custom
14 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
21f1e3045c
|
Relationships (non-fragmenting, one-to-many) (#17398)
This adds support for one-to-many non-fragmenting relationships (with planned paths for fragmenting and non-fragmenting many-to-many relationships). "Non-fragmenting" means that entities with the same relationship type, but different relationship targets, are not forced into separate tables (which would cause "table fragmentation"). Functionally, this fills a similar niche as the current Parent/Children system. The biggest differences are: 1. Relationships have simpler internals and significantly improved performance and UX. Commands and specialized APIs are no longer necessary to keep everything in sync. Just spawn entities with the relationship components you want and everything "just works". 2. Relationships are generalized. Bevy can provide additional built in relationships, and users can define their own. **REQUEST TO REVIEWERS**: _please don't leave top level comments and instead comment on specific lines of code. That way we can take advantage of threaded discussions. Also dont leave comments simply pointing out CI failures as I can read those just fine._ ## Built on top of what we have Relationships are implemented on top of the Bevy ECS features we already have: components, immutability, and hooks. This makes them immediately compatible with all of our existing (and future) APIs for querying, spawning, removing, scenes, reflection, etc. The fewer specialized APIs we need to build, maintain, and teach, the better. ## Why focus on one-to-many non-fragmenting first? 1. This allows us to improve Parent/Children relationships immediately, in a way that is reasonably uncontroversial. Switching our hierarchy to fragmenting relationships would have significant performance implications. ~~Flecs is heavily considering a switch to non-fragmenting relations after careful considerations of the performance tradeoffs.~~ _(Correction from @SanderMertens: Flecs is implementing non-fragmenting storage specialized for asset hierarchies, where asset hierarchies are many instances of small trees that have a well defined structure)_ 2. Adding generalized one-to-many relationships is currently a priority for the [Next Generation Scene / UI effort](https://github.com/bevyengine/bevy/discussions/14437). Specifically, we're interested in building reactions and observers on top. ## The changes This PR does the following: 1. Adds a generic one-to-many Relationship system 3. Ports the existing Parent/Children system to Relationships, which now lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been removed. 4. Adds on_despawn component hooks 5. Relationships can opt-in to "despawn descendants" behavior, meaning that the entire relationship hierarchy is despawned when `entity.despawn()` is called. The built in Parent/Children hierarchies enable this behavior, and `entity.despawn_recursive()` has been removed. 6. `world.spawn` now applies commands after spawning. This ensures that relationship bookkeeping happens immediately and removes the need to manually flush. This is in line with the equivalent behaviors recently added to the other APIs (ex: insert). 7. Removes the ValidParentCheckPlugin (system-driven / poll based) in favor of a `validate_parent_has_component` hook. ## Using Relationships The `Relationship` trait looks like this: ```rust pub trait Relationship: Component + Sized { type RelationshipSources: RelationshipSources<Relationship = Self>; fn get(&self) -> Entity; fn from(entity: Entity) -> Self; } ``` A relationship is a component that: 1. Is a simple wrapper over a "target" Entity. 2. Has a corresponding `RelationshipSources` component, which is a simple wrapper over a collection of entities. Every "target entity" targeted by a "source entity" with a `Relationship` has a `RelationshipSources` component, which contains every "source entity" that targets it. For example, the `Parent` component (as it currently exists in Bevy) is the `Relationship` component and the entity containing the Parent is the "source entity". The entity _inside_ the `Parent(Entity)` component is the "target entity". And that target entity has a `Children` component (which implements `RelationshipSources`). In practice, the Parent/Children relationship looks like this: ```rust #[derive(Relationship)] #[relationship(relationship_sources = Children)] pub struct Parent(pub Entity); #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent)] pub struct Children(Vec<Entity>); ``` The Relationship and RelationshipSources derives automatically implement Component with the relevant configuration (namely, the hooks necessary to keep everything in sync). The most direct way to add relationships is to spawn entities with relationship components: ```rust let a = world.spawn_empty().id(); let b = world.spawn(Parent(a)).id(); assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]); ``` There are also convenience APIs for spawning more than one entity with the same relationship: ```rust world.spawn_empty().with_related::<Children>(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` The existing `with_children` API is now a simpler wrapper over `with_related`. This makes this change largely non-breaking for existing spawn patterns. ```rust world.spawn_empty().with_children(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` There are also other relationship APIs, such as `add_related` and `despawn_related`. ## Automatic recursive despawn via the new on_despawn hook `RelationshipSources` can opt-in to "despawn descendants" behavior, which will despawn all related entities in the relationship hierarchy: ```rust #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent, despawn_descendants)] pub struct Children(Vec<Entity>); ``` This means that `entity.despawn_recursive()` is no longer required. Instead, just use `entity.despawn()` and the relevant related entities will also be despawned. To despawn an entity _without_ despawning its parent/child descendants, you should remove the `Children` component first, which will also remove the related `Parent` components: ```rust entity .remove::<Children>() .despawn() ``` This builds on the on_despawn hook introduced in this PR, which is fired when an entity is despawned (before other hooks). ## Relationships are the source of truth `Relationship` is the _single_ source of truth component. `RelationshipSources` is merely a reflection of what all the `Relationship` components say. By embracing this, we are able to significantly improve the performance of the system as a whole. We can rely on component lifecycles to protect us against duplicates, rather than needing to scan at runtime to ensure entities don't already exist (which results in quadratic runtime). A single source of truth gives us constant-time inserts. This does mean that we cannot directly spawn populated `Children` components (or directly add or remove entities from those components). I personally think this is a worthwhile tradeoff, both because it makes the performance much better _and_ because it means theres exactly one way to do things (which is a philosophy we try to employ for Bevy APIs). As an aside: treating both sides of the relationship as "equivalent source of truth relations" does enable building simple and flexible many-to-many relationships. But this introduces an _inherent_ need to scan (or hash) to protect against duplicates. [`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations) has a very nice implementation of the "symmetrical many-to-many" approach. Unfortunately I think the performance issues inherent to that approach make it a poor choice for Bevy's default relationship system. ## Followup Work * Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in this PR to keep the diff reasonable, but I'm personally biased toward this change (and using that naming pattern generally for relationships). * [Improved spawning ergonomics](https://github.com/bevyengine/bevy/discussions/16920) * Consider adding relationship observers/triggers for "relationship targets" whenever a source is added or removed. This would replace the current "hierarchy events" system, which is unused upstream but may have existing users downstream. I think triggers are the better fit for this than a buffered event queue, and would prefer not to add that back. * Fragmenting relations: My current idea hinges on the introduction of "value components" (aka: components whose type _and_ value determines their ComponentId, via something like Hashing / PartialEq). By labeling a Relationship component such as `ChildOf(Entity)` as a "value component", `ChildOf(e1)` and `ChildOf(e2)` would be considered "different components". This makes the transition between fragmenting and non-fragmenting a single flag, and everything else continues to work as expected. * Many-to-many support * Non-fragmenting: We can expand Relationship to be a list of entities instead of a single entity. I have largely already written the code for this. * Fragmenting: With the "value component" impl mentioned above, we get many-to-many support "for free", as it would allow inserting multiple copies of a Relationship component with different target entities. Fixes #3742 (If this PR is merged, I think we should open more targeted followup issues for the work above, with a fresh tracking issue free of the large amount of less-directed historical context) Fixes #17301 Fixes #12235 Fixes #15299 Fixes #15308 ## Migration Guide * Replace `ChildBuilder` with `ChildSpawnerCommands`. * Replace calls to `.set_parent(parent_id)` with `.insert(Parent(parent_id))`. * Replace calls to `.replace_children()` with `.remove::<Children>()` followed by `.add_children()`. Note that you'll need to manually despawn any children that are not carried over. * Replace calls to `.despawn_recursive()` with `.despawn()`. * Replace calls to `.despawn_descendants()` with `.despawn_related::<Children>()`. * If you have any calls to `.despawn()` which depend on the children being preserved, you'll need to remove the `Children` component first. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
015f2c69ca
|
Merge Style properties into Node. Use ComputedNode for computed properties. (#15975)
# Objective Continue improving the user experience of our UI Node API in the direction specified by [Bevy's Next Generation Scene / UI System](https://github.com/bevyengine/bevy/discussions/14437) ## Solution As specified in the document above, merge `Style` fields into `Node`, and move "computed Node fields" into `ComputedNode` (I chose this name over something like `ComputedNodeLayout` because it currently contains more than just layout info. If we want to break this up / rename these concepts, lets do that in a separate PR). `Style` has been removed. This accomplishes a number of goals: ## Ergonomics wins Specifying both `Node` and `Style` is now no longer required for non-default styles Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` ## Conceptual clarity `Style` was never a comprehensive "style sheet". It only defined "core" style properties that all `Nodes` shared. Any "styled property" that couldn't fit that mold had to be in a separate component. A "real" style system would style properties _across_ components (`Node`, `Button`, etc). We have plans to build a true style system (see the doc linked above). By moving the `Style` fields to `Node`, we fully embrace `Node` as the driving concept and remove the "style system" confusion. ## Next Steps * Consider identifying and splitting out "style properties that aren't core to Node". This should not happen for Bevy 0.15. --- ## Migration Guide Move any fields set on `Style` into `Node` and replace all `Style` component usage with `Node`. Before: ```rust commands.spawn(( Node::default(), Style { width: Val::Px(100.), ..default() }, )); ``` After: ```rust commands.spawn(Node { width: Val::Px(100.), ..default() }); ``` For any usage of the "computed node properties" that used to live on `Node`, use `ComputedNode` instead: Before: ```rust fn system(nodes: Query<&Node>) { for node in &nodes { let computed_size = node.size(); } } ``` After: ```rust fn system(computed_nodes: Query<&ComputedNode>) { for computed_node in &computed_nodes { let computed_size = computed_node.size(); } } ``` |
||
![]() |
eb19a9ea0b
|
Migrate UI bundles to required components (#15898)
# Objective - Migrate UI bundles to required components, fixes #15889 ## Solution - deprecate `NodeBundle` in favor of `Node` - deprecate `ImageBundle` in favor of `UiImage` - deprecate `ButtonBundle` in favor of `Button` ## Testing CI. ## Migration Guide - Replace all uses of `NodeBundle` with `Node`. e.g. ```diff commands - .spawn(NodeBundle { - style: Style { + .spawn(( + Node::default(), + Style { width: Val::Percent(100.), align_items: AlignItems::Center, justify_content: JustifyContent::Center, ..default() }, - ..default() - }) + )) ``` - Replace all uses of `ButtonBundle` with `Button`. e.g. ```diff .spawn(( - ButtonBundle { - style: Style { - width: Val::Px(w), - height: Val::Px(h), - // horizontally center child text - justify_content: JustifyContent::Center, - // vertically center child text - align_items: AlignItems::Center, - margin: UiRect::all(Val::Px(20.0)), - ..default() - }, - image: image.clone().into(), + Button, + Style { + width: Val::Px(w), + height: Val::Px(h), + // horizontally center child text + justify_content: JustifyContent::Center, + // vertically center child text + align_items: AlignItems::Center, + margin: UiRect::all(Val::Px(20.0)), ..default() }, + UiImage::from(image.clone()), ImageScaleMode::Sliced(slicer.clone()), )) ``` - Replace all uses of `ImageBundle` with `UiImage`. e.g. ```diff - commands.spawn(ImageBundle { - image: UiImage { + commands.spawn(( + UiImage { texture: metering_mask, ..default() }, - style: Style { + Style { width: Val::Percent(100.0), height: Val::Percent(100.0), ..default() }, - ..default() - }); + )); ``` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
6f7d0e5725
|
split up TextStyle (#15857)
# Objective Currently text is recomputed unnecessarily on any changes to its color, which is extremely expensive. ## Solution Split up `TextStyle` into two separate components `TextFont` and `TextColor`. ## Testing I added this system to `many_buttons`: ```rust fn set_text_colors_changed(mut colors: Query<&mut TextColor>) { for mut text_color in colors.iter_mut() { text_color.set_changed(); } } ``` reports ~4fps on main, ~50fps with this PR. ## Migration Guide `TextStyle` has been renamed to `TextFont` and its `color` field has been moved to a separate component named `TextColor` which newtypes `Color`. |
||
![]() |
c2c19e5ae4
|
Text rework (#15591)
**Ready for review. Examples migration progress: 100%.** # Objective - Implement https://github.com/bevyengine/bevy/discussions/15014 ## Solution This implements [cart's proposal](https://github.com/bevyengine/bevy/discussions/15014#discussioncomment-10574459) faithfully except for one change. I separated `TextSpan` from `TextSpan2d` because `TextSpan` needs to require the `GhostNode` component, which is a `bevy_ui` component only usable by UI. Extra changes: - Added `EntityCommands::commands_mut` that returns a mutable reference. This is a blocker for extension methods that return something other than `self`. Note that `sickle_ui`'s `UiBuilder::commands` returns a mutable reference for this reason. ## Testing - [x] Text examples all work. --- ## Showcase TODO: showcase-worthy ## Migration Guide TODO: very breaking ### Accessing text spans by index Text sections are now text sections on different entities in a hierarchy, Use the new `TextReader` and `TextWriter` system parameters to access spans by index. Before: ```rust fn refresh_text(mut query: Query<&mut Text, With<TimeText>>, time: Res<Time>) { let text = query.single_mut(); text.sections[1].value = format_time(time.elapsed()); } ``` After: ```rust fn refresh_text( query: Query<Entity, With<TimeText>>, mut writer: UiTextWriter, time: Res<Time> ) { let entity = query.single(); *writer.text(entity, 1) = format_time(time.elapsed()); } ``` ### Iterating text spans Text spans are now entities in a hierarchy, so the new `UiTextReader` and `UiTextWriter` system parameters provide ways to iterate that hierarchy. The `UiTextReader::iter` method will give you a normal iterator over spans, and `UiTextWriter::for_each` lets you visit each of the spans. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
25bfa80e60
|
Migrate cameras to required components (#15641)
# Objective Yet another PR for migrating stuff to required components. This time, cameras! ## Solution As per the [selected proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected), deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d` and `Camera3d`. Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning, as suggested by Cart [on Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273). I would personally like cameras to work a bit differently and be split into a few more components, to avoid some footguns and confusing semantics, but that is more controversial, and shouldn't block this core migration. ## Testing I ran a few 2D and 3D examples, and tried cameras with and without render graphs. --- ## Migration Guide `Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of `Camera2d` and `Camera3d`. Inserting them will now also insert the other components required by them automatically. |
||
![]() |
c66c2c7420
|
Omit font size where it closely matches the default in examples (#13952)
# Objective In a few examples, we're specifying a font or font size that is the same as the current default value. Might as well use the default. That'll be one less thing to worry about if we ever need to change the default font size. (wink) In a few others, we were using a value of `25.0` and it didn't seem like it was different for an important reason, so I switched to the default there too. (There are a bunch of examples that use non-default font sizes for various reasons. Not trying address them all here.) |
||
![]() |
d56e16754c
|
Fix "dark grey" colors becoming lighter in various examples (#12333)
# Objective Fixes #12226 Prior to the `bevy_color` port, `DARK GRAY` used to mean "dark grey." But it is now lighter than `GRAY`, matching the css4 spec. ## Solution Change usages of `css::DARK_GRAY` to `Color::srgb(0.25, 0.25, 0.25)` to restore the examples to their former colors. With one exception: `display_and_visibility`. I think the new color is an improvement. ## Note A lot of these examples could use nicer colors. I'm not trying to revamp everything here. The css4 palette is truly a horror. See #12176 and #12080 for some discussion about alternatives. |
||
![]() |
599e5e4e76
|
Migrate from LegacyColor to bevy_color::Color (#12163)
# Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au> |
||
![]() |
5d941d5b91
|
Remove custom window size from flex_layout example (#11876)
# Objective The example showcase doesn't seem to work well with the portrait aspect ratio used in this example, which is possibly something to be fixed there, but there's also no reason this *needs* a custom size. This custom window size is also sightly too tall for my particular display which is a very common display size when accounting for the macOS task bar and window title, so the content at the bottom is clipped. ## Solution - Remove the custom window size - Swap the order of the justify / align nested loops so that the content fits the new aspect ratio - Make the containers responsive to window size, and make all the gaps even ## Before <img width="870" alt="Screenshot 2024-02-15 at 10 56 11 AM" src="https://github.com/bevyengine/bevy/assets/200550/803217dd-e311-4f9e-aabf-2656f7f67615"> ## After <img width="1280" alt="Screenshot 2024-02-15 at 10 56 25 AM" src="https://github.com/bevyengine/bevy/assets/200550/bf1e4920-f053-4d42-ab0b-3efea6835cae"> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
de004da8d5
|
Rename bevy_render::Color to LegacyColor (#12069)
# Objective The migration process for `bevy_color` (#12013) will be fairly involved: there will be hundreds of affected files, and a large number of APIs. ## Solution To allow us to proceed granularly, we're going to keep both `bevy_color::Color` (new) and `bevy_render::Color` (old) around until the migration is complete. However, simply doing this directly is confusing! They're both called `Color`, making it very hard to tell when a portion of the code has been ported. As discussed in #12056, by renaming the old `Color` type, we can make it easier to gradually migrate over, one API at a time. ## Migration Guide THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK. This change should not be shipped to end users: delete this section in the final migration guide! --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
![]() |
373f1eeb1e
|
UI examples clean up (#9479)
# Objective Fix a few issues with some of the examples: * Root UI nodes have an implicit parent with `FlexDirection::Row` and `AlignItems::Stretch` set. Only a width constraint is needed to fill the viewport. Specifying ```height: Val::Percent(100.)``` is unnecessary and can cause confusing overflow behaviour. * The default for position and size constraint properties is `Val::Auto`. Setting `left: Val::Auto`, `max_height: Val::Auto`, etc does nothing. ## Solution Delete those lines. There should be no observable differences in the behaviours of any of the examples. Also changed a padding setting in the `flex_layout` example to use the `axes` helper function. |
||
![]() |
08bf1a6c2e
|
Flatten UI Style properties that use Size + remove Size (#8548)
# Objective - Simplify API and make authoring styles easier See: https://github.com/bevyengine/bevy/issues/8540#issuecomment-1536177102 ## Solution - The `size`, `min_size`, `max_size`, and `gap` properties have been replaced by `width`, `height`, `min_width`, `min_height`, `max_width`, `max_height`, `row_gap`, and `column_gap` properties --- ## Changelog - Flattened `Style` properties that have a `Size` value directly into `Style` ## Migration Guide - The `size`, `min_size`, `max_size`, and `gap` properties have been replaced by the `width`, `height`, `min_width`, `min_height`, `max_width`, `max_height`, `row_gap`, and `column_gap` properties. Use the new properties instead. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> |
||
![]() |
47be369e41
|
Rename text_layout example to flex_layout (#7943)
# Objective - Rename `text_layout` example to `flex_layout` to better reflect the example purpose - `AlignItems`/`JustifyContent` is not related to text layout, it's about child nodes positioning ## Solution - Rename the example --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |