Commit Graph

19 Commits

Author SHA1 Message Date
François Mockers
54701a844e
Revert "Replace Ambient Lights with Environment Map Lights (#17482)" (#18167)
This reverts commit 0b5302d96a.

# Objective

- Fixes #18158
- #17482 introduced rendering changes and was merged a bit too fast

## Solution

- Revert #17482 so that it can be redone and rendering changes discussed
before being merged. This will make it easier to compare changes with
main in the known "valid" state

This is not an issue with the work done in #17482 that is still
interesting
2025-03-05 23:08:46 +00:00
Shaye Garg
0b5302d96a
Replace Ambient Lights with Environment Map Lights (#17482)
# Objective

Transparently uses simple `EnvironmentMapLight`s to mimic
`AmbientLight`s. Implements the first part of #17468, but I can
implement hemispherical lights in this PR too if needed.

## Solution

- A function `EnvironmentMapLight::solid_color(&mut Assets<Image>,
Color)` is provided to make an environment light with a solid color.
- A new system is added to `SimulationLightSystems` that maps
`AmbientLight`s on views or the world to a corresponding
`EnvironmentMapLight`.

I have never worked with (or on) Bevy before, so nitpicky comments on
how I did things are appreciated :).

## Testing

Testing was done on a modified version of the `3d/lighting` example,
where I removed all lights except the ambient light. I have not included
the example, but can if required.

## Migration
`bevy_pbr::AmbientLight` has been deprecated, so all usages of it should
be replaced by a `bevy_pbr::EnvironmentMapLight` created with
`EnvironmentMapLight::solid_color` placed on the camera. There is no
alternative to ambient lights as resources.
2025-03-04 07:40:53 +00:00
Alice Cecile
2ad5908e58
Make Query::single (and friends) return a Result (#18082)
# Objective

As discussed in #14275, Bevy is currently too prone to panic, and makes
the easy / beginner-friendly way to do a large number of operations just
to panic on failure.

This is seriously frustrating in library code, but also slows down
development, as many of the `Query::single` panics can actually safely
be an early return (these panics are often due to a small ordering issue
or a change in game state.

More critically, in most "finished" products, panics are unacceptable:
any unexpected failures should be handled elsewhere. That's where the
new

With the advent of good system error handling, we can now remove this.

Note: I was instrumental in a) introducing this idea in the first place
and b) pushing to make the panicking variant the default. The
introduction of both `let else` statements in Rust and the fancy system
error handling work in 0.16 have changed my mind on the right balance
here.

## Solution

1. Make `Query::single` and `Query::single_mut` (and other random
related methods) return a `Result`.
2. Handle all of Bevy's internal usage of these APIs.
3. Deprecate `Query::get_single` and friends, since we've moved their
functionality to the nice names.
4. Add detailed advice on how to best handle these errors.

Generally I like the diff here, although `get_single().unwrap()` in
tests is a bit of a downgrade.

## Testing

I've done a global search for `.single` to track down any missed
deprecated usages.

As to whether or not all the migrations were successful, that's what CI
is for :)

## Future work

~~Rename `Query::get_single` and friends to `Query::single`!~~

~~I've opted not to do this in this PR, and smear it across two releases
in order to ease the migration. Successive deprecations are much easier
to manage than the semantics and types shifting under your feet.~~

Cart has convinced me to change my mind on this; see
https://github.com/bevyengine/bevy/pull/18082#discussion_r1974536085.

## Migration guide

`Query::single`, `Query::single_mut` and their `QueryState` equivalents
now return a `Result`. Generally, you'll want to:

1. Use Bevy 0.16's system error handling to return a `Result` using the
`?` operator.
2. Use a `let else Ok(data)` block to early return if it's an expected
failure.
3. Use `unwrap()` or `Ok` destructuring inside of tests.

The old `Query::get_single` (etc) methods which did this have been
deprecated.
2025-03-02 19:51:56 +00:00
Zachary Harrold
5241e09671
Upgrade to Rust Edition 2024 (#17967)
# Objective

- Fixes #17960

## Solution

- Followed the [edition upgrade
guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html)

## Testing

- CI

---

## Summary of Changes

### Documentation Indentation

When using lists in documentation, proper indentation is now linted for.
This means subsequent lines within the same list item must start at the
same indentation level as the item.

```rust
/* Valid */
/// - Item 1
///   Run-on sentence.
/// - Item 2
struct Foo;

/* Invalid */
/// - Item 1
///     Run-on sentence.
/// - Item 2
struct Foo;
```

### Implicit `!` to `()` Conversion

`!` (the never return type, returned by `panic!`, etc.) no longer
implicitly converts to `()`. This is particularly painful for systems
with `todo!` or `panic!` statements, as they will no longer be functions
returning `()` (or `Result<()>`), making them invalid systems for
functions like `add_systems`. The ideal fix would be to accept functions
returning `!` (or rather, _not_ returning), but this is blocked on the
[stabilisation of the `!` type
itself](https://doc.rust-lang.org/std/primitive.never.html), which is
not done.

The "simple" fix would be to add an explicit `-> ()` to system
signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`).
However, this is _also_ banned, as there is an existing lint which (IMO,
incorrectly) marks this as an unnecessary annotation.

So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ...
}` closuers into variables and give the variable an explicit type (e.g.,
`fn()`).

```rust
// Valid
let system: fn() = || todo!("Not implemented yet!");
app.add_systems(..., system);

// Invalid
app.add_systems(..., || todo!("Not implemented yet!"));
```

### Temporary Variable Lifetimes

The order in which temporary variables are dropped has changed. The
simple fix here is _usually_ to just assign temporaries to a named
variable before use.

### `gen` is a keyword

We can no longer use the name `gen` as it is reserved for a future
generator syntax. This involved replacing uses of the name `gen` with
`r#gen` (the raw-identifier syntax).

### Formatting has changed

Use statements have had the order of imports changed, causing a
substantial +/-3,000 diff when applied. For now, I have opted-out of
this change by amending `rustfmt.toml`

```toml
style_edition = "2021"
```

This preserves the original formatting for now, reducing the size of
this PR. It would be a simple followup to update this to 2024 and run
`cargo fmt`.

### New `use<>` Opt-Out Syntax

Lifetimes are now implicitly included in RPIT types. There was a handful
of instances where it needed to be added to satisfy the borrow checker,
but there may be more cases where it _should_ be added to avoid
breakages in user code.

### `MyUnitStruct { .. }` is an invalid pattern

Previously, you could match against unit structs (and unit enum
variants) with a `{ .. }` destructuring. This is no longer valid.

### Pretty much every use of `ref` and `mut` are gone

Pattern binding has changed to the point where these terms are largely
unused now. They still serve a purpose, but it is far more niche now.

### `iter::repeat(...).take(...)` is bad

New lint recommends using the more explicit `iter::repeat_n(..., ...)`
instead.

## Migration Guide

The lifetimes of functions using return-position impl-trait (RPIT) are
likely _more_ conservative than they had been previously. If you
encounter lifetime issues with such a function, please create an issue
to investigate the addition of `+ use<...>`.

## Notes

- Check the individual commits for a clearer breakdown for what
_actually_ changed.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2025-02-24 03:54:47 +00:00
Carter Anderson
21f1e3045c
Relationships (non-fragmenting, one-to-many) (#17398)
This adds support for one-to-many non-fragmenting relationships (with
planned paths for fragmenting and non-fragmenting many-to-many
relationships). "Non-fragmenting" means that entities with the same
relationship type, but different relationship targets, are not forced
into separate tables (which would cause "table fragmentation").

Functionally, this fills a similar niche as the current Parent/Children
system. The biggest differences are:

1. Relationships have simpler internals and significantly improved
performance and UX. Commands and specialized APIs are no longer
necessary to keep everything in sync. Just spawn entities with the
relationship components you want and everything "just works".
2. Relationships are generalized. Bevy can provide additional built in
relationships, and users can define their own.

**REQUEST TO REVIEWERS**: _please don't leave top level comments and
instead comment on specific lines of code. That way we can take
advantage of threaded discussions. Also dont leave comments simply
pointing out CI failures as I can read those just fine._

## Built on top of what we have

Relationships are implemented on top of the Bevy ECS features we already
have: components, immutability, and hooks. This makes them immediately
compatible with all of our existing (and future) APIs for querying,
spawning, removing, scenes, reflection, etc. The fewer specialized APIs
we need to build, maintain, and teach, the better.

## Why focus on one-to-many non-fragmenting first?

1. This allows us to improve Parent/Children relationships immediately,
in a way that is reasonably uncontroversial. Switching our hierarchy to
fragmenting relationships would have significant performance
implications. ~~Flecs is heavily considering a switch to non-fragmenting
relations after careful considerations of the performance tradeoffs.~~
_(Correction from @SanderMertens: Flecs is implementing non-fragmenting
storage specialized for asset hierarchies, where asset hierarchies are
many instances of small trees that have a well defined structure)_
2. Adding generalized one-to-many relationships is currently a priority
for the [Next Generation Scene / UI
effort](https://github.com/bevyengine/bevy/discussions/14437).
Specifically, we're interested in building reactions and observers on
top.

## The changes

This PR does the following:

1. Adds a generic one-to-many Relationship system
3. Ports the existing Parent/Children system to Relationships, which now
lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been
removed.
4. Adds on_despawn component hooks
5. Relationships can opt-in to "despawn descendants" behavior, meaning
that the entire relationship hierarchy is despawned when
`entity.despawn()` is called. The built in Parent/Children hierarchies
enable this behavior, and `entity.despawn_recursive()` has been removed.
6. `world.spawn` now applies commands after spawning. This ensures that
relationship bookkeeping happens immediately and removes the need to
manually flush. This is in line with the equivalent behaviors recently
added to the other APIs (ex: insert).
7. Removes the ValidParentCheckPlugin (system-driven / poll based) in
favor of a `validate_parent_has_component` hook.

## Using Relationships

The `Relationship` trait looks like this:

```rust
pub trait Relationship: Component + Sized {
    type RelationshipSources: RelationshipSources<Relationship = Self>;
    fn get(&self) -> Entity;
    fn from(entity: Entity) -> Self;
}
```

A relationship is a component that:

1. Is a simple wrapper over a "target" Entity.
2. Has a corresponding `RelationshipSources` component, which is a
simple wrapper over a collection of entities. Every "target entity"
targeted by a "source entity" with a `Relationship` has a
`RelationshipSources` component, which contains every "source entity"
that targets it.

For example, the `Parent` component (as it currently exists in Bevy) is
the `Relationship` component and the entity containing the Parent is the
"source entity". The entity _inside_ the `Parent(Entity)` component is
the "target entity". And that target entity has a `Children` component
(which implements `RelationshipSources`).

In practice, the Parent/Children relationship looks like this:

```rust
#[derive(Relationship)]
#[relationship(relationship_sources = Children)]
pub struct Parent(pub Entity);

#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent)]
pub struct Children(Vec<Entity>);
```

The Relationship and RelationshipSources derives automatically implement
Component with the relevant configuration (namely, the hooks necessary
to keep everything in sync).

The most direct way to add relationships is to spawn entities with
relationship components:

```rust
let a = world.spawn_empty().id();
let b = world.spawn(Parent(a)).id();

assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]);
```

There are also convenience APIs for spawning more than one entity with
the same relationship:

```rust
world.spawn_empty().with_related::<Children>(|s| {
    s.spawn_empty();
    s.spawn_empty();
})
```

The existing `with_children` API is now a simpler wrapper over
`with_related`. This makes this change largely non-breaking for existing
spawn patterns.

```rust
world.spawn_empty().with_children(|s| {
    s.spawn_empty();
    s.spawn_empty();
})
```

There are also other relationship APIs, such as `add_related` and
`despawn_related`.

## Automatic recursive despawn via the new on_despawn hook

`RelationshipSources` can opt-in to "despawn descendants" behavior,
which will despawn all related entities in the relationship hierarchy:

```rust
#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent, despawn_descendants)]
pub struct Children(Vec<Entity>);
```

This means that `entity.despawn_recursive()` is no longer required.
Instead, just use `entity.despawn()` and the relevant related entities
will also be despawned.

To despawn an entity _without_ despawning its parent/child descendants,
you should remove the `Children` component first, which will also remove
the related `Parent` components:

```rust
entity
    .remove::<Children>()
    .despawn()
```

This builds on the on_despawn hook introduced in this PR, which is fired
when an entity is despawned (before other hooks).

## Relationships are the source of truth

`Relationship` is the _single_ source of truth component.
`RelationshipSources` is merely a reflection of what all the
`Relationship` components say. By embracing this, we are able to
significantly improve the performance of the system as a whole. We can
rely on component lifecycles to protect us against duplicates, rather
than needing to scan at runtime to ensure entities don't already exist
(which results in quadratic runtime). A single source of truth gives us
constant-time inserts. This does mean that we cannot directly spawn
populated `Children` components (or directly add or remove entities from
those components). I personally think this is a worthwhile tradeoff,
both because it makes the performance much better _and_ because it means
theres exactly one way to do things (which is a philosophy we try to
employ for Bevy APIs).

As an aside: treating both sides of the relationship as "equivalent
source of truth relations" does enable building simple and flexible
many-to-many relationships. But this introduces an _inherent_ need to
scan (or hash) to protect against duplicates.
[`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations)
has a very nice implementation of the "symmetrical many-to-many"
approach. Unfortunately I think the performance issues inherent to that
approach make it a poor choice for Bevy's default relationship system.

## Followup Work

* Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in
this PR to keep the diff reasonable, but I'm personally biased toward
this change (and using that naming pattern generally for relationships).
* [Improved spawning
ergonomics](https://github.com/bevyengine/bevy/discussions/16920)
* Consider adding relationship observers/triggers for "relationship
targets" whenever a source is added or removed. This would replace the
current "hierarchy events" system, which is unused upstream but may have
existing users downstream. I think triggers are the better fit for this
than a buffered event queue, and would prefer not to add that back.
* Fragmenting relations: My current idea hinges on the introduction of
"value components" (aka: components whose type _and_ value determines
their ComponentId, via something like Hashing / PartialEq). By labeling
a Relationship component such as `ChildOf(Entity)` as a "value
component", `ChildOf(e1)` and `ChildOf(e2)` would be considered
"different components". This makes the transition between fragmenting
and non-fragmenting a single flag, and everything else continues to work
as expected.
* Many-to-many support
* Non-fragmenting: We can expand Relationship to be a list of entities
instead of a single entity. I have largely already written the code for
this.
* Fragmenting: With the "value component" impl mentioned above, we get
many-to-many support "for free", as it would allow inserting multiple
copies of a Relationship component with different target entities.

Fixes #3742 (If this PR is merged, I think we should open more targeted
followup issues for the work above, with a fresh tracking issue free of
the large amount of less-directed historical context)
Fixes #17301
Fixes #12235 
Fixes #15299
Fixes #15308 

## Migration Guide

* Replace `ChildBuilder` with `ChildSpawnerCommands`.
* Replace calls to `.set_parent(parent_id)` with
`.insert(Parent(parent_id))`.
* Replace calls to `.replace_children()` with `.remove::<Children>()`
followed by `.add_children()`. Note that you'll need to manually despawn
any children that are not carried over.
* Replace calls to `.despawn_recursive()` with `.despawn()`.
* Replace calls to `.despawn_descendants()` with
`.despawn_related::<Children>()`.
* If you have any calls to `.despawn()` which depend on the children
being preserved, you'll need to remove the `Children` component first.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-01-18 22:20:30 +00:00
Patrick Walton
bf3692a011
Introduce support for mixed lighting by allowing lights to opt out of contributing diffuse light to lightmapped objects. (#16761)
This PR adds support for *mixed lighting* to Bevy, whereby some parts of
the scene are lightmapped, while others take part in real-time lighting.
(Here *real-time lighting* means lighting at runtime via the PBR shader,
as opposed to precomputed light using lightmaps.) It does so by adding a
new field, `affects_lightmapped_meshes` to `IrradianceVolume` and
`AmbientLight`, and a corresponding field
`affects_lightmapped_mesh_diffuse` to `DirectionalLight`, `PointLight`,
`SpotLight`, and `EnvironmentMapLight`. By default, this value is set to
true; when set to false, the light contributes nothing to the diffuse
irradiance component to meshes with lightmaps.

Note that specular light is unaffected. This is because the correct way
to bake specular lighting is *directional lightmaps*, which we have no
support for yet.

There are two general ways I expect this field to be used:

1. When diffuse indirect light is baked into lightmaps, irradiance
volumes and reflection probes shouldn't contribute any diffuse light to
the static geometry that has a lightmap. That's because the baking tool
should have already accounted for it, and in a higher-quality fashion,
as lightmaps typically offer a higher effective texture resolution than
the light probe does.

2. When direct diffuse light is baked into a lightmap, punctual lights
shouldn't contribute any diffuse light to static geometry with a
lightmap, to avoid double-counting. It may seem odd to bake *direct*
light into a lightmap, as opposed to indirect light. But there is a use
case: in a scene with many lights, avoiding light leaks requires shadow
mapping, which quickly becomes prohibitive when many lights are
involved. Baking lightmaps allows light leaks to be eliminated on static
geometry.

A new example, `mixed_lighting`, has been added. It demonstrates a sofa
(model from the [glTF Sample Assets]) that has been lightmapped offline
using [Bakery]. It has four modes:

1. In *baked* mode, all objects are locked in place, and all the diffuse
direct and indirect light has been calculated ahead of time. Note that
the bottom of the sphere has a red tint from the sofa, illustrating that
the baking tool captured indirect light for it.

2. In *mixed direct* mode, lightmaps capturing diffuse direct and
indirect light have been pre-calculated for the static objects, but the
dynamic sphere has real-time lighting. Note that, because the diffuse
lighting has been entirely pre-calculated for the scenery, the dynamic
sphere casts no shadow. In a real app, you would typically use real-time
lighting for the most important light so that dynamic objects can shadow
the scenery and relegate baked lighting to the less important lights for
which shadows aren't as important. Also note that there is no red tint
on the sphere, because there is no global illumination applied to it. In
an actual game, you could fix this problem by supplementing the
lightmapped objects with an irradiance volume.

3. In *mixed indirect* mode, all direct light is calculated in
real-time, and the static objects have pre-calculated indirect lighting.
This corresponds to the mode that most applications are expected to use.
Because direct light on the scenery is computed dynamically, shadows are
fully supported. As in mixed direct mode, there is no global
illumination on the sphere; in a real application, irradiance volumes
could be used to supplement the lightmaps.

4. In *real-time* mode, no lightmaps are used at all, and all punctual
lights are rendered in real-time. No global illumination exists.

In the example, you can click around to move the sphere, unless you're
in baked mode, in which case the sphere must be locked in place to be
lit correctly.

## Showcase

Baked mode:
![Screenshot 2024-12-13
112926](https://github.com/user-attachments/assets/cc00d84e-abd7-4117-97e9-17267d815c6a)

Mixed direct mode:
![Screenshot 2024-12-13
112933](https://github.com/user-attachments/assets/49997305-349a-4f6a-b451-8cccbb469889)

Mixed indirect mode (default):
![Screenshot 2024-12-13
112939](https://github.com/user-attachments/assets/0f4f6d8a-998f-474b-9fa5-fe4c212c921c)

Real-time mode:
![Screenshot 2024-12-13
112944](https://github.com/user-attachments/assets/fdbc4535-d902-4ba0-bfbc-f5c7b723fac8)

## Migration guide

* The `AmbientLight` resource, the `IrradianceVolume` component, and the
`EnvironmentMapLight` component now have `affects_lightmapped_meshes`
fields. If you don't need to use that field (for example, if you aren't
using lightmaps), you can safely set the field to true.
* `DirectionalLight`, `PointLight`, and `SpotLight` now have
`affects_lightmapped_mesh_diffuse` fields. If you don't need to use that
field (for example, if you aren't using lightmaps), you can safely set
the field to true.

[glTF Sample Assets]:
https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main

[Bakery]:
https://geom.io/bakery/wiki/index.php?title=Bakery_-_GPU_Lightmapper
2024-12-16 23:48:33 +00:00
Carter Anderson
015f2c69ca
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective

Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)

## Solution

As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.

This accomplishes a number of goals:

## Ergonomics wins

Specifying both `Node` and `Style` is now no longer required for
non-default styles

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

## Conceptual clarity

`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).

By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.

## Next Steps

* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.

---

## Migration Guide

Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:

Before:
```rust
fn system(nodes: Query<&Node>) {
    for node in &nodes {
        let computed_size = node.size();
    }
}
```

After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
    for computed_node in &computed_nodes {
        let computed_size = computed_node.size();
    }
}
```
2024-10-18 22:25:33 +00:00
Rob Parrett
90b5ed6c93
Adjust some example text to match visual guidelines (#15966)
# Objective

Adjust instruction text in some newer examples to match the [example
visual
guidelines](https://bevyengine.org/learn/contribute/helping-out/creating-examples/#visual-guidelines).

## Solution

Move text 12px from edge of screen

## Testing

```
cargo run --example alter_mesh
cargo run --example alter_sprite
cargo run --example camera_orbit
cargo run --example projection_zoom
cargo run --example irradiance_volumes
cargo run --example log_layers_ecs
cargo run --example multi_asset_sync
cargo run --example multiple_windows
cargo run --example order_independent_transparency
```

## Additional information

This isn't comprehensive, just the most trivial cases. I'll double check
my notes and probably follow up with an issue to look into visual
guidelines for a few other examples.
2024-10-17 01:01:32 +00:00
ickshonpe
6f7d0e5725
split up TextStyle (#15857)
# Objective

Currently text is recomputed unnecessarily on any changes to its color,
which is extremely expensive.

## Solution
Split up `TextStyle` into two separate components `TextFont` and
`TextColor`.

## Testing

I added this system to `many_buttons`:
```rust
fn set_text_colors_changed(mut colors: Query<&mut TextColor>) {
    for mut text_color in colors.iter_mut() {
        text_color.set_changed();
    }
}
```

reports ~4fps on main, ~50fps with this PR.

## Migration Guide
`TextStyle` has been renamed to `TextFont` and its `color` field has
been moved to a separate component named `TextColor` which newtypes
`Color`.
2024-10-13 17:06:22 +00:00
ZoOL
0944499f90
Update multi_asset_sync.rs (#15816)
Typo
2024-10-10 14:14:06 +00:00
UkoeHB
a6be9b4ccd
Rename TextBlock to TextLayout (#15797)
# Objective

- Improve clarity when spawning a text block. See [this
discussion](https://github.com/bevyengine/bevy/pull/15591/#discussion_r1787083571).

## Solution

- Rename `TextBlock` to `TextLayout`.
2024-10-09 20:58:27 +00:00
UkoeHB
c2c19e5ae4
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.**

# Objective

- Implement https://github.com/bevyengine/bevy/discussions/15014

## Solution

This implements [cart's
proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459)
faithfully except for one change. I separated `TextSpan` from
`TextSpan2d` because `TextSpan` needs to require the `GhostNode`
component, which is a `bevy_ui` component only usable by UI.

Extra changes:
- Added `EntityCommands::commands_mut` that returns a mutable reference.
This is a blocker for extension methods that return something other than
`self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable
reference for this reason.

## Testing

- [x] Text examples all work.

---

## Showcase

TODO: showcase-worthy

## Migration Guide

TODO: very breaking

### Accessing text spans by index

Text sections are now text sections on different entities in a
hierarchy, Use the new `TextReader` and `TextWriter` system parameters
to access spans by index.

Before:
```rust
fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) {
    let text = query.single_mut();
    text.sections[1].value = format_time(time.elapsed());
}
```

After:
```rust
fn refresh_text(
    query: Query<Entity, With<TimeText>>,
    mut writer: UiTextWriter,
    time: Res<Time>
) {
    let entity = query.single();
    *writer.text(entity, 1) = format_time(time.elapsed());
}
```

### Iterating text spans

Text spans are now entities in a hierarchy, so the new `UiTextReader`
and `UiTextWriter` system parameters provide ways to iterate that
hierarchy. The `UiTextReader::iter` method will give you a normal
iterator over spans, and `UiTextWriter::for_each` lets you visit each of
the spans.

---------

Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-09 18:35:36 +00:00
Joona Aalto
25bfa80e60
Migrate cameras to required components (#15641)
# Objective

Yet another PR for migrating stuff to required components. This time,
cameras!

## Solution

As per the [selected
proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected),
deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d`
and `Camera3d`.

Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning,
as suggested by Cart [on
Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273).
I would personally like cameras to work a bit differently and be split
into a few more components, to avoid some footguns and confusing
semantics, but that is more controversial, and shouldn't block this core
migration.

## Testing

I ran a few 2D and 3D examples, and tried cameras with and without
render graphs.

---

## Migration Guide

`Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of
`Camera2d` and `Camera3d`. Inserting them will now also insert the other
components required by them automatically.
2024-10-05 01:59:52 +00:00
Tim
eb51b4c28e
Migrate scenes to required components (#15579)
# Objective

A step in the migration to required components: scenes!

## Solution

As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2FPJtNGVMMQhyM0zIvCJSkbA):
- Deprecate `SceneBundle` and `DynamicSceneBundle`.
- Add `SceneRoot` and `DynamicSceneRoot` components, which wrap a
`Handle<Scene>` and `Handle<DynamicScene>` respectively.

## Migration Guide
Asset handles for scenes and dynamic scenes must now be wrapped in the
`SceneRoot` and `DynamicSceneRoot` components. Raw handles as components
no longer spawn scenes.

Additionally, `SceneBundle` and `DynamicSceneBundle` have been
deprecated. Instead, use the scene components directly.

Previously:
```rust
let model_scene = asset_server.load(GltfAssetLabel::Scene(0).from_asset("model.gltf"));

commands.spawn(SceneBundle {
    scene: model_scene,
    transform: Transform::from_xyz(-4.0, 0.0, -3.0),
    ..default()
});
```
Now:
```rust
let model_scene = asset_server.load(GltfAssetLabel::Scene(0).from_asset("model.gltf"));

commands.spawn((
    SceneRoot(model_scene),
    Transform::from_xyz(-4.0, 0.0, -3.0),
));
```
2024-10-01 22:42:11 +00:00
Joona Aalto
54006b107b
Migrate meshes and materials to required components (#15524)
# Objective

A big step in the migration to required components: meshes and
materials!

## Solution

As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):

- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:

![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)

![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)

Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.

## Testing

I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!

## Implementation Notes

- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.

---

## Migration Guide

Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.

Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.

The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.

---------

Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
Joona Aalto
de888a373d
Migrate lights to required components (#15554)
# Objective

Another step in the migration to required components: lights!

Note that this does not include `EnvironmentMapLight` or reflection
probes yet, because their API hasn't been fully chosen yet.

## Solution

As per the [selected
proposals](https://hackmd.io/@bevy/required_components/%2FLLnzwz9XTxiD7i2jiUXkJg):

- Deprecate `PointLightBundle` in favor of the `PointLight` component
- Deprecate `SpotLightBundle` in favor of the `PointLight` component
- Deprecate `DirectionalLightBundle` in favor of the `DirectionalLight`
component

## Testing

I ran some examples with lights.

---

## Migration Guide

`PointLightBundle`, `SpotLightBundle`, and `DirectionalLightBundle` have
been deprecated. Use the `PointLight`, `SpotLight`, and
`DirectionalLight` components instead. Adding them will now insert the
other components required by them automatically.
2024-10-01 03:20:43 +00:00
Tero Laxström
522d82b21a
Fixing text sizes for examples (#15190)
# Objective

- Fixes #14265

## Solution

- Go through Pixel Eagle examples (and examples all in all)
- If default size is used it is usually left there
- If size of font is touched try dividing with 1.2 and round it to
nearest whole number

## Testing

- Run example before and after
- Make sure examples text are readable or like before cosmic-text change

---

## Showcase

Before:

![image](https://github.com/user-attachments/assets/beb2d5af-d1ee-4c2c-89c4-8e59c53b53b4)

After:

![image](https://github.com/user-attachments/assets/fef28a8d-dc26-4e0e-9870-6b216de906e8)
2024-09-16 23:14:37 +00:00
TotalKrill
6adf31babf
hooking up observers and clicking for ui node (#14695)
Makes the newly merged picking usable for UI elements. 

currently it both triggers the events, as well as sends them as throught
commands.trigger_targets. We should probably figure out if this is
needed for them all.

# Objective

Hooks up obserers and picking for a very simple example

## Solution

upstreamed the UI picking backend from bevy_mod_picking

## Testing

tested with the new example picking/simple_picking.rs


---

---------

Co-authored-by: Lixou <82600264+DasLixou@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
2024-08-15 14:43:55 +00:00
Mincong Lu
1d950e6195
Allow AssetServer::load to acquire a guard item. (#13051)
# Objective

Supercedes #12881 . Added a simple implementation that allows the user
to react to multiple asset loads both synchronously and asynchronously.

## Solution

Added `load_acquire`, that holds an item and drops it when loading is
finished or failed.

When used synchronously 

Hold an `Arc<()>`, check for `Arc::strong_count() == 1` when all loading
completed.

When used asynchronously 

Hold a `SemaphoreGuard`, await on `acquire_all` for completion.

This implementation has more freedom than the original in my opinion.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-05-23 13:28:29 +00:00