0a95597c9d
4 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
96dcbc5f8c
|
Ugrade to wgpu version 25.0 (#19563)
# Objective Upgrade to `wgpu` version `25.0`. Depends on https://github.com/bevyengine/naga_oil/pull/121 ## Solution ### Problem The biggest issue we face upgrading is the following requirement: > To facilitate this change, there was an additional validation rule put in place: if there is a binding array in a bind group, you may not use dynamic offset buffers or uniform buffers in that bind group. This requirement comes from vulkan rules on UpdateAfterBind descriptors. This is a major difficulty for us, as there are a number of binding arrays that are used in the view bind group. Note, this requirement does not affect merely uniform buffors that use dynamic offset but the use of *any* uniform in a bind group that also has a binding array. ### Attempted fixes The easiest fix would be to change uniforms to be storage buffers whenever binding arrays are in use: ```wgsl #ifdef BINDING_ARRAYS_ARE_USED @group(0) @binding(0) var<uniform> view: View; @group(0) @binding(1) var<uniform> lights: types::Lights; #else @group(0) @binding(0) var<storage> view: array<View>; @group(0) @binding(1) var<storage> lights: array<types::Lights>; #endif ``` This requires passing the view index to the shader so that we know where to index into the buffer: ```wgsl struct PushConstants { view_index: u32, } var<push_constant> push_constants: PushConstants; ``` Using push constants is no problem because binding arrays are only usable on native anyway. However, this greatly complicates the ability to access `view` in shaders. For example: ```wgsl #ifdef BINDING_ARRAYS_ARE_USED mesh_view_bindings::view.view_from_world[0].z #else mesh_view_bindings::view[mesh_view_bindings::view_index].view_from_world[0].z #endif ``` Using this approach would work but would have the effect of polluting our shaders with ifdef spam basically *everywhere*. Why not use a function? Unfortunately, the following is not valid wgsl as it returns a binding directly from a function in the uniform path. ```wgsl fn get_view() -> View { #if BINDING_ARRAYS_ARE_USED let view_index = push_constants.view_index; let view = views[view_index]; #endif return view; } ``` This also poses problems for things like lights where we want to return a ptr to the light data. Returning ptrs from wgsl functions isn't allowed even if both bindings were buffers. The next attempt was to simply use indexed buffers everywhere, in both the binding array and non binding array path. This would be viable if push constants were available everywhere to pass the view index, but unfortunately they are not available on webgpu. This means either passing the view index in a storage buffer (not ideal for such a small amount of state) or using push constants sometimes and uniform buffers only on webgpu. However, this kind of conditional layout infects absolutely everything. Even if we were to accept just using storage buffer for the view index, there's also the additional problem that some dynamic offsets aren't actually per-view but per-use of a setting on a camera, which would require passing that uniform data on *every* camera regardless of whether that rendering feature is being used, which is also gross. As such, although it's gross, the simplest solution just to bump binding arrays into `@group(1)` and all other bindings up one bind group. This should still bring us under the device limit of 4 for most users. ### Next steps / looking towards the future I'd like to avoid needing split our view bind group into multiple parts. In the future, if `wgpu` were to add `@builtin(draw_index)`, we could build a list of draw state in gpu processing and avoid the need for any kind of state change at all (see https://github.com/gfx-rs/wgpu/issues/6823). This would also provide significantly more flexibility to handle things like offsets into other arrays that may not be per-view. ### Testing Tested a number of examples, there are probably more that are still broken. --------- Co-authored-by: François Mockers <mockersf@gmail.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com> |
||
![]() |
a861452d68
|
Add user supplied mesh tag (#17648)
# Objective Because of mesh preprocessing, users cannot rely on `@builtin(instance_index)` in order to reference external data, as the instance index is not stable, either from frame to frame or relative to the total spawn order of mesh instances. ## Solution Add a user supplied mesh index that can be used for referencing external data when drawing instanced meshes. Closes #13373 ## Testing Benchmarked `many_cubes` showing no difference in total frame time. ## Showcase https://github.com/user-attachments/assets/80620147-aafc-4d9d-a8ee-e2149f7c8f3b --------- Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
![]() |
a8f15bd95e
|
Introduce two-level bins for multidrawable meshes. (#16898)
Currently, our batchable binned items are stored in a hash table that maps bin key, which includes the batch set key, to a list of entities. Multidraw is handled by sorting the bin keys and accumulating adjacent bins that can be multidrawn together (i.e. have the same batch set key) into multidraw commands during `batch_and_prepare_binned_render_phase`. This is reasonably efficient right now, but it will complicate future work to retain indirect draw parameters from frame to frame. Consider what must happen when we have retained indirect draw parameters and the application adds a bin (i.e. a new mesh) that shares a batch set key with some pre-existing meshes. (That is, the new mesh can be multidrawn with the pre-existing meshes.) To be maximally efficient, our goal in that scenario will be to update *only* the indirect draw parameters for the batch set (i.e. multidraw command) containing the mesh that was added, while leaving the others alone. That means that we have to quickly locate all the bins that belong to the batch set being modified. In the existing code, we would have to sort the list of bin keys so that bins that can be multidrawn together become adjacent to one another in the list. Then we would have to do a binary search through the sorted list to find the location of the bin that was just added. Next, we would have to widen our search to adjacent indexes that contain the same batch set, doing expensive comparisons against the batch set key every time. Finally, we would reallocate the indirect draw parameters and update the stored pointers to the indirect draw parameters that the bins store. By contrast, it'd be dramatically simpler if we simply changed the way bins are stored to first map from batch set key (i.e. multidraw command) to the bins (i.e. meshes) within that batch set key, and then from each individual bin to the mesh instances. That way, the scenario above in which we add a new mesh will be simpler to handle. First, we will look up the batch set key corresponding to that mesh in the outer map to find an inner map corresponding to the single multidraw command that will draw that batch set. We will know how many meshes the multidraw command is going to draw by the size of that inner map. Then we simply need to reallocate the indirect draw parameters and update the pointers to those parameters within the bins as necessary. There will be no need to do any binary search or expensive batch set key comparison: only a single hash lookup and an iteration over the inner map to update the pointers. This patch implements the above technique. Because we don't have retained bins yet, this PR provides no performance benefits. However, it opens the door to maximally efficient updates when only a small number of meshes change from frame to frame. The main churn that this patch causes is that the *batch set key* (which uniquely specifies a multidraw command) and *bin key* (which uniquely specifies a mesh *within* that multidraw command) are now separate, instead of the batch set key being embedded *within* the bin key. In order to isolate potential regressions, I think that at least #16890, #16836, and #16825 should land before this PR does. ## Migration Guide * The *batch set key* is now separate from the *bin key* in `BinnedPhaseItem`. The batch set key is used to collect multidrawable meshes together. If you aren't using the multidraw feature, you can safely set the batch set key to `()`. |
||
![]() |
a4640046fc
|
Adds ShaderStorageBuffer asset (#14663)
Adds a new `Handle<Storage>` asset type that can be used as a render asset, particularly for use with `AsBindGroup`. Closes: #13658 # Objective Allow users to create storage buffers in the main world without having to access the `RenderDevice`. While this resource is technically available, it's bad form to use in the main world and requires mixing rendering details with main world code. Additionally, this makes storage buffers easier to use with `AsBindGroup`, particularly in the following scenarios: - Sharing the same buffers between a compute stage and material shader. We already have examples of this for storage textures (see game of life example) and these changes allow a similar pattern to be used with storage buffers. - Preventing repeated gpu upload (see the previous easier to use `Vec` `AsBindGroup` option). - Allow initializing custom materials using `Default`. Previously, the lack of a `Default` implement for the raw `wgpu::Buffer` type made implementing a `AsBindGroup + Default` bound difficult in the presence of buffers. ## Solution Adds a new `Handle<Storage>` asset type that is prepared into a `GpuStorageBuffer` render asset. This asset can either be initialized with a `Vec<u8>` of properly aligned data or with a size hint. Users can modify the underlying `wgpu::BufferDescriptor` to provide additional usage flags. ## Migration Guide The `AsBindGroup` `storage` attribute has been modified to reference the new `Handle<Storage>` asset instead. Usages of Vec` should be converted into assets instead. --------- Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |