirectionalLight`] shadow maps.
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_pbr::DirectionalLightShadowMap;
/// App::new()
/// .insert_resource(DirectionalLightShadowMap { size: 4096 });
/// ```
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource, Debug, Default, Clone)]
pub struct DirectionalLightShadowMap {
// The width and height of each cascade.
///
/// Defaults to `2048`.
pub size: usize,
}
impl Default for DirectionalLightShadowMap {
fn default() -> Self {
Self { size: 2048 }
}
}
/// Controls how cascaded shadow mapping works.
/// Prefer using [`CascadeShadowConfigBuilder`] to construct an instance.
///
/// ```
/// # use bevy_pbr::CascadeShadowConfig;
/// # use bevy_pbr::CascadeShadowConfigBuilder;
/// # use bevy_utils::default;
/// #
/// let config: CascadeShadowConfig = CascadeShadowConfigBuilder {
/// maximum_distance: 100.0,
/// ..default()
/// }.into();
/// ```
#[derive(Component, Clone, Debug, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
pub struct CascadeShadowConfig {
/// The (positive) distance to the far boundary of each cascade.
pub bounds: Vec<f32>,
/// The proportion of overlap each cascade has with the previous cascade.
pub overlap_proportion: f32,
/// The (positive) distance to the near boundary of the first cascade.
pub minimum_distance: f32,
}
impl Default for CascadeShadowConfig {
fn default() -> Self {
CascadeShadowConfigBuilder::default().into()
}
}
fn calculate_cascade_bounds(
num_cascades: usize,
nearest_bound: f32,
shadow_maximum_distance: f32,
) -> Vec<f32> {
if num_cascades == 1 {
return vec![shadow_maximum_distance];
}
let base = ops::powf(
shadow_maximum_distance / nearest_bound,
1.0 / (num_cascades - 1) as f32,
);
(0..num_cascades)
.map(|i| nearest_bound * ops::powf(base, i as f32))
.collect()
}
/// Builder for [`CascadeShadowConfig`].
pub struct CascadeShadowConfigBuilder {
/// The number of shadow cascades.
/// More cascades increases shadow quality by mitigating perspective aliasing - a phenomenon where areas
/// nearer the camera are covered by fewer shadow map texels than areas further from the camera, causing
/// blocky looking shadows.
///
/// This does come at the cost increased rendering overhead, however this overhead is still less
/// than if you were to use fewer cascades and much larger shadow map textures to achieve the
/// same quality level.
///
/// In case rendered geometry covers a relatively narrow and static depth relative to camera, it may
/// make more sense to use fewer cascades and a higher resolution shadow map texture as perspective aliasing
/// is not as much an issue. Be sure to adjust `minimum_distance` and `maximum_distance` appropriately.
pub num_cascades: usize,
/// The minimum shadow distance, which can help improve the texel resolution of the first cascade.
/// Areas nearer to the camera than this will likely receive no shadows.
///
/// NOTE: Due to implementation details, this usually does not impact shadow quality as much as
/// `first_cascade_far_bound` and `maximum_distance`. At many view frustum field-of-views, the
/// texel resolution of the first cascade is dominated by the width / height of the view frustum plane
/// at `first_cascade_far_bound` rather than the depth of the frustum from `minimum_distance` to
/// `first_cascade_far_bound`.
pub minimum_distance: f32,
/// The maximum shadow distance.
/// Areas further from the camera than this will likely receive no shadows.
pub maximum_distance: f32,
/// Sets the far bound of the first cascade, relative to the view origin.
/// In-between cascades will be exponentially spaced relative to the maximum shadow distance.
/// NOTE: This is ignored if there is only one cascade, the maximum distance takes precedence.
pub first_cascade_far_bound: f32,
/// Sets the overlap proportion between cascades.
/// The overlap is used to make the transition from one cascade's shadow map to the next
/// less abrupt by blending between both shadow maps.
pub overlap_proportion: f32,
}
impl CascadeShadowConfigBuilder {
/// Returns the cascade config as specified by this builder.
pub fn build(&self) -> CascadeShadowConfig {
assert!(
self.num_cascades > 0,
"num_cascades must be positive, but was {}",
self.num_cascades
);
assert!(
self.minimum_distance >= 0.0,
"maximum_distance must be non-negative, but was {}",
self.minimum_distance
);
assert!(
self.num_cascades == 1 || self.minimum_distance < self.first_cascade_far_bound,
"minimum_distance must be less than first_cascade_far_bound, but was {}",
self.minimum_distance
);
assert!(
self.maximum_distance > self.minimum_distance,
"maximum_distance must be greater than minimum_distance, but was {}",
self.maximum_distance
);
assert!(
(0.0..1.0).contains(&self.overlap_proportion),
"overlap_proportion must be in [0.0, 1.0) but was {}",
self.overlap_proportion
);
CascadeShadowConfig {
bounds: calculate_cascade_bounds(
self.num_cascades,
self.first_cascade_far_bound,
self.maximum_distance,
),
overlap_proportion: self.overlap_proportion,
minimum_distance: self.minimum_distance,
}
}
}
impl Default for CascadeShadowConfigBuilder {
fn default() -> Self {
// The defaults are chosen to be similar to be Unity, Unreal, and Godot.
// Unity: first cascade far bound = 10.05, maximum distance = 150.0
// Unreal Engine 5: maximum distance = 200.0
// Godot: first cascade far bound = 10.0, maximum distance = 100.0
Self {
// Currently only support one cascade in WebGL 2.
num_cascades: if cfg!(all(
feature = "webgl",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
1
} else {
4
},
minimum_distance: 0.1,
maximum_distance: 150.0,
first_cascade_far_bound: 10.0,
overlap_proportion: 0.2,
}
}
}
impl From<CascadeShadowConfigBuilder> for CascadeShadowConfig {
fn from(builder: CascadeShadowConfigBuilder) -> Self {
builder.build()
}
}
#[derive(Component, Clone, Debug, Default, Reflect)]
#[reflect(Component, Debug, Default, Clone)]
pub struct Cascades {
/// Map from a view to the configuration of each of its [`Cascade`]s.
pub cascades: EntityHashMap<Vec<Cascade>>,
}
#[derive(Clone, Debug, Default, Reflect)]
#[reflect(Clone, Default)]
pub struct Cascade {
/// The transform of the light, i.e. the view to world matrix.
pub world_from_cascade: Mat4,
/// The orthographic projection for this cascade.
pub clip_from_cascade: Mat4,
/// The view-projection matrix for this cascade, converting world space into light clip space.
/// Importantly, this is derived and stored separately from `view_transform` and `projection` to
/// ensure shadow stability.
pub clip_from_world: Mat4,
/// Size of each shadow map texel in world units.
pub texel_size: f32,
}
pub fn clear_directional_light_cascades(mut lights: Query<(&DirectionalLight, &mut Cascades)>) {
for (directional_light, mut cascades) in lights.iter_mut() {
if !directional_light.shadows_enabled {
continue;
}
cascades.cascades.clear();
}
}
pub fn build_directional_light_cascades(
directional_light_shadow_map: Res<DirectionalLightShadowMap>,
views: Query<(Entity, &GlobalTransform, &Projection, &Camera)>,
mut lights: Query<(
&GlobalTransform,
&DirectionalLight,
&CascadeShadowConfig,
&mut Cascades,
)>,
) {
let views = views
.iter()
.filter_map(|(entity, transform, projection, camera)| {
if camera.is_active {
Some((entity, projection, transform.to_matrix()))
} else {
None
}
})
.collect::<Vec<_>>();
for (transform, directional_light, cascades_config, mut cascades) in &mut lights {
if !directional_light.shadows_enabled {
continue;
}
// It is very important to the numerical and thus visual stability of shadows that
// light_to_world has orthogonal upper-left 3x3 and zero translation.
// Even though only the direction (i.e. rotation) of the light matters, we don't constrain
// users to not change any other aspects of the transform - there's no guarantee
// `transform.to_matrix()` will give us a matrix with our desired properties.
// Instead, we directly create a good matrix from just the rotation.
let world_from_light = Mat4::from_quat(transform.compute_transform().rotation);
let light_to_world_inverse = world_from_light.inverse();
for (view_entity, projection, view_to_world) in views.iter().copied() {
let camera_to_light_view = light_to_world_inverse * view_to_world;
let view_cascades = cascades_config
.bounds
.iter()
.enumerate()
.map(|(idx, far_bound)| {
// Negate bounds as -z is camera forward direction.
let z_near = if idx > 0 {
(1.0 - cascades_config.overlap_proportion)
* -cascades_config.bounds[idx - 1]
} else {
-cascades_config.minimum_distance
};
let z_far = -far_bound;
let corners = projection.get_frustum_corners(z_near, z_far);
calculate_cascade(
corners,
directional_light_shadow_map.size as f32,
world_from_light,
camera_to_light_view,
)
})
.collect();
cascades.cascades.insert(view_entity, view_cascades);
}
}
}
/// Returns a [`Cascade`] for the frustum defined by `frustum_corners`.
///
/// The corner vertices should be specified in the following order:
/// first the bottom right, top right, top left, bottom left for the near plane, then similar for the far plane.
fn calculate_cascade(
frustum_corners: [Vec3A; 8],
cascade_texture_size: f32,
world_from_light: Mat4,
light_from_camera: Mat4,
) -> Cascade {
let mut min = Vec3A::splat(f32::MAX);
let mut max = Vec3A::splat(f32::MIN);
for corner_camera_view in frustum_corners {
let corner_light_view = light_from_camera.transform_point3a(corner_camera_view);
min = min.min(corner_light_view);
max = max.max(corner_light_view);
}
// NOTE: Use the larger of the frustum slice far plane diagonal and body diagonal lengths as this
// will be the maximum possible projection size. Use the ceiling to get an integer which is
// very important for floating point stability later. It is also important that these are
// calculated using the original camera space corner positions for floating point precision
// as even though the lengths using corner_light_view above should be the same, precision can
// introduce small but significant differences.
// NOTE: The size remains the same unless the view frustum or cascade configuration is modified.
let cascade_diameter = (frustum_corners[0] - frustum_corners[6])
.length()
.max((frustum_corners[4] - frustum_corners[6]).length())
.ceil();
// NOTE: If we ensure that cascade_texture_size is a power of 2, then as we made cascade_diameter an
// integer, cascade_texel_size is then an integer multiple of a power of 2 and can be
// exactly represented in a floating point value.
let cascade_texel_size = cascade_diameter / cascade_texture_size;
// NOTE: For shadow stability it is very important that the near_plane_center is at integer
// multiples of the texel size to be exactly representable in a floating point value.
let near_plane_center = Vec3A::new(
(0.5 * (min.x + max.x) / cascade_texel_size).floor() * cascade_texel_size,
(0.5 * (min.y + max.y) / cascade_texel_size).floor() * cascade_texel_size,
// NOTE: max.z is the near plane for right-handed y-up
max.z,
);
// It is critical for `world_to_cascade` to be stable. So rather than forming `cascade_to_world`
// and inverting it, which risks instability due to numerical precision, we directly form
// `world_to_cascade` as the reference material suggests.
let light_to_world_transpose = world_from_light.transpose();
let cascade_from_world = Mat4::from_cols(
light_to_world_transpose.x_axis,
light_to_world_transpose.y_axis,
light_to_world_transpose.z_axis,
(-near_plane_center).extend(1.0),
);
// Right-handed orthographic projection, centered at `near_plane_center`.
// NOTE: This is different from the reference material, as we use reverse Z.
let r = (max.z - min.z).recip();
let clip_from_cascade = Mat4::from_cols(
Vec4::new(2.0 / cascade_diameter, 0.0, 0.0, 0.0),
Vec4::new(0.0, 2.0 / cascade_diameter, 0.0, 0.0),
Vec4::new(0.0, 0.0, r, 0.0),
Vec4::new(0.0, 0.0, 1.0, 1.0),
);
let clip_from_world = clip_from_cascade * cascade_from_world;
Cascade {
world_from_cascade: cascade_from_world.inverse(),
clip_from_cascade,
clip_from_world,
texel_size: cascade_texel_size,
}
}
/// Add this component to make a [`Mesh3d`] not cast shadows.
#[derive(Debug, Component, Reflect, Default)]
#[reflect(Component, Default, Debug)]
@ -525,6 +244,8 @@ pub enum ShadowFilteringMethod {
}
/// The [`VisibilityClass`] used for all lights (point, directional, and spot).
///
/// [`VisibilityClass`]: bevy_camera::visibility::VisibilityClass
pub struct LightVisibilityClass;
/// System sets used to run light-related systems.
@ -543,138 +264,6 @@ pub enum SimulationLightSystems {
CheckLightVisibility,
}
pub fn update_directional_light_frusta(
mut views: Query<
(
&Cascades,
&DirectionalLight,
&ViewVisibility,
&mut CascadesFrusta,
),
(
// Prevents this query from conflicting with camera queries.
Without<Camera>,
),
>,
) {
for (cascades, directional_light, visibility, mut frusta) in &mut views {
// The frustum is used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frustum is
// not needed.
if !directional_light.shadows_enabled || !visibility.get() {
continue;
}
frusta.frusta = cascades
.cascades
.iter()
.map(|(view, cascades)| {
(
*view,
cascades
.iter()
.map(|c| Frustum::from_clip_from_world(&c.clip_from_world))
.collect::<Vec<_>>(),
)
})
.collect();
}
}
// NOTE: Run this after assign_lights_to_clusters!
pub fn update_point_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<(Entity, &GlobalTransform, &PointLight, &mut CubemapFrusta)>,
changed_lights: Query<
Entity,
(
With<PointLight>,
Or<(Changed<GlobalTransform>, Changed<PointLight>)>,
),
>,
) {
let view_rotations = CUBE_MAP_FACES
.iter()
.map(|CubeMapFace { target, up }| Transform::IDENTITY.looking_at(*target, *up))
.collect::<Vec<_>>();
for (entity, transform, point_light, mut cubemap_frusta) in &mut views {
// If this light hasn't changed, and neither has the set of global_lights,
// then we can skip this calculation.
if !global_lights.is_changed() && !changed_lights.contains(entity) {
continue;
}
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !point_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
let clip_from_view = Mat4::perspective_infinite_reverse_rh(
core::f32::consts::FRAC_PI_2,
1.0,
point_light.shadow_map_near_z,
);
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
// and ignore rotation because we want the shadow map projections to align with the axes
let view_translation = Transform::from_translation(transform.translation());
let view_backward = transform.back();
for (view_rotation, frustum) in view_rotations.iter().zip(cubemap_frusta.iter_mut()) {
let world_from_view = view_translation * *view_rotation;
let clip_from_world = clip_from_view * world_from_view.to_matrix().inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
point_light.range,
);
}
}
}
pub fn update_spot_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<
(Entity, &GlobalTransform, &SpotLight, &mut Frustum),
Or<(Changed<GlobalTransform>, Changed<SpotLight>)>,
>,
) {
for (entity, transform, spot_light, mut frustum) in &mut views {
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !spot_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
let view_backward = transform.back();
let spot_world_from_view = spot_light_world_from_view(transform);
let spot_clip_from_view =
spot_light_clip_from_view(spot_light.outer_angle, spot_light.shadow_map_near_z);
let clip_from_world = spot_clip_from_view * spot_world_from_view.inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
spot_light.range,
);
}
}
fn shrink_entities(visible_entities: &mut Vec<Entity>) {
// Check that visible entities capacity() is no more than two times greater than len()
let capacity = visible_entities.capacity();

View File

@ -1,8 +1,16 @@
use bevy_render::view::{self, Visibility};
use bevy_asset::Handle;
use bevy_camera::{
primitives::{CubeMapFace, CubemapFrusta, CubemapLayout, Frustum, CUBE_MAP_FACES},
visibility::{self, CubemapVisibleEntities, Visibility, VisibilityClass},
};
use bevy_color::Color;
use bevy_ecs::prelude::*;
use bevy_image::Image;
use bevy_math::Mat4;
use bevy_reflect::prelude::*;
use bevy_transform::components::{GlobalTransform, Transform};
use crate::decal::clustered::CubemapLayout;
use super::*;
use crate::{GlobalVisibleClusterableObjects, LightVisibilityClass};
/// A light that emits light in all directions from a central point.
///
@ -36,7 +44,7 @@ use super::*;
Visibility,
VisibilityClass
)]
#[component(on_add = view::add_visibility_class::<LightVisibilityClass>)]
#[component(on_add = visibility::add_visibility_class::<LightVisibilityClass>)]
pub struct PointLight {
/// The color of this light source.
pub color: Color,
@ -76,6 +84,8 @@ pub struct PointLight {
///
/// Note that soft shadows are significantly more expensive to render than
/// hard shadows.
///
/// [`ShadowFilteringMethod::Temporal`]: crate::ShadowFilteringMethod::Temporal
#[cfg(feature = "experimental_pbr_pcss")]
pub soft_shadows_enabled: bool,
@ -151,3 +161,85 @@ pub struct PointLightTexture {
/// The cubemap layout. The image should be a packed cubemap in one of the formats described by the [`CubemapLayout`] enum.
pub cubemap_layout: CubemapLayout,
}
/// Controls the resolution of [`PointLight`] shadow maps.
///
/// ```
/// # use bevy_app::prelude::*;
/// # use bevy_pbr::PointLightShadowMap;
/// App::new()
/// .insert_resource(PointLightShadowMap { size: 2048 });
/// ```
#[derive(Resource, Clone, Debug, Reflect)]
#[reflect(Resource, Debug, Default, Clone)]
pub struct PointLightShadowMap {
/// The width and height of each of the 6 faces of the cubemap.
///
/// Defaults to `1024`.
pub size: usize,
}
impl Default for PointLightShadowMap {
fn default() -> Self {
Self { size: 1024 }
}
}
// NOTE: Run this after assign_lights_to_clusters!
pub fn update_point_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<(Entity, &GlobalTransform, &PointLight, &mut CubemapFrusta)>,
changed_lights: Query<
Entity,
(
With<PointLight>,
Or<(Changed<GlobalTransform>, Changed<PointLight>)>,
),
>,
) {
let view_rotations = CUBE_MAP_FACES
.iter()
.map(|CubeMapFace { target, up }| Transform::IDENTITY.looking_at(*target, *up))
.collect::<Vec<_>>();
for (entity, transform, point_light, mut cubemap_frusta) in &mut views {
// If this light hasn't changed, and neither has the set of global_lights,
// then we can skip this calculation.
if !global_lights.is_changed() && !changed_lights.contains(entity) {
continue;
}
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !point_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
let clip_from_view = Mat4::perspective_infinite_reverse_rh(
core::f32::consts::FRAC_PI_2,
1.0,
point_light.shadow_map_near_z,
);
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
// and ignore rotation because we want the shadow map projections to align with the axes
let view_translation = Transform::from_translation(transform.translation());
let view_backward = transform.back();
for (view_rotation, frustum) in view_rotations.iter().zip(cubemap_frusta.iter_mut()) {
let world_from_view = view_translation * *view_rotation;
let clip_from_world = clip_from_view * world_from_view.to_matrix().inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
point_light.range,
);
}
}
}

View File

@ -1,6 +1,17 @@
use bevy_render::view::{self, Visibility};
use bevy_asset::Handle;
use bevy_camera::{
primitives::Frustum,
visibility::{self, Visibility, VisibilityClass},
};
use bevy_color::Color;
use bevy_ecs::prelude::*;
use bevy_image::Image;
use bevy_math::{Mat4, Vec4};
use bevy_reflect::prelude::*;
use bevy_render::view::VisibleMeshEntities;
use bevy_transform::components::{GlobalTransform, Transform};
use super::*;
use crate::{GlobalVisibleClusterableObjects, LightVisibilityClass};
/// A light that emits light in a given direction from a central point.
///
@ -10,7 +21,7 @@ use super::*;
#[derive(Component, Debug, Clone, Copy, Reflect)]
#[reflect(Component, Default, Debug, Clone)]
#[require(Frustum, VisibleMeshEntities, Transform, Visibility, VisibilityClass)]
#[component(on_add = view::add_visibility_class::<LightVisibilityClass>)]
#[component(on_add = visibility::add_visibility_class::<LightVisibilityClass>)]
pub struct SpotLight {
/// The color of the light.
///
@ -58,6 +69,8 @@ pub struct SpotLight {
///
/// Note that soft shadows are significantly more expensive to render than
/// hard shadows.
///
/// [`ShadowFilteringMethod::Temporal`]: crate::ShadowFilteringMethod::Temporal
#[cfg(feature = "experimental_pbr_pcss")]
pub soft_shadows_enabled: bool,
@ -184,3 +197,38 @@ pub struct SpotLightTexture {
/// Note the border of the image should be entirely black to avoid leaking light.
pub image: Handle<Image>,
}
pub fn update_spot_light_frusta(
global_lights: Res<GlobalVisibleClusterableObjects>,
mut views: Query<
(Entity, &GlobalTransform, &SpotLight, &mut Frustum),
Or<(Changed<GlobalTransform>, Changed<SpotLight>)>,
>,
) {
for (entity, transform, spot_light, mut frustum) in &mut views {
// The frusta are used for culling meshes to the light for shadow mapping
// so if shadow mapping is disabled for this light, then the frusta are
// not needed.
// Also, if the light is not relevant for any cluster, it will not be in the
// global lights set and so there is no need to update its frusta.
if !spot_light.shadows_enabled || !global_lights.entities.contains(&entity) {
continue;
}
// ignore scale because we don't want to effectively scale light radius and range
// by applying those as a view transform to shadow map rendering of objects
let view_backward = transform.back();
let spot_world_from_view = spot_light_world_from_view(transform);
let spot_clip_from_view =
spot_light_clip_from_view(spot_light.outer_angle, spot_light.shadow_map_near_z);
let clip_from_world = spot_clip_from_view * spot_world_from_view.inverse();
*frustum = Frustum::from_clip_from_world_custom_far(
&clip_from_world,
&transform.translation(),
&view_backward,
spot_light.range,
);
}
}

View File

@ -1,5 +1,6 @@
use self::assign::ClusterableObjectType;
use crate::assign::calculate_cluster_factors;
use crate::cascade::{Cascade, CascadeShadowConfig, Cascades};
use crate::*;
use bevy_asset::UntypedAssetId;
pub use bevy_camera::primitives::{face_index_to_name, CubeMapFace, CUBE_MAP_FACES};