Commit Graph

12 Commits

Author SHA1 Message Date
Martín Maita
f3db44b635
Update ureq requirement from 2.10.1 to 3.0.8 (#18146)
# Objective

- Closes #18131

## Solution

- Update ureq requirement from 2.10.1 to 3.0.8 and migrate breaking
code.

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2025-03-04 01:11:28 +00:00
Matty Weatherley
4b1745f813
BRP resource methods (#17423)
# Objective

So far, built-in BRP methods allow users to interact with entities'
components, but global resources have remained beyond its reach. The
goal of this PR is to take the first steps in rectifying this shortfall.

## Solution

Added five new default methods to BRP:
- `bevy/get_resource`: Extracts the value of a given resource from the
world.
- `bevy/insert_resource`: Serializes an input value to a given resource
type and inserts it into the world.
- `bevy/remove_resource`: Removes the given resource from the world.
- `bevy/mutate_resource`: Replaces the value of a field in a given
resource with the result of serializing a given input value.
- `bevy/list_resources`: Lists all resources in the type registry with
an available `ReflectResource`.

## Testing

Added a test resource to the `server` example scene that you can use to
mess around with the new BRP methods.

## Showcase

Resources can now be retrieved and manipulated remotely using a handful
of new BRP methods. For example, a resource that looks like this:
```rust
#[derive(Resource, Reflect, Serialize, Deserialize)]
#[reflect(Resource, Serialize, Deserialize)]
pub struct PlayerSpawnSettings {
  pub location: Vec2,
  pub lives: u8,
}
```

can be manipulated remotely as follows.

Retrieving the value of the resource:
```json
{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "bevy/get_resource",
  "params": {
    "resource": "path::to::my::module::PlayerSpawnSettings"
  }
}
```

Inserting a resource value into the world:
```json
{
  "jsonrpc": "2.0",
  "id": 2,
  "method": "bevy/insert_resource",
  "params": {
    "resource": "path::to::my::module::PlayerSpawnSettings",
    "value": {
      "location": [
        2.5, 
        2.5
      ],
      "lives": 25
    }
  }
}
```

Removing the resource from the world:
```json
{
  "jsonrpc": "2.0",
  "id": 3,
  "method": "bevy/remove_resource",
  "params": {
    "resource": "path::to::my::module::PlayerSpawnSettings"
  }
}
```

Mutating a field of the resource specified by a path:
```json
{
  "jsonrpc": "2.0",
  "id": 4,
  "method": "bevy/mutate_resource",
  "params": {
    "resource": "path::to::my::module::PlayerSpawnSettings",
    "path": ".location.x",
    "value": -3.0
  }
}
```

Listing all manipulable resources in the type registry:
```json
{
  "jsonrpc": "2.0",
  "id": 5,
  "method": "bevy/list_resources"
}
```
2025-02-26 20:29:47 +00:00
MevLyshkin
897ffad8af
BRP strict field in query (#16725)
# Objective

- Allow skiping components that don't have ComponentId yet instead of
failing `bevy/query` request.

## Solution

- Describe the solution used to achieve the objective above.

## Testing

My naive approach boils down to:
- bevy/list to get list of all components.
- bevy/query with empty components and has fields and a option that
contains result of the bevy/list.

Before that change I end up with bunch of `Component xxx isn't used in
the world` because some of the components wasn't spawned at any moment
yet in the game. Now it should work.

## Migration Guide

- `BrpQueryParams` now has `strict` boolean field. It serfs as a flag to
fail when encountering an invalid component rather than skipping it.
Defaults to false.
2024-12-14 05:22:19 +00:00
andristarr
7482a0d26d
aligning public apis of Time,Timer and Stopwatch (#15962)
Fixes #15834

## Migration Guide

The APIs of `Time`, `Timer` and `Stopwatch` have been cleaned up for
consistency with each other and the standard library's `Duration` type.
The following methods have been renamed:

- `Stowatch::paused` -> `Stopwatch::is_paused`
- `Time::elapsed_seconds` -> `Time::elasped_secs` (including `_f64` and
`_wrapped` variants)
2024-10-16 21:09:32 +00:00
Pablo Reinhardt
d96a9d15f6
Migrate from Query::single and friends to Single (#15872)
# Objective

- closes #15866

## Solution

- Simply migrate where possible.

## Testing

- Expect that CI will do most of the work. Examples is another way of
testing this, as most of the work is in that area.
---

## Notes
For now, this PR doesn't migrate `QueryState::single` and friends as for
now, this look like another issue. So for example, QueryBuilders that
used single or `World::query` that used single wasn't migrated. If there
is a easy way to migrate those, please let me know.

Most of the uses of `Query::single` were removed, the only other uses
that I found was related to tests of said methods, so will probably be
removed when we remove `Query::single`.
2024-10-13 20:32:06 +00:00
Liam Gallagher
f1fbb668f9
Watching versions of bevy/get and bevy/list with HTTP SSE (#15608)
## Objective

Add a way to stream BRP requests when the data changes.

## Solution

#### BRP Side (reusable for other transports)

Add a new method handler type that returns a optional value. This
handler is run in update and if a value is returned it will be sent on
the message channel. Custom watching handlers can be added with
`RemotePlugin::with_watching_method`.

#### HTTP Side

If a request comes in with `+watch` in the method, it will respond with
`text/event-stream` rather than a single response.

## Testing

I tested with the podman HTTP client. This client has good support for
SSE's if you want to test it too.

## Parts I want some opinions on

- For separating watching methods I chose to add a `+watch` suffix to
the end kind of like `content-type` headers. A get would be
`bevy/get+watch`.
- Should watching methods send an initial response with everything or
only respond when a change happens? Currently the later is what happens.

## Future work

- The `bevy/query` method would also benefit from this but that
condition will be quite complex so I will leave that to later.

---------

Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2024-10-08 16:21:46 +00:00
Joona Aalto
25bfa80e60
Migrate cameras to required components (#15641)
# Objective

Yet another PR for migrating stuff to required components. This time,
cameras!

## Solution

As per the [selected
proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected),
deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d`
and `Camera3d`.

Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning,
as suggested by Cart [on
Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273).
I would personally like cameras to work a bit differently and be split
into a few more components, to avoid some footguns and confusing
semantics, but that is more controversial, and shouldn't block this core
migration.

## Testing

I ran a few 2D and 3D examples, and tried cameras with and without
render graphs.

---

## Migration Guide

`Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of
`Camera2d` and `Camera3d`. Inserting them will now also insert the other
components required by them automatically.
2024-10-05 01:59:52 +00:00
Joona Aalto
54006b107b
Migrate meshes and materials to required components (#15524)
# Objective

A big step in the migration to required components: meshes and
materials!

## Solution

As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):

- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:

![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)

![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)

Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.

## Testing

I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!

## Implementation Notes

- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.

---

## Migration Guide

Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.

Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.

The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.

---------

Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
Joona Aalto
de888a373d
Migrate lights to required components (#15554)
# Objective

Another step in the migration to required components: lights!

Note that this does not include `EnvironmentMapLight` or reflection
probes yet, because their API hasn't been fully chosen yet.

## Solution

As per the [selected
proposals](https://hackmd.io/@bevy/required_components/%2FLLnzwz9XTxiD7i2jiUXkJg):

- Deprecate `PointLightBundle` in favor of the `PointLight` component
- Deprecate `SpotLightBundle` in favor of the `PointLight` component
- Deprecate `DirectionalLightBundle` in favor of the `DirectionalLight`
component

## Testing

I ran some examples with lights.

---

## Migration Guide

`PointLightBundle`, `SpotLightBundle`, and `DirectionalLightBundle` have
been deprecated. Use the `PointLight`, `SpotLight`, and
`DirectionalLight` components instead. Adding them will now insert the
other components required by them automatically.
2024-10-01 03:20:43 +00:00
Liam Gallagher
60cf7ca025
Refactor BRP to allow for 3rd-party transports (#15438)
## Objective

Closes #15408 (somewhat)

## Solution

- Moved the existing HTTP transport to its own module with its own
plugin (`RemoteHttpPlugin`) (disabled on WASM)
- Swapped out the `smol` crate for the smaller crates it re-exports to
make it easier to keep out non-wasm code (HTTP transport needs
`async-io` which can't build on WASM)
- Added a new public `BrpSender` resource holding the matching sender
for the `BrpReceiver`' (formally `BrpMailbox`). This allows other crates
to send `BrpMessage`'s to the "mailbox".

## Testing

TODO

---------

Co-authored-by: Matty <weatherleymatthew@gmail.com>
2024-09-27 20:09:46 +00:00
Clar Fon
efda7f3f9c
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this
comment:
https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300

See #15375 for more reasoning/motivation.

## Rebasing (rerunning)

```rust
git switch simpler-lint-fixes
git reset --hard main
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "rustfmt"
cargo clippy --workspace --all-targets --all-features --fix
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "clippy"
git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887
```
2024-09-24 11:42:59 +00:00
Matty
89e98b208f
Initial implementation of the Bevy Remote Protocol (Adopted) (#14880)
# Objective

Adopted from #13563.

The goal is to implement the Bevy Remote Protocol over HTTP/JSON,
allowing the ECS to be interacted with remotely.

## Solution

At a high level, there are really two separate things that have been
undertaken here:
1. First, `RemotePlugin` has been created, which has the effect of
embedding a [JSON-RPC](https://www.jsonrpc.org/specification) endpoint
into a Bevy application.
2. Second, the [Bevy Remote Protocol
verbs](https://gist.github.com/coreh/1baf6f255d7e86e4be29874d00137d1d#file-bevy-remote-protocol-md)
(excluding `POLL`) have been implemented as remote methods for that
JSON-RPC endpoint under a Bevy-exclusive namespace (e.g. `bevy/get`,
`bevy/list`, etc.).

To avoid some repetition, here is the crate-level documentation, which
explains the request/response structure, built-in-methods, and custom
method configuration:
<details>
  <summary>Click to view crate-level docs</summary>

```rust
//! An implementation of the Bevy Remote Protocol over HTTP and JSON, to allow
//! for remote control of a Bevy app.
//!
//! Adding the [`RemotePlugin`] to your [`App`] causes Bevy to accept
//! connections over HTTP (by default, on port 15702) while your app is running.
//! These *remote clients* can inspect and alter the state of the
//! entity-component system. Clients are expected to `POST` JSON requests to the
//! root URL; see the `client` example for a trivial example of use.
//!
//! The Bevy Remote Protocol is based on the JSON-RPC 2.0 protocol.
//!
//! ## Request objects
//!
//! A typical client request might look like this:
//!
//! ```json
//! {
//!     "method": "bevy/get",
//!     "id": 0,
//!     "params": {
//!         "entity": 4294967298,
//!         "components": [
//!             "bevy_transform::components::transform::Transform"
//!         ]
//!     }
//! }
//! ```
//!
//! The `id` and `method` fields are required. The `param` field may be omitted
//! for certain methods:
//!
//! * `id` is arbitrary JSON data. The server completely ignores its contents,
//!   and the client may use it for any purpose. It will be copied via
//!   serialization and deserialization (so object property order, etc. can't be
//!   relied upon to be identical) and sent back to the client as part of the
//!   response.
//!
//! * `method` is a string that specifies one of the possible [`BrpRequest`]
//!   variants: `bevy/query`, `bevy/get`, `bevy/insert`, etc. It's case-sensitive.
//!
//! * `params` is parameter data specific to the request.
//!
//! For more information, see the documentation for [`BrpRequest`].
//! [`BrpRequest`] is serialized to JSON via `serde`, so [the `serde`
//! documentation] may be useful to clarify the correspondence between the Rust
//! structure and the JSON format.
//!
//! ## Response objects
//!
//! A response from the server to the client might look like this:
//!
//! ```json
//! {
//!     "jsonrpc": "2.0",
//!     "id": 0,
//!     "result": {
//!         "bevy_transform::components::transform::Transform": {
//!             "rotation": { "x": 0.0, "y": 0.0, "z": 0.0, "w": 1.0 },
//!             "scale": { "x": 1.0, "y": 1.0, "z": 1.0 },
//!             "translation": { "x": 0.0, "y": 0.5, "z": 0.0 }
//!         }
//!     }
//! }
//! ```
//!
//! The `id` field will always be present. The `result` field will be present if the
//! request was successful. Otherwise, an `error` field will replace it.
//!
//! * `id` is the arbitrary JSON data that was sent as part of the request. It
//!   will be identical to the `id` data sent during the request, modulo
//!   serialization and deserialization. If there's an error reading the `id` field,
//!   it will be `null`.
//!
//! * `result` will be present if the request succeeded and will contain the response
//!   specific to the request.
//!
//! * `error` will be present if the request failed and will contain an error object
//!   with more information about the cause of failure.
//!
//! ## Error objects
//!
//! An error object might look like this:
//!
//! ```json
//! {
//!     "code": -32602,
//!     "message": "Missing \"entity\" field"
//! }
//! ```
//!
//! The `code` and `message` fields will always be present. There may also be a `data` field.
//!
//! * `code` is an integer representing the kind of an error that happened. Error codes documented
//!   in the [`error_codes`] module.
//!
//! * `message` is a short, one-sentence human-readable description of the error.
//!
//! * `data` is an optional field of arbitrary type containing additional information about the error.
//!
//! ## Built-in methods
//!
//! The Bevy Remote Protocol includes a number of built-in methods for accessing and modifying data
//! in the ECS. Each of these methods uses the `bevy/` prefix, which is a namespace reserved for
//! BRP built-in methods.
//!
//! ### bevy/get
//!
//! Retrieve the values of one or more components from an entity.
//!
//! `params`:
//! - `entity`: The ID of the entity whose components will be fetched.
//! - `components`: An array of fully-qualified type names of components to fetch.
//!
//! `result`: A map associating each type name to its value on the requested entity.
//!
//! ### bevy/query
//!
//! Perform a query over components in the ECS, returning all matching entities and their associated
//! component values.
//!
//! All of the arrays that comprise this request are optional, and when they are not provided, they
//! will be treated as if they were empty.
//!
//! `params`:
//! `params`:
//! - `data`:
//!   - `components` (optional): An array of fully-qualified type names of components to fetch.
//!   - `option` (optional): An array of fully-qualified type names of components to fetch optionally.
//!   - `has` (optional): An array of fully-qualified type names of components whose presence will be
//!      reported as boolean values.
//! - `filter` (optional):
//!   - `with` (optional): An array of fully-qualified type names of components that must be present
//!     on entities in order for them to be included in results.
//!   - `without` (optional): An array of fully-qualified type names of components that must *not* be
//!     present on entities in order for them to be included in results.
//!
//! `result`: An array, each of which is an object containing:
//! - `entity`: The ID of a query-matching entity.
//! - `components`: A map associating each type name from `components`/`option` to its value on the matching
//!   entity if the component is present.
//! - `has`: A map associating each type name from `has` to a boolean value indicating whether or not the
//!   entity has that component. If `has` was empty or omitted, this key will be omitted in the response.
//!
//! ### bevy/spawn
//!
//! Create a new entity with the provided components and return the resulting entity ID.
//!
//! `params`:
//! - `components`: A map associating each component's fully-qualified type name with its value.
//!
//! `result`:
//! - `entity`: The ID of the newly spawned entity.
//!
//! ### bevy/destroy
//!
//! Despawn the entity with the given ID.
//!
//! `params`:
//! - `entity`: The ID of the entity to be despawned.
//!
//! `result`: null.
//!
//! ### bevy/remove
//!
//! Delete one or more components from an entity.
//!
//! `params`:
//! - `entity`: The ID of the entity whose components should be removed.
//! - `components`: An array of fully-qualified type names of components to be removed.
//!
//! `result`: null.
//!
//! ### bevy/insert
//!
//! Insert one or more components into an entity.
//!
//! `params`:
//! - `entity`: The ID of the entity to insert components into.
//! - `components`: A map associating each component's fully-qualified type name with its value.
//!
//! `result`: null.
//!
//! ### bevy/reparent
//!
//! Assign a new parent to one or more entities.
//!
//! `params`:
//! - `entities`: An array of entity IDs of entities that will be made children of the `parent`.
//! - `parent` (optional): The entity ID of the parent to which the child entities will be assigned.
//!   If excluded, the given entities will be removed from their parents.
//!
//! `result`: null.
//!
//! ### bevy/list
//!
//! List all registered components or all components present on an entity.
//!
//! When `params` is not provided, this lists all registered components. If `params` is provided,
//! this lists only those components present on the provided entity.
//!
//! `params` (optional):
//! - `entity`: The ID of the entity whose components will be listed.
//!
//! `result`: An array of fully-qualified type names of components.
//!
//! ## Custom methods
//!
//! In addition to the provided methods, the Bevy Remote Protocol can be extended to include custom
//! methods. This is primarily done during the initialization of [`RemotePlugin`], although the
//! methods may also be extended at runtime using the [`RemoteMethods`] resource.
//!
//! ### Example
//! ```ignore
//! fn main() {
//!     App::new()
//!         .add_plugins(DefaultPlugins)
//!         .add_plugins(
//!             // `default` adds all of the built-in methods, while `with_method` extends them
//!             RemotePlugin::default()
//!                 .with_method("super_user/cool_method".to_owned(), path::to::my:🆒:handler)
//!                 // ... more methods can be added by chaining `with_method`
//!         )
//!         .add_systems(
//!             // ... standard application setup
//!         )
//!         .run();
//! }
//! ```
//!
//! The handler is expected to be a system-convertible function which takes optional JSON parameters
//! as input and returns a [`BrpResult`]. This means that it should have a type signature which looks
//! something like this:
//! ```
//! # use serde_json::Value;
//! # use bevy_ecs::prelude::{In, World};
//! # use bevy_remote::BrpResult;
//! fn handler(In(params): In<Option<Value>>, world: &mut World) -> BrpResult {
//!     todo!()
//! }
//! ```
//!
//! Arbitrary system parameters can be used in conjunction with the optional `Value` input. The
//! handler system will always run with exclusive `World` access.
//!
//! [the `serde` documentation]: https://serde.rs/
```

</details>

### Message lifecycle

At a high level, the lifecycle of client-server interactions is
something like this:
1. The client sends one or more `BrpRequest`s. The deserialized version
of that is just the Rust representation of a JSON-RPC request, and it
looks like this:
```rust
pub struct BrpRequest {
    /// The action to be performed. Parsing is deferred for the sake of error reporting.
    pub method: Option<Value>,

    /// Arbitrary data that will be returned verbatim to the client as part of
    /// the response.
    pub id: Option<Value>,

    /// The parameters, specific to each method.
    ///
    /// These are passed as the first argument to the method handler.
    /// Sometimes params can be omitted.
    pub params: Option<Value>,
}
```
2. These requests are accumulated in a mailbox resource (small lie but
close enough).
3. Each update, the mailbox is drained by a system
`process_remote_requests`, where each request is processed according to
its `method`, which has an associated handler. Each handler is a Bevy
system that runs with exclusive world access and returns a result; e.g.:
```rust
pub fn process_remote_get_request(In(params): In<Option<Value>>, world: &World) -> BrpResult { // ... }
```
4. The result (or an error) is reported back to the client.

## Testing

This can be tested by using the `server` and `client` examples. The
`client` example is not particularly exhaustive at the moment (it only
creates barebones `bevy/query` requests) but is still informative. Other
queries can be made using `curl` with the `server` example running.

For example, to make a `bevy/list` request and list all registered
components:
```bash
curl -X POST -d '{ "jsonrpc": "2.0", "id": 1, "method": "bevy/list" }' 127.0.0.1:15702 | jq .
```

---

## Future direction

There were a couple comments on BRP versioning while this was in draft.
I agree that BRP versioning is a good idea, but I think that it requires
some consensus on a couple fronts:
- First of all, what does the version actually mean? Is it a version for
the protocol itself or for the `bevy/*` methods implemented using it?
Both?
- Where does the version actually live? The most natural place is just
where we have `"jsonrpc"` right now (at least if it's versioning the
protocol itself), but this means we're not actually conforming to
JSON-RPC any more (so, for example, any client library used to construct
JSON-RPC requests would stop working). I'm not really against that, but
it's at least a real decision.
- What do we actually do when we encounter mismatched versions? Adding
handling for this would be actual scope creep instead of just a little
add-on in my opinion.

Another thing that would be nice is making the internal structure of the
implementation less JSON-specific. Right now, for example, component
values that will appear in server responses are quite eagerly converted
to JSON `Value`s, which prevents disentangling the handler logic from
the communication medium, but it can probably be done in principle and I
imagine it would enable more code reuse (e.g. for custom method
handlers) in addition to making the internals more readily usable for
other formats.

---------

Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
Co-authored-by: DragonGamesStudios <margos.michal@gmail.com>
Co-authored-by: Christopher Biscardi <chris@christopherbiscardi.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
2024-09-23 18:36:16 +00:00