# Objective
Improve the performance of `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.
`FilteredEntityRef` needs an `Access<ComponentId>` to determine what
components it can access. There is one stored in the query state, but
query items cannot borrow from the state, so it has to `clone()` the
access for each row. Cloning the access involves memory allocations and
can be expensive.
## Solution
Let query items borrow from their query state.
Add an `'s` lifetime to `WorldQuery::Item` and `WorldQuery::Fetch`,
similar to the one in `SystemParam`, and provide `&'s Self::State` to
the fetch so that it can borrow from the state.
Unfortunately, there are a few cases where we currently return query
items from temporary query states: the sorted iteration methods create a
temporary state to query the sort keys, and the
`EntityRef::components<Q>()` methods create a temporary state for their
query.
To allow these to continue to work with most `QueryData`
implementations, introduce a new subtrait `ReleaseStateQueryData` that
converts a `QueryItem<'w, 's>` to `QueryItem<'w, 'static>`, and is
implemented for everything except `FilteredEntity(Ref|Mut)` and
`Entity(Ref|Mut)Except`.
`#[derive(QueryData)]` will generate `ReleaseStateQueryData`
implementations that apply when all of the subqueries implement
`ReleaseStateQueryData`.
This PR does not actually change the implementation of
`FilteredEntity(Ref|Mut)` or `Entity(Ref|Mut)Except`! That will be done
as a follow-up PR so that the changes are easier to review. I have
pushed the changes as chescock/bevy#5.
## Testing
I ran performance traces of many_foxes, both against main and against
chescock/bevy#5, both including #15282. These changes do appear to make
generalized animation a bit faster:
(Red is main, yellow is chescock/bevy#5)

## Migration Guide
The `WorldQuery::Item` and `WorldQuery::Fetch` associated types and the
`QueryItem` and `ROQueryItem` type aliases now have an additional
lifetime parameter corresponding to the `'s` lifetime in `Query`. Manual
implementations of `WorldQuery` will need to update the method
signatures to include the new lifetimes. Other uses of the types will
need to be updated to include a lifetime parameter, although it can
usually be passed as `'_`. In particular, `ROQueryItem` is used when
implementing `RenderCommand`.
Before:
```rust
fn render<'w>(
item: &P,
view: ROQueryItem<'w, Self::ViewQuery>,
entity: Option<ROQueryItem<'w, Self::ItemQuery>>,
param: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```
After:
```rust
fn render<'w>(
item: &P,
view: ROQueryItem<'w, '_, Self::ViewQuery>,
entity: Option<ROQueryItem<'w, '_, Self::ItemQuery>>,
param: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult;
```
---
Methods on `QueryState` that take `&mut self` may now result in
conflicting borrows if the query items capture the lifetime of the
mutable reference. This affects `get()`, `iter()`, and others. To fix
the errors, first call `QueryState::update_archetypes()`, and then
replace a call `state.foo(world, param)` with
`state.query_manual(world).foo_inner(param)`. Alternately, you may be
able to restructure the code to call `state.query(world)` once and then
make multiple calls using the `Query`.
Before:
```rust
let mut state: QueryState<_, _> = ...;
let d1 = state.get(world, e1);
let d2 = state.get(world, e2); // Error: cannot borrow `state` as mutable more than once at a time
println!("{d1:?}");
println!("{d2:?}");
```
After:
```rust
let mut state: QueryState<_, _> = ...;
state.update_archetypes(world);
let d1 = state.get_manual(world, e1);
let d2 = state.get_manual(world, e2);
// OR
state.update_archetypes(world);
let d1 = state.query(world).get_inner(e1);
let d2 = state.query(world).get_inner(e2);
// OR
let query = state.query(world);
let d1 = query.get_inner(e1);
let d1 = query.get_inner(e2);
println!("{d1:?}");
println!("{d2:?}");
```
# Objective
Closes#19564.
The current `Event` trait looks like this:
```rust
pub trait Event: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
The `Event` trait is used by both buffered events
(`EventReader`/`EventWriter`) and observer events. If they are observer
events, they can optionally be targeted at specific `Entity`s or
`ComponentId`s, and can even be propagated to other entities.
However, there has long been a desire to split the trait semantically
for a variety of reasons, see #14843, #14272, and #16031 for discussion.
Some reasons include:
- It's very uncommon to use a single event type as both a buffered event
and targeted observer event. They are used differently and tend to have
distinct semantics.
- A common footgun is using buffered events with observers or event
readers with observer events, as there is no type-level error that
prevents this kind of misuse.
- #19440 made `Trigger::target` return an `Option<Entity>`. This
*seriously* hurts ergonomics for the general case of entity observers,
as you need to `.unwrap()` each time. If we could statically determine
whether the event is expected to have an entity target, this would be
unnecessary.
There's really two main ways that we can categorize events: push vs.
pull (i.e. "observer event" vs. "buffered event") and global vs.
targeted:
| | Push | Pull |
| ------------ | --------------- | --------------------------- |
| **Global** | Global observer | `EventReader`/`EventWriter` |
| **Targeted** | Entity observer | - |
There are many ways to approach this, each with their tradeoffs.
Ultimately, we kind of want to split events both ways:
- A type-level distinction between observer events and buffered events,
to prevent people from using the wrong kind of event in APIs
- A statically designated entity target for observer events to avoid
accidentally using untargeted events for targeted APIs
This PR achieves these goals by splitting event traits into `Event`,
`EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait
implemented by all events.
## `Event`, `EntityEvent`, and `BufferedEvent`
`Event` is now a very simple trait shared by all events.
```rust
pub trait Event: Send + Sync + 'static {
// Required for observer APIs
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
You can call `trigger` for *any* event, and use a global observer for
listening to the event.
```rust
#[derive(Event)]
struct Speak {
message: String,
}
// ...
app.add_observer(|trigger: On<Speak>| {
println!("{}", trigger.message);
});
// ...
commands.trigger(Speak {
message: "Y'all like these reworked events?".to_string(),
});
```
To allow an event to be targeted at entities and even propagated
further, you can additionally implement the `EntityEvent` trait:
```rust
pub trait EntityEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This lets you call `trigger_targets`, and to use targeted observer APIs
like `EntityCommands::observe`:
```rust
#[derive(Event, EntityEvent)]
#[entity_event(traversal = &'static ChildOf, auto_propagate)]
struct Damage {
amount: f32,
}
// ...
let enemy = commands.spawn((Enemy, Health(100.0))).id();
// Spawn some armor as a child of the enemy entity.
// When the armor takes damage, it will bubble the event up to the enemy.
let armor_piece = commands
.spawn((ArmorPiece, Health(25.0), ChildOf(enemy)))
.observe(|trigger: On<Damage>, mut query: Query<&mut Health>| {
// Note: `On::target` only exists because this is an `EntityEvent`.
let mut health = query.get(trigger.target()).unwrap();
health.0 -= trigger.amount();
});
commands.trigger_targets(Damage { amount: 10.0 }, armor_piece);
```
> [!NOTE]
> You *can* still also trigger an `EntityEvent` without targets using
`trigger`. We probably *could* make this an either-or thing, but I'm not
sure that's actually desirable.
To allow an event to be used with the buffered API, you can implement
`BufferedEvent`:
```rust
pub trait BufferedEvent: Event {}
```
The event can then be used with `EventReader`/`EventWriter`:
```rust
#[derive(Event, BufferedEvent)]
struct Message(String);
fn write_hello(mut writer: EventWriter<Message>) {
writer.write(Message("I hope these examples are alright".to_string()));
}
fn read_messages(mut reader: EventReader<Message>) {
// Process all buffered events of type `Message`.
for Message(message) in reader.read() {
println!("{message}");
}
}
```
In summary:
- Need a basic event you can trigger and observe? Derive `Event`!
- Need the event to be targeted at an entity? Derive `EntityEvent`!
- Need the event to be buffered and support the
`EventReader`/`EventWriter` API? Derive `BufferedEvent`!
## Alternatives
I'll now cover some of the alternative approaches I have considered and
briefly explored. I made this section collapsible since it ended up
being quite long :P
<details>
<summary>Expand this to see alternatives</summary>
### 1. Unified `Event` Trait
One option is not to have *three* separate traits (`Event`,
`EntityEvent`, `BufferedEvent`), and to instead just use associated
constants on `Event` to determine whether an event supports targeting
and buffering or not:
```rust
pub trait Event: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
const TARGETED: bool = false;
const BUFFERED: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
Methods can then use bounds like `where E: Event<TARGETED = true>` or
`where E: Event<BUFFERED = true>` to limit APIs to specific kinds of
events.
This would keep everything under one `Event` trait, but I don't think
it's necessarily a good idea. It makes APIs harder to read, and docs
can't easily refer to specific types of events. You can also create
weird invariants: what if you specify `TARGETED = false`, but have
`Traversal` and/or `AUTO_PROPAGATE` enabled?
### 2. `Event` and `Trigger`
Another option is to only split the traits between buffered events and
observer events, since that is the main thing people have been asking
for, and they have the largest API difference.
If we did this, I think we would need to make the terms *clearly*
separate. We can't really use `Event` and `BufferedEvent` as the names,
since it would be strange that `BufferedEvent` doesn't implement
`Event`. Something like `ObserverEvent` and `BufferedEvent` could work,
but it'd be more verbose.
For this approach, I would instead keep `Event` for the current
`EventReader`/`EventWriter` API, and call the observer event a
`Trigger`, since the "trigger" terminology is already used in the
observer context within Bevy (both as a noun and a verb). This is also
what a long [bikeshed on
Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791)
seemed to land on at the end of last year.
```rust
// For `EventReader`/`EventWriter`
pub trait Event: Send + Sync + 'static {}
// For observers
pub trait Trigger: Send + Sync + 'static {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
const TARGETED: bool = false;
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
```
The problem is that "event" is just a really good term for something
that "happens". Observers are rapidly becoming the more prominent API,
so it'd be weird to give them the `Trigger` name and leave the good
`Event` name for the less common API.
So, even though a split like this seems neat on the surface, I think it
ultimately wouldn't really work. We want to keep the `Event` name for
observer events, and there is no good alternative for the buffered
variant. (`Message` was suggested, but saying stuff like "sends a
collision message" is weird.)
### 3. `GlobalEvent` + `TargetedEvent`
What if instead of focusing on the buffered vs. observed split, we
*only* make a distinction between global and targeted events?
```rust
// A shared event trait to allow global observers to work
pub trait Event: Send + Sync + 'static {
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
// For buffered events and non-targeted observer events
pub trait GlobalEvent: Event {}
// For targeted observer events
pub trait TargetedEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This is actually the first approach I implemented, and it has the neat
characteristic that you can only use non-targeted APIs like `trigger`
with a `GlobalEvent` and targeted APIs like `trigger_targets` with a
`TargetedEvent`. You have full control over whether the entity should or
should not have a target, as they are fully distinct at the type-level.
However, there's a few problems:
- There is no type-level indication of whether a `GlobalEvent` supports
buffered events or just non-targeted observer events
- An `Event` on its own does literally nothing, it's just a shared trait
required to make global observers accept both non-targeted and targeted
events
- If an event is both a `GlobalEvent` and `TargetedEvent`, global
observers again have ambiguity on whether an event has a target or not,
undermining some of the benefits
- The names are not ideal
### 4. `Event` and `EntityEvent`
We can fix some of the problems of Alternative 3 by accepting that
targeted events can also be used in non-targeted contexts, and simply
having the `Event` and `EntityEvent` traits:
```rust
// For buffered events and non-targeted observer events
pub trait Event: Send + Sync + 'static {
fn register_component_id(world: &mut World) -> ComponentId { ... }
fn component_id(world: &World) -> Option<ComponentId> { ... }
}
// For targeted observer events
pub trait EntityEvent: Event {
type Traversal: Traversal<Self>;
const AUTO_PROPAGATE: bool = false;
}
```
This is essentially identical to this PR, just without a dedicated
`BufferedEvent`. The remaining major "problem" is that there is still
zero type-level indication of whether an `Event` event *actually*
supports the buffered API. This leads us to the solution proposed in
this PR, using `Event`, `EntityEvent`, and `BufferedEvent`.
</details>
## Conclusion
The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR
aims to solve all the common problems with Bevy's current event model
while keeping the "weirdness" factor minimal. It splits in terms of both
the push vs. pull *and* global vs. targeted aspects, while maintaining a
shared concept for an "event".
### Why I Like This
- The term "event" remains as a single concept for all the different
kinds of events in Bevy.
- Despite all event types being "events", they use fundamentally
different APIs. Instead of assuming that you can use an event type with
any pattern (when only one is typically supported), you explicitly opt
in to each one with dedicated traits.
- Using separate traits for each type of event helps with documentation
and clearer function signatures.
- I can safely make assumptions on expected usage.
- If I see that an event is an `EntityEvent`, I can assume that I can
use `observe` on it and get targeted events.
- If I see that an event is a `BufferedEvent`, I can assume that I can
use `EventReader` to read events.
- If I see both `EntityEvent` and `BufferedEvent`, I can assume that
both APIs are supported.
In summary: This allows for a unified concept for events, while limiting
the different ways to use them with opt-in traits. No more guess-work
involved when using APIs.
### Problems?
- Because `BufferedEvent` implements `Event` (for more consistent
semantics etc.), you can still use all buffered events for non-targeted
observers. I think this is fine/good. The important part is that if you
see that an event implements `BufferedEvent`, you know that the
`EventReader`/`EventWriter` API should be supported. Whether it *also*
supports other APIs is secondary.
- I currently only support `trigger_targets` for an `EntityEvent`.
However, you can technically target components too, without targeting
any entities. I consider that such a niche and advanced use case that
it's not a huge problem to only support it for `EntityEvent`s, but we
could also split `trigger_targets` into `trigger_entities` and
`trigger_components` if we wanted to (or implement components as
entities :P).
- You can still trigger an `EntityEvent` *without* targets. I consider
this correct, since `Event` implements the non-targeted behavior, and
it'd be weird if implementing another trait *removed* behavior. However,
it does mean that global observers for entity events can technically
return `Entity::PLACEHOLDER` again (since I got rid of the
`Option<Entity>` added in #19440 for ergonomics). I think that's enough
of an edge case that it's not a huge problem, but it is worth keeping in
mind.
- ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type
currently duplicates the `Event` implementation, so you instead need to
manually implement one of them.~~ Changed to always requiring `Event` to
be derived.
## Related Work
There are plans to implement multi-event support for observers,
especially for UI contexts. [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)
API looked like this:
```rust
// Truncated for brevity
trigger: Trigger<(
OnAdd<Pressed>,
OnRemove<Pressed>,
OnAdd<InteractionDisabled>,
OnRemove<InteractionDisabled>,
OnInsert<Hovered>,
)>,
```
I believe this shouldn't be in conflict with this PR. If anything, this
PR might *help* achieve the multi-event pattern for entity observers
with fewer footguns: by statically enforcing that all of these events
are `EntityEvent`s in the context of `EntityCommands::observe`, we can
avoid misuse or weird cases where *some* events inside the trigger are
targeted while others are not.
# Objective
Currently, the observer API looks like this:
```rust
app.add_observer(|trigger: Trigger<Explode>| {
info!("Entity {} exploded!", trigger.target());
});
```
Future plans for observers also include "multi-event observers" with a
trigger that looks like this (see [Cart's
example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508)):
```rust
trigger: Trigger<(
OnAdd<Pressed>,
OnRemove<Pressed>,
OnAdd<InteractionDisabled>,
OnRemove<InteractionDisabled>,
OnInsert<Hovered>,
)>,
```
In scenarios like this, there is a lot of repetition of `On`. These are
expected to be very high-traffic APIs especially in UI contexts, so
ergonomics and readability are critical.
By renaming `Trigger` to `On`, we can make these APIs read more cleanly
and get rid of the repetition:
```rust
app.add_observer(|trigger: On<Explode>| {
info!("Entity {} exploded!", trigger.target());
});
```
```rust
trigger: On<(
Add<Pressed>,
Remove<Pressed>,
Add<InteractionDisabled>,
Remove<InteractionDisabled>,
Insert<Hovered>,
)>,
```
Names like `On<Add<Pressed>>` emphasize the actual event listener nature
more than `Trigger<OnAdd<Pressed>>`, and look cleaner. This *also* frees
up the `Trigger` name if we want to use it for the observer event type,
splitting them out from buffered events (bikeshedding this is out of
scope for this PR though).
For prior art:
[`bevy_eventlistener`](https://github.com/aevyrie/bevy_eventlistener)
used
[`On`](https://docs.rs/bevy_eventlistener/latest/bevy_eventlistener/event_listener/struct.On.html)
for its event listener type. Though in our case, the observer is the
event listener, and `On` is just a type containing information about the
triggered event.
## Solution
Steal from `bevy_event_listener` by @aevyrie and use `On`.
- Rename `Trigger` to `On`
- Rename `OnAdd` to `Add`
- Rename `OnInsert` to `Insert`
- Rename `OnReplace` to `Replace`
- Rename `OnRemove` to `Remove`
- Rename `OnDespawn` to `Despawn`
## Discussion
### Naming Conflicts??
Using a name like `Add` might initially feel like a very bad idea, since
it risks conflict with `core::ops::Add`. However, I don't expect this to
be a big problem in practice.
- You rarely need to actually implement the `Add` trait, especially in
modules that would use the Bevy ECS.
- In the rare cases where you *do* get a conflict, it is very easy to
fix by just disambiguating, for example using `ops::Add`.
- The `Add` event is a struct while the `Add` trait is a trait (duh), so
the compiler error should be very obvious.
For the record, renaming `OnAdd` to `Add`, I got exactly *zero* errors
or conflicts within Bevy itself. But this is of course not entirely
representative of actual projects *using* Bevy.
You might then wonder, why not use `Added`? This would conflict with the
`Added` query filter, so it wouldn't work. Additionally, the current
naming convention for observer events does not use past tense.
### Documentation
This does make documentation slightly more awkward when referring to
`On` or its methods. Previous docs often referred to `Trigger::target`
or "sends a `Trigger`" (which is... a bit strange anyway), which would
now be `On::target` and "sends an observer `Event`".
You can see the diff in this PR to see some of the effects. I think it
should be fine though, we may just need to reword more documentation to
read better.
# Objective
#19366 implemented core button widgets, which included the `Depressed`
state component.
`Depressed` was chosen instead of `Pressed` to avoid conflict with the
`Pointer<Pressed>` event, but it is problematic and awkward in many
ways:
- Using the word "depressed" for such a high-traffic type is not great
due to the obvious connection to "depressed" as in depression.
- "Depressed" is not what I would search for if I was looking for a
component like this, and I'm not aware of any other engine or UI
framework using the term.
- `Depressed` is not a very natural pair to the `Pointer<Pressed>`
event.
- It might be because I'm not a native English speaker, but I have very
rarely heard someone say "a button is depressed". Seeing it, my mind
initially goes from "depression??" to "oh, de-pressed, meaning released"
and definitely not "is pressed", even though that *is* also a valid
meaning for it.
A related problem is that the current `Pointer<Pressed>` and
`Pointer<Released>` event names use a different verb tense than all of
our other observer events such as `Pointer<Click>` or
`Pointer<DragStart>`. By fixing this and renaming `Pressed` (and
`Released`), we can then use `Pressed` instead of `Depressed` for the
state component.
Additionally, the `IsHovered` and `IsDirectlyHovered` components added
in #19366 use an inconsistent naming; the other similar components don't
use an `Is` prefix. It also makes query filters like `Has<IsHovered>`
and `With<IsHovered>` a bit more awkward.
This is partially related to Cart's [picking concept
proposal](https://gist.github.com/cart/756e48a149db2838028be600defbd24a?permalink_comment_id=5598154).
## Solution
- Rename `Pointer<Pressed>` to `Pointer<Press>`
- Rename `Pointer<Released>` to `Pointer<Release>`
- Rename `Depressed` to `Pressed`
- Rename `IsHovered` to `Hovered`
- Rename `IsDirectlyHovered` to `DirectlyHovered`
# Objective
Part of #19236
## Solution
Adds a new `bevy_core_widgets` crate containing headless widget
implementations. This PR adds a single `CoreButton` widget, more widgets
to be added later once this is approved.
## Testing
There's an example, ui/core_widgets.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
I set out with one simple goal: clearly document the differences between
each of the component lifecycle events via module docs.
Unfortunately, no such module existed: the various lifecycle code was
scattered to the wind.
Without a unified module, it's very hard to discover the related types,
and there's nowhere good to put my shiny new documentation.
## Solution
1. Unify the assorted types into a single
`bevy_ecs::component_lifecycle` module.
2. Write docs.
3. Write a migration guide.
## Testing
Thanks CI!
## Follow-up
1. The lifecycle event names are pretty confusing, especially
`OnReplace`. We should consider renaming those. No bikeshedding in my PR
though!
2. Observers need real module docs too :(
3. Any additional functional changes should be done elsewhere; this is a
simple docs and re-org PR.
---------
Co-authored-by: theotherphil <phil.j.ellison@gmail.com>
# Objective
Rename `JustifyText`:
* The name `JustifyText` is just ugly.
* It's inconsistent since no other `bevy_text` types have a `Text-`
suffix, only prefix.
* It's inconsistent with the other text layout enum `Linebreak` which
doesn't have a prefix or suffix.
Fixes#19521.
## Solution
Rename `JustifyText` to `Justify`.
Without other context, it's natural to assume the name `Justify` refers
to text justification.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Add specialized UI transform `Component`s and fix some related problems:
* Animating UI elements by modifying the `Transform` component of UI
nodes doesn't work very well because `ui_layout_system` overwrites the
translations each frame. The `overflow_debug` example uses a horrible
hack where it copies the transform into the position that'll likely
cause a panic if any users naively copy it.
* Picking ignores rotation and scaling and assumes UI nodes are always
axis aligned.
* The clipping geometry stored in `CalculatedClip` is wrong for rotated
and scaled elements.
* Transform propagation is unnecessary for the UI, the transforms can be
updated during layout updates.
* The UI internals use both object-centered and top-left-corner-based
coordinates systems for UI nodes. Depending on the context you have to
add or subtract the half-size sometimes before transforming between
coordinate spaces. We should just use one system consistantly so that
the transform can always be directly applied.
* `Transform` doesn't support responsive coordinates.
## Solution
* Unrequire `Transform` from `Node`.
* New components `UiTransform`, `UiGlobalTransform`:
- `Node` requires `UiTransform`, `UiTransform` requires
`UiGlobalTransform`
- `UiTransform` is a 2d-only equivalent of `Transform` with a
translation in `Val`s.
- `UiGlobalTransform` newtypes `Affine2` and is updated in
`ui_layout_system`.
* New helper functions on `ComputedNode` for mapping between viewport
and local node space.
* The cursor position is transformed to local node space during picking
so that it respects rotations and scalings.
* To check if the cursor hovers a node recursively walk up the tree to
the root checking if any of the ancestor nodes clip the point at the
cursor. If the point is clipped the interaction is ignored.
* Use object-centered coordinates for UI nodes.
* `RelativeCursorPosition`'s coordinates are now object-centered with
(0,0) at the the center of the node and the corners at (±0.5, ±0.5).
* Replaced the `normalized_visible_node_rect: Rect` field of
`RelativeCursorPosition` with `cursor_over: bool`, which is set to true
when the cursor is over an unclipped point on the node. The visible area
of the node is not necessarily a rectangle, so the previous
implementation didn't work.
This should fix all the logical bugs with non-axis aligned interactions
and clipping. Rendering still needs changes but they are far outside the
scope of this PR.
Tried and abandoned two other approaches:
* New `transform` field on `Node`, require `GlobalTransform` on `Node`,
and unrequire `Transform` on `Node`. Unrequiring `Transform` opts out of
transform propagation so there is then no conflict with updating the
`GlobalTransform` in `ui_layout_system`. This was a nice change in its
simplicity but potentially confusing for users I think, all the
`GlobalTransform` docs mention `Transform` and having special rules for
how it's updated just for the UI is unpleasently surprising.
* New `transform` field on `Node`. Unrequire `Transform` on `Node`. New
`transform: Affine2` field on `ComputedNode`.
This was okay but I think most users want a separate specialized UI
transform components. The fat `ComputedNode` doesn't work well with
change detection.
Fixes#18929, #18930
## Testing
There is an example you can look at:
```
cargo run --example ui_transform
```
Sometimes in the example if you press the rotate button couple of times
the first glyph from the top label disappears , I'm not sure what's
causing it yet but I don't think it's related to this PR.
## Migration Guide
New specialized 2D UI transform components `UiTransform` and
`UiGlobalTransform`. `UiTransform` is a 2d-only equivalent of
`Transform` with a translation in `Val`s. `UiGlobalTransform` newtypes
`Affine2` and is updated in `ui_layout_system`.
`Node` now requires `UiTransform` instead of `Transform`. `UiTransform`
requires `UiGlobalTransform`.
In previous versions of Bevy `ui_layout_system` would overwrite UI
node's `Transform::translation` each frame. `UiTransform`s aren't
overwritten and there is no longer any need for systems that cache and
rewrite the transform for translated UI elements.
`RelativeCursorPosition`'s coordinates are now object-centered with
(0,0) at the the center of the node and the corners at (±0.5, ±0.5). Its
`normalized_visible_node_rect` field has been removed and replaced with
a new `cursor_over: bool` field which is set to true when the cursor is
hovering an unclipped area of the UI node.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Related to #19024
## Solution
- Use the new `load_shader_library` macro for the shader libraries and
`embedded_asset`/`load_embedded_asset` for the "shader binaries" in
`bevy_ui`.
## Testing
- `box_shadow` example still works.
- `gradient` example is broken at head (see #19384) - but otherwise
gives the same result in the console.
- `ui_materials` example still works.
- `ui_texture_slice` example still works.
P.S. I don't think this needs a migration guide. Technically users could
be using the `pub` weak handles, but there's no actual good use for
them, so omitting it seems fine. Alternatively, we could mix this in
with the migration guide notes for #19137.
# Objective
Found a typo while looking at gradients in another issue and gave the
docs a skim for more.
## Solution
A couple typo fixes and some tiny improvements
# Objective
Constify `Val::resolve` and `BorderRadius::resolve`
# Solution
* Replace uses of `Vec2::min_element` and `Vec2::max_element` with `min`
and `max` called on the components.
* Make `BorderRadius::resolve` and `BorderRadius::resolve_single_corner`
`const`.
* Swap the order of the `bottom_left` and `bottom_right` fields of
`BorderRadius` and `ResolvedBorderRadius` so they match the ccw order
used in the shader and in css.
# Objective
- Simplify `Camera` initialization
- allow effects to require HDR
## Solution
- Split out `Camera.hdr` into a marker `Hdr` component
## Testing
- ran `bloom_3d` example
---
## Showcase
```rs
// before
commands.spawn((
Camera3d
Camera {
hdr: true
..Default::default()
}
))
// after
commands.spawn((Camera3d, Hdr));
// other rendering components can require that the camera enables hdr!
// currently implemented for Bloom, AutoExposure, and Atmosphere.
#[require(Hdr)]
pub struct Bloom;
```
# Objective
- Update AccessKit crates to their latest versions.
- Fixes#19040
## Solution
- Only modifying Cargo.toml files is needed, few changes under the hood
but nothing impacting Bevy.
## Testing
- I ran the tab_navigation example on Windows 11.
# Objective
The new viewport example allocates a texture in main memory, even though
it's only needed on the GPU. Also fix an unnecessary warning when a
viewport's texture doesn't exist CPU-side.
## Testing
Run the `viewport_node` example.
# Objective
allow specifying the left/top/right/bottom border colors separately for
ui elements
fixes#14773
## Solution
- change `BorderColor` to
```rs
pub struct BorderColor {
pub left: Color,
pub top: Color,
pub right: Color,
pub bottom: Color,
}
```
- generate one ui node per distinct border color, set flags for the
active borders
- render only the active borders
i chose to do this rather than adding multiple colors to the
ExtractedUiNode in order to minimize the impact for the common case
where all border colors are the same.
## Testing
modified the `borders` example to use separate colors:

the behaviour is a bit weird but it mirrors html/css border behaviour.
---
## Migration:
To keep the existing behaviour, just change `BorderColor(color)` into
`BorderColor::all(color)`.
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
# Objective
Allowing drawing of UI nodes with a gradient instead of a flat color.
## Solution
The are three gradient structs corresponding to the three types of
gradients supported: `LinearGradient`, `ConicGradient` and
`RadialGradient`. These are then wrapped in a `Gradient` enum
discriminator which has `Linear`, `Conic` and `Radial` variants.
Each gradient type consists of the geometric properties for that
gradient and a list of color stops.
Color stops consist of a color, a position or angle and an optional
hint. If no position is specified for a stop, it's evenly spaced between
the previous and following stops. Color stop positions are absolute, if
you specify a list of stops:
```vec


Conic gradients can be used to draw simple pie charts like in CSS:

# Objective
Been looking for simplifications in the text systems as part of the text
input changes.
This enum isn't very helpful I think. We can remove it and the
associated parameters and instead just negate the glyph's y-offsets in
`extract_text2d_sprite`.
## Solution
Remove the `YAxisOrientation` enum and parameters.
Queue text sprites relative to the top-left in `extract_text2d_sprite`
and negate the glyph's y-offset.
## Testing
The `text2d` example can be used for testing:
```
cargo run --example text2d
```
# Objective
There are two problems this aims to solve.
First, `Entity::index` is currently a `u32`. That means there are
`u32::MAX + 1` possible entities. Not only is that awkward, but it also
make `Entity` allocation more difficult. I discovered this while working
on remote entity reservation, but even on main, `Entities` doesn't
handle the `u32::MAX + 1` entity very well. It can not be batch reserved
because that iterator uses exclusive ranges, which has a maximum upper
bound of `u32::MAX - 1`. In other words, having `u32::MAX` as a valid
index can be thought of as a bug right now. We either need to make that
invalid (this PR), which makes Entity allocation cleaner and makes
remote reservation easier (because the length only needs to be u32
instead of u64, which, in atomics is a big deal), or we need to take
another pass at `Entities` to make it handle the `u32::MAX` index
properly.
Second, `TableRow`, `ArchetypeRow` and `EntityIndex` (a type alias for
u32) all have `u32` as the underlying type. That means using these as
the index type in a `SparseSet` uses 64 bits for the sparse list because
it stores `Option<IndexType>`. By using `NonMaxU32` here, we cut the
memory of that list in half. To my knowledge, `EntityIndex` is the only
thing that would really benefit from this niche. `TableRow` and
`ArchetypeRow` I think are not stored in an `Option` in bulk. But if
they ever are, this would help. Additionally this ensures
`TableRow::INVALID` and `ArchetypeRow::INVALID` never conflict with an
actual row, which in a nice bonus.
As a related note, if we do components as entities where `ComponentId`
becomes `Entity`, the the `SparseSet<ComponentId>` will see a similar
memory improvement too.
## Solution
Create a new type `EntityRow` that wraps `NonMaxU32`, similar to
`TableRow` and `ArchetypeRow`.
Change `Entity::index` to this type.
## Downsides
`NonMax` is implemented as a `NonZero` with a binary inversion. That
means accessing and storing the value takes one more instruction. I
don't think that's a big deal, but it's worth mentioning.
As a consequence, `to_bits` uses `transmute` to skip the inversion which
keeps it a nop. But that also means that ordering has now flipped. In
other words, higher indices are considered less than lower indices. I
don't think that's a problem, but it's also worth mentioning.
## Alternatives
We could keep the index as a u32 type and just document that `u32::MAX`
is invalid, modifying `Entities` to ensure it never gets handed out.
(But that's not enforced by the type system.) We could still take
advantage of the niche here in `ComponentSparseSet`. We'd just need some
unsafe manual conversions, which is probably fine, but opens up the
possibility for correctness problems later.
We could change `Entities` to fully support the `u32::MAX` index. (But
that makes `Entities` more complex and potentially slightly slower.)
## Testing
- CI
- A few tests were changed because they depend on different ordering and
`to_bits` values.
## Future Work
- It might be worth removing the niche on `Entity::generation` since
there is now a different niche.
- We could move `Entity::generation` into it's own type too for clarity.
- We should change `ComponentSparseSet` to take advantage of the new
niche. (This PR doesn't change that yet.)
- Consider removing or updating `Identifier`. This is only used for
`Entity`, so it might be worth combining since `Entity` is now more
unique.
---------
Co-authored-by: atlv <email@atlasdostal.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
Fixes a part of #14274.
Bevy has an incredibly inconsistent naming convention for its system
sets, both internally and across the ecosystem.
<img alt="System sets in Bevy"
src="https://github.com/user-attachments/assets/d16e2027-793f-4ba4-9cc9-e780b14a5a1b"
width="450" />
*Names of public system set types in Bevy*
Most Bevy types use a naming of `FooSystem` or just `Foo`, but there are
also a few `FooSystems` and `FooSet` types. In ecosystem crates on the
other hand, `FooSet` is perhaps the most commonly used name in general.
Conventions being so wildly inconsistent can make it harder for users to
pick names for their own types, to search for system sets on docs.rs, or
to even discern which types *are* system sets.
To reign in the inconsistency a bit and help unify the ecosystem, it
would be good to establish a common recommended naming convention for
system sets in Bevy itself, similar to how plugins are commonly suffixed
with `Plugin` (ex: `TimePlugin`). By adopting a consistent naming
convention in first-party Bevy, we can softly nudge ecosystem crates to
follow suit (for types where it makes sense to do so).
Choosing a naming convention is also relevant now, as the [`bevy_cli`
recently adopted
lints](https://github.com/TheBevyFlock/bevy_cli/pull/345) to enforce
naming for plugins and system sets, and the recommended naming used for
system sets is still a bit open.
## Which Name To Use?
Now the contentious part: what naming convention should we actually
adopt?
This was discussed on the Bevy Discord at the end of last year, starting
[here](<https://discord.com/channels/691052431525675048/692572690833473578/1310659954683936789>).
`FooSet` and `FooSystems` were the clear favorites, with `FooSet` very
narrowly winning an unofficial poll. However, it seems to me like the
consensus was broadly moving towards `FooSystems` at the end and after
the poll, with Cart
([source](https://discord.com/channels/691052431525675048/692572690833473578/1311140204974706708))
and later Alice
([source](https://discord.com/channels/691052431525675048/692572690833473578/1311092530732859533))
and also me being in favor of it.
Let's do a quick pros and cons list! Of course these are just what I
thought of, so take it with a grain of salt.
`FooSet`:
- Pro: Nice and short!
- Pro: Used by many ecosystem crates.
- Pro: The `Set` suffix comes directly from the trait name `SystemSet`.
- Pro: Pairs nicely with existing APIs like `in_set` and
`configure_sets`.
- Con: `Set` by itself doesn't actually indicate that it's related to
systems *at all*, apart from the implemented trait. A set of what?
- Con: Is `FooSet` a set of `Foo`s or a system set related to `Foo`? Ex:
`ContactSet`, `MeshSet`, `EnemySet`...
`FooSystems`:
- Pro: Very clearly indicates that the type represents a collection of
systems. The actual core concept, system(s), is in the name.
- Pro: Parallels nicely with `FooPlugins` for plugin groups.
- Pro: Low risk of conflicts with other names or misunderstandings about
what the type is.
- Pro: In most cases, reads *very* nicely and clearly. Ex:
`PhysicsSystems` and `AnimationSystems` as opposed to `PhysicsSet` and
`AnimationSet`.
- Pro: Easy to search for on docs.rs.
- Con: Usually results in longer names.
- Con: Not yet as widely used.
Really the big problem with `FooSet` is that it doesn't actually
describe what it is. It describes what *kind of thing* it is (a set of
something), but not *what it is a set of*, unless you know the type or
check its docs or implemented traits. `FooSystems` on the other hand is
much more self-descriptive in this regard, at the cost of being a bit
longer to type.
Ultimately, in some ways it comes down to preference and how you think
of system sets. Personally, I was originally in favor of `FooSet`, but
have been increasingly on the side of `FooSystems`, especially after
seeing what the new names would actually look like in Avian and now
Bevy. I prefer it because it usually reads better, is much more clearly
related to groups of systems than `FooSet`, and overall *feels* more
correct and natural to me in the long term.
For these reasons, and because Alice and Cart also seemed to share a
preference for it when it was previously being discussed, I propose that
we adopt a `FooSystems` naming convention where applicable.
## Solution
Rename Bevy's system set types to use a consistent `FooSet` naming where
applicable.
- `AccessibilitySystem` → `AccessibilitySystems`
- `GizmoRenderSystem` → `GizmoRenderSystems`
- `PickSet` → `PickingSystems`
- `RunFixedMainLoopSystem` → `RunFixedMainLoopSystems`
- `TransformSystem` → `TransformSystems`
- `RemoteSet` → `RemoteSystems`
- `RenderSet` → `RenderSystems`
- `SpriteSystem` → `SpriteSystems`
- `StateTransitionSteps` → `StateTransitionSystems`
- `RenderUiSystem` → `RenderUiSystems`
- `UiSystem` → `UiSystems`
- `Animation` → `AnimationSystems`
- `AssetEvents` → `AssetEventSystems`
- `TrackAssets` → `AssetTrackingSystems`
- `UpdateGizmoMeshes` → `GizmoMeshSystems`
- `InputSystem` → `InputSystems`
- `InputFocusSet` → `InputFocusSystems`
- `ExtractMaterialsSet` → `MaterialExtractionSystems`
- `ExtractMeshesSet` → `MeshExtractionSystems`
- `RumbleSystem` → `RumbleSystems`
- `CameraUpdateSystem` → `CameraUpdateSystems`
- `ExtractAssetsSet` → `AssetExtractionSystems`
- `Update2dText` → `Text2dUpdateSystems`
- `TimeSystem` → `TimeSystems`
- `AudioPlaySet` → `AudioPlaybackSystems`
- `SendEvents` → `EventSenderSystems`
- `EventUpdates` → `EventUpdateSystems`
A lot of the names got slightly longer, but they are also a lot more
consistent, and in my opinion the majority of them read much better. For
a few of the names I took the liberty of rewording things a bit;
definitely open to any further naming improvements.
There are still also cases where the `FooSystems` naming doesn't really
make sense, and those I left alone. This primarily includes system sets
like `Interned<dyn SystemSet>`, `EnterSchedules<S>`, `ExitSchedules<S>`,
or `TransitionSchedules<S>`, where the type has some special purpose and
semantics.
## Todo
- [x] Should I keep all the old names as deprecated type aliases? I can
do this, but to avoid wasting work I'd prefer to first reach consensus
on whether these renames are even desired.
- [x] Migration guide
- [x] Release notes
# Objective
Add a viewport widget.
## Solution
- Add a new `ViewportNode` component to turn a UI node into a viewport.
- Add `viewport_picking` to pass pointer inputs from other pointers to
the viewport's pointer.
- Notably, this is somewhat functionally different from the viewport
widget in [the editor
prototype](https://github.com/bevyengine/bevy_editor_prototypes/pull/110/files#L124),
which just moves the pointer's location onto the render target. Viewport
widgets have their own pointers.
- Care is taken to handle dragging in and out of viewports.
- Add `update_viewport_render_target_size` to update the viewport node's
render target's size if the node size changes.
- Feature gate picking-related viewport items behind
`bevy_ui_picking_backend`.
## Testing
I've been using an example I made to test the widget (and added it as
`viewport_node`):
<details><summary>Code</summary>
```rust
//! A simple scene to demonstrate spawning a viewport widget. The example will demonstrate how to
//! pick entities visible in the widget's view.
use bevy::picking::pointer::PointerInteraction;
use bevy::prelude::*;
use bevy::ui::widget::ViewportNode;
use bevy::{
image::{TextureFormatPixelInfo, Volume},
window::PrimaryWindow,
};
use bevy_render::{
camera::RenderTarget,
render_resource::{
Extent3d, TextureDescriptor, TextureDimension, TextureFormat, TextureUsages,
},
};
fn main() {
App::new()
.add_plugins((DefaultPlugins, MeshPickingPlugin))
.add_systems(Startup, test)
.add_systems(Update, draw_mesh_intersections)
.run();
}
#[derive(Component, Reflect, Debug)]
#[reflect(Component)]
struct Shape;
fn test(
mut commands: Commands,
window: Query<&Window, With<PrimaryWindow>>,
mut images: ResMut<Assets<Image>>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Spawn a UI camera
commands.spawn(Camera3d::default());
// Set up an texture for the 3D camera to render to
let window = window.get_single().unwrap();
let window_size = window.physical_size();
let size = Extent3d {
width: window_size.x,
height: window_size.y,
..default()
};
let format = TextureFormat::Bgra8UnormSrgb;
let image = Image {
data: Some(vec![0; size.volume() * format.pixel_size()]),
texture_descriptor: TextureDescriptor {
label: None,
size,
dimension: TextureDimension::D2,
format,
mip_level_count: 1,
sample_count: 1,
usage: TextureUsages::TEXTURE_BINDING
| TextureUsages::COPY_DST
| TextureUsages::RENDER_ATTACHMENT,
view_formats: &[],
},
..default()
};
let image_handle = images.add(image);
// Spawn the 3D camera
let camera = commands
.spawn((
Camera3d::default(),
Camera {
// Render this camera before our UI camera
order: -1,
target: RenderTarget::Image(image_handle.clone().into()),
..default()
},
))
.id();
// Spawn something for the 3D camera to look at
commands
.spawn((
Mesh3d(meshes.add(Cuboid::new(5.0, 5.0, 5.0))),
MeshMaterial3d(materials.add(Color::WHITE)),
Transform::from_xyz(0.0, 0.0, -10.0),
Shape,
))
// We can observe pointer events on our objects as normal, the
// `bevy::ui::widgets::viewport_picking` system will take care of ensuring our viewport
// clicks pass through
.observe(on_drag_cuboid);
// Spawn our viewport widget
commands
.spawn((
Node {
position_type: PositionType::Absolute,
top: Val::Px(50.0),
left: Val::Px(50.0),
width: Val::Px(200.0),
height: Val::Px(200.0),
border: UiRect::all(Val::Px(5.0)),
..default()
},
BorderColor(Color::WHITE),
ViewportNode::new(camera),
))
.observe(on_drag_viewport);
}
fn on_drag_viewport(drag: Trigger<Pointer<Drag>>, mut node_query: Query<&mut Node>) {
if matches!(drag.button, PointerButton::Secondary) {
let mut node = node_query.get_mut(drag.target()).unwrap();
if let (Val::Px(top), Val::Px(left)) = (node.top, node.left) {
node.left = Val::Px(left + drag.delta.x);
node.top = Val::Px(top + drag.delta.y);
};
}
}
fn on_drag_cuboid(drag: Trigger<Pointer<Drag>>, mut transform_query: Query<&mut Transform>) {
if matches!(drag.button, PointerButton::Primary) {
let mut transform = transform_query.get_mut(drag.target()).unwrap();
transform.rotate_y(drag.delta.x * 0.02);
transform.rotate_x(drag.delta.y * 0.02);
}
}
fn draw_mesh_intersections(
pointers: Query<&PointerInteraction>,
untargetable: Query<Entity, Without<Shape>>,
mut gizmos: Gizmos,
) {
for (point, normal) in pointers
.iter()
.flat_map(|interaction| interaction.iter())
.filter_map(|(entity, hit)| {
if !untargetable.contains(*entity) {
hit.position.zip(hit.normal)
} else {
None
}
})
{
gizmos.arrow(point, point + normal.normalize() * 0.5, Color::WHITE);
}
}
```
</details>
## Showcase
https://github.com/user-attachments/assets/39f44eac-2c2a-4fd9-a606-04171f806dc1
## Open Questions
- <del>Not sure whether the entire widget should be feature gated behind
`bevy_ui_picking_backend` or not? I chose a partial approach since maybe
someone will want to use the widget without any picking being
involved.</del>
- <del>Is `PickSet::Last` the expected set for `viewport_picking`?
Perhaps `PickSet::Input` is more suited.</del>
- <del>Can `dragged_last_frame` be removed in favor of a better dragging
check? Another option that comes to mind is reading `Drag` and `DragEnd`
events, but this seems messier.</del>
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
Add background colors for text.
Fixes#18889
## Solution
New component `TextBackgroundColor`, add it to any UI `Text` or
`TextSpan` entity to add a background color to its text.
New field on `TextLayoutInfo` `section_rects` holds the list of bounding
rects for each text section.
The bounding rects are generated in `TextPipeline::queue_text` during
text layout, `extract_text_background_colors` extracts the colored
background rects for rendering.
Didn't include `Text2d` support because of z-order issues.
The section rects can also be used to implement interactions targeting
individual text sections.
## Testing
Includes a basic example that can be used for testing:
```
cargo run --example text_background_colors
```
---
## Showcase

Using a proportional font with kerning the results aren't so tidy (since
the bounds of adjacent glyphs can overlap) but it still works fine:

---------
Co-authored-by: Olle Lukowski <lukowskiolle@gmail.com>
Co-authored-by: Gilles Henaux <ghx_github_priv@fastmail.com>
# Objective
The default should be `OverflowClipBox::PaddingBox` not
`OverflowClipBox::ContentBox`
`padding-box` is the default in CSS.
## Solution
Set the default to `PaddingBox`.
## Testing
Compare the `overflow` UI example on main vs with this PR. You should
see that on main the outline around the inner node gets clipped. With
this PR by default clipping starts at the inner edge of the border (the
`padding-box`) and the outlines are visible.
Fixes#18934
# Objective
Was copying off `bevy_ui`'s homework writing a picking backend and
noticed the `Has<IsDefaultPickingCamera>` is not used anywhere.
## Testing
Ran a random example.
This shouldn't cause any behavioral changes at all because the
component/archetype access/filter flags should be the same. `Has<X>`
doesn't affect access since it doesn't actually read or write anything,
and it doesn't affect matched archetypes either. Can't think of another
reason any behavior would change.
# Objective
The goal of `bevy_platform_support` is to provide a set of platform
agnostic APIs, alongside platform-specific functionality. This is a high
traffic crate (providing things like HashMap and Instant). Especially in
light of https://github.com/bevyengine/bevy/discussions/18799, it
deserves a friendlier / shorter name.
Given that it hasn't had a full release yet, getting this change in
before Bevy 0.16 makes sense.
## Solution
- Rename `bevy_platform_support` to `bevy_platform`.
# Objective
Fixes#18685
## Solution
* Don't apply the camera translation.
* Calculate the min and max bounds of the accessibility node rect taking
the UI translation relative to its center not the top-left corner.
## Testing
Install [NVDA](https://www.nvaccess.org/). In NVDA set `Preferences ->
Settings -> Vision -> Enable Highlighting`.
Then run bevy's `tab_navigation` example:
```
cargo run --example tab_navigation
```
If everything is working correctly, NVDA should draw a border around the
currently selected tab button:

# Objective
In #17905 we swapped to a named field on `ChildOf` to help resolve
variable naming ambiguity of child vs parent (ex: `child_of.parent`
clearly reads as "I am accessing the parent of the child_of
relationship", whereas `child_of.0` is less clear).
Unfortunately this has the side effect of making initialization less
ideal. `ChildOf { parent }` reads just as well as `ChildOf(parent)`, but
`ChildOf { parent: root }` doesn't read nearly as well as
`ChildOf(root)`.
## Solution
Move back to `ChildOf(pub Entity)` but add a `child_of.parent()`
function and use it for all accesses. The downside here is that users
are no longer "forced" to access the parent field with `parent`
nomenclature, but I think this strikes the right balance.
Take a look at the diff. I think the results provide strong evidence for
this change. Initialization has the benefit of reading much better _and_
of taking up significantly less space, as many lines go from 3 to 1, and
we're cutting out a bunch of syntax in some cases.
Sadly I do think this should land in 0.16 as the cost of doing this
_after_ the relationships migration is high.
# Objective
The `visited: Local<HashSet<Entity>>` system param is meant to track
which entities `update_contexts_recursively` has visited and updated but
when the reparent_nodes_query isn't ordered descending from parent to
child nodes can get marked as visited even though their camera target is
unset and if the camera target is unset then the node won't be rendered.
Fixes#18616
## Solution
Remove the `visited` system param from `update_ui_context_system` and
the associated visited check from `update_contexts_recursively`. It was
redundant anyway since the set_if_neq check is sufficient to track
already updated nodes.
## Testing
The example from #18616 can be used for testing.
# Objective
Fixes#9367.
Yet another follow-up to #16547.
These traits were initially based on `Borrow<Entity>` because that trait
was what they were replacing, and it felt close enough in meaning.
However, they ultimately don't quite match: `borrow` always returns
references, whereas `EntityBorrow` always returns a plain `Entity`.
Additionally, `EntityBorrow` can imply that we are borrowing an `Entity`
from the ECS, which is not what it does.
Due to its safety contract, `TrustedEntityBorrow` is important an
important and widely used trait for `EntitySet` functionality.
In contrast, the safe `EntityBorrow` does not see much use, because even
outside of `EntitySet`-related functionality, it is a better idea to
accept `TrustedEntityBorrow` over `EntityBorrow`.
Furthermore, as #9367 points out, abstracting over returning `Entity`
from pointers/structs that contain it can skip some ergonomic friction.
On top of that, there are aspects of #18319 and #18408 that are relevant
to naming:
We've run into the issue that relying on a type default can switch
generic order. This is livable in some contexts, but unacceptable in
others.
To remedy that, we'd need to switch to a type alias approach:
The "defaulted" `Entity` case becomes a
`UniqueEntity*`/`Entity*Map`/`Entity*Set` alias, and the base type
receives a more general name. `TrustedEntityBorrow` does not mesh
clearly with sensible base type names.
## Solution
Replace any `EntityBorrow` bounds with `TrustedEntityBorrow`.
+
Rename them as such:
`EntityBorrow` -> `ContainsEntity`
`TrustedEntityBorrow` -> `EntityEquivalent`
For `EntityBorrow` we produce a change in meaning; We designate it for
types that aren't necessarily strict wrappers around `Entity` or some
pointer to `Entity`, but rather any of the myriad of types that contain
a single associated `Entity`.
This pattern can already be seen in the common `entity`/`id` methods
across the engine.
We do not mean for `ContainsEntity` to be a trait that abstracts input
API (like how `AsRef<T>` is often used, f.e.), because eliding
`entity()` would be too implicit in the general case.
We prefix "Contains" to match the intuition of a struct with an `Entity`
field, like some contain a `length` or `capacity`.
It gives the impression of structure, which avoids the implication of a
relationship to the `ECS`.
`HasEntity` f.e. could be interpreted as "a currently live entity",
As an input trait for APIs like #9367 envisioned, `TrustedEntityBorrow`
is a better fit, because it *does* restrict itself to strict wrappers
and pointers. Which is why we replace any
`EntityBorrow`/`ContainsEntity` bounds with
`TrustedEntityBorrow`/`EntityEquivalent`.
Here, the name `EntityEquivalent` is a lot closer to its actual meaning,
which is "A type that is both equivalent to an `Entity`, and forms the
same total order when compared".
Prior art for this is the
[`Equivalent`](https://docs.rs/hashbrown/latest/hashbrown/trait.Equivalent.html)
trait in `hashbrown`, which utilizes both `Borrow` and `Eq` for its one
blanket impl!
Given that we lose the `Borrow` moniker, and `Equivalent` can carry
various meanings, we expand on the safety comment of `EntityEquivalent`
somewhat. That should help prevent the confusion we saw in
[#18408](https://github.com/bevyengine/bevy/pull/18408#issuecomment-2742094176).
The new name meshes a lot better with the type aliasing approach in
#18408, by aligning with the base name `EntityEquivalentHashMap`.
For a consistent scheme among all set types, we can use this scheme for
the `UniqueEntity*` wrapper types as well!
This allows us to undo the switched generic order that was introduced to
`UniqueEntityArray` by its `Entity` default.
Even without the type aliases, I think these renames are worth doing!
## Migration Guide
Any use of `EntityBorrow` becomes `ContainsEntity`.
Any use of `TrustedEntityBorrow` becomes `EntityEquivalent`.
# Objective
Unlike for their helper typers, the import paths for
`unique_array::UniqueEntityArray`, `unique_slice::UniqueEntitySlice`,
`unique_vec::UniqueEntityVec`, `hash_set::EntityHashSet`,
`hash_map::EntityHashMap`, `index_set::EntityIndexSet`,
`index_map::EntityIndexMap` are quite redundant.
When looking at the structure of `hashbrown`, we can also see that while
both `HashSet` and `HashMap` have their own modules, the main types
themselves are re-exported to the crate level.
## Solution
Re-export the types in their shared `entity` parent module, and simplify
the imports where they're used.
# Objective
- Optimize static scene performance by marking unchanged subtrees.
-
[bef0209](bef0209de1)
fixes#18255 and #18363.
- Closes#18365
- Includes change from #18321
## Solution
- Mark hierarchy subtrees with dirty bits to avoid transform propagation
where not needed
- This causes a performance regression when spawning many entities, or
when the scene is entirely dynamic.
- This results in massive speedups for largely static scenes.
- In the future we could allow the user to change this behavior, or add
some threshold based on how dynamic the scene is?
## Testing
- Caldera Hotel scene
# Objective
Requires are currently more verbose than they need to be. People would
like to define inline component values. Additionally, the current
`#[require(Foo(custom_constructor))]` and `#[require(Foo(|| Foo(10))]`
syntax doesn't really make sense within the context of the Rust type
system. #18309 was an attempt to improve ergonomics for some cases, but
it came at the cost of even more weirdness / unintuitive behavior. Our
approach as a whole needs a rethink.
## Solution
Rework the `#[require()]` syntax to make more sense. This is a breaking
change, but I think it will make the system easier to learn, while also
improving ergonomics substantially:
```rust
#[derive(Component)]
#[require(
A, // this will use A::default()
B(1), // inline tuple-struct value
C { value: 1 }, // inline named-struct value
D::Variant, // inline enum variant
E::SOME_CONST, // inline associated const
F::new(1), // inline constructor
G = returns_g(), // an expression that returns G
H = SomethingElse::new(), // expression returns SomethingElse, where SomethingElse: Into<H>
)]
struct Foo;
```
## Migration Guide
Custom-constructor requires should use the new expression-style syntax:
```rust
// before
#[derive(Component)]
#[require(A(returns_a))]
struct Foo;
// after
#[derive(Component)]
#[require(A = returns_a())]
struct Foo;
```
Inline-closure-constructor requires should use the inline value syntax
where possible:
```rust
// before
#[derive(Component)]
#[require(A(|| A(10))]
struct Foo;
// after
#[derive(Component)]
#[require(A(10)]
struct Foo;
```
In cases where that is not possible, use the expression-style syntax:
```rust
// before
#[derive(Component)]
#[require(A(|| A(10))]
struct Foo;
// after
#[derive(Component)]
#[require(A = A(10)]
struct Foo;
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
- Fixes#18225
## Solution
- Updated `accesskit` version requirement from 0.17 to 0.18
- Updated `accesskit_winit` version requirement from 0.23 to 0.25
## Testing
- Ran CI checks locally.
---------
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
# Objective
`queue_uinodes` looks up the `ExtractedView` for every extracted UI
node, but there's no need to look it up again if consecutive nodes have
the same `extracted_camera_entity`.
## Solution
In queue uinodes reuse the previously looked up extracted view if the
`extracted_camera_entity` doesn't change
## Showcase
```
cargo run --example many_buttons --release --features "trace_tracy"
```
<img width="521" alt="queue-ui-improvement"
src="https://github.com/user-attachments/assets/2f111837-8c2e-4a6d-94cd-3c3462c58bc9"
/>
yellow is this PR, red is main
# Objective
@cart noticed some issues with my work in
https://github.com/bevyengine/bevy/pull/17348#discussion_r2001815637,
which I somehow missed before merging the PR.
## Solution
- feature gate the UiPickingPlugin correctly
- don't manually add the picking plugins
## Testing
Ran the debug_picking and sprite_picking examples (for UI and sprites
respectively): both seem to work fine.
# Objective
Currently, our picking backends are inconsistent:
- Mesh picking and sprite picking both have configurable opt in/out
behavior. UI picking does not.
- Sprite picking uses `SpritePickingCamera` and `Pickable` for control,
but mesh picking uses `RayCastPickable`.
- `MeshPickingPlugin` is not a part of `DefaultPlugins`.
`SpritePickingPlugin` and `UiPickingPlugin` are.
## Solution
- Add configurable opt in/out behavior to UI picking (defaults to opt
out).
- Replace `RayCastPickable` with `MeshPickingCamera` and `Pickable`.
- Remove `SpritePickingPlugin` and `UiPickingPlugin` from
`DefaultPlugins`.
## Testing
Ran some examples.
## Migration Guide
`UiPickingPlugin` and `SpritePickingPlugin` are no longer included in
`DefaultPlugins`. They must be explicitly added.
`RayCastPickable` has been replaced in favor of the `MeshPickingCamera`
and `Pickable` components. You should add them to cameras and entities,
respectively, if you have `MeshPickingSettings::require_markers` set to
`true`.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Now that #13432 has been merged, it's important we update our reflected
types to properly opt into this feature. If we do not, then this could
cause issues for users downstream who want to make use of
reflection-based cloning.
## Solution
This PR is broken into 4 commits:
1. Add `#[reflect(Clone)]` on all types marked `#[reflect(opaque)]` that
are also `Clone`. This is mandatory as these types would otherwise cause
the cloning operation to fail for any type that contains it at any
depth.
2. Update the reflection example to suggest adding `#[reflect(Clone)]`
on opaque types.
3. Add `#[reflect(clone)]` attributes on all fields marked
`#[reflect(ignore)]` that are also `Clone`. This prevents the ignored
field from causing the cloning operation to fail.
Note that some of the types that contain these fields are also `Clone`,
and thus can be marked `#[reflect(Clone)]`. This makes the
`#[reflect(clone)]` attribute redundant. However, I think it's safer to
keep it marked in the case that the `Clone` impl/derive is ever removed.
I'm open to removing them, though, if people disagree.
4. Finally, I added `#[reflect(Clone)]` on all types that are also
`Clone`. While not strictly necessary, it enables us to reduce the
generated output since we can just call `Clone::clone` directly instead
of calling `PartialReflect::reflect_clone` on each variant/field. It
also means we benefit from any optimizations or customizations made in
the `Clone` impl, including directly dereferencing `Copy` values and
increasing reference counters.
Along with that change I also took the liberty of adding any missing
registrations that I saw could be applied to the type as well, such as
`Default`, `PartialEq`, and `Hash`. There were hundreds of these to
edit, though, so it's possible I missed quite a few.
That last commit is **_massive_**. There were nearly 700 types to
update. So it's recommended to review the first three before moving onto
that last one.
Additionally, I can break the last commit off into its own PR or into
smaller PRs, but I figured this would be the easiest way of doing it
(and in a timely manner since I unfortunately don't have as much time as
I used to for code contributions).
## Testing
You can test locally with a `cargo check`:
```
cargo check --workspace --all-features
```
# Objective
Add a `UiRect::AUTO` const which is a `UiRect` with all its edge values
set to `Val::Auto`.
IIRC `UiRect`'s default for its fields a few versions ago was
`Val::Auto` because positions were represented using a `UiRect` and they
required `Val::Auto` as a default. Then when position was split up and
the `UiRect` default was changed, we forgot add a `UiRect::AUTO` const.
# Objective
The sort key for the transparent UI phase is a (float32, u32) pair
consisting of the stack index and the render entity's index.
I guess the render entity index was intended to break ties but it's not
needed as the sort is stable. It also assumes the indices of the render
entities are generated sequentially, which isn't guaranteed.
Fixes the issues with the text wrap example seen in #18266
## Solution
Change the sort key to just use the stack index alone.
# Objective
Prevents duplicate implementation between IntoSystemConfigs and
IntoSystemSetConfigs using a generic, adds a NodeType trait for more
config flexibility (opening the door to implement
https://github.com/bevyengine/bevy/issues/14195?).
## Solution
Followed writeup by @ItsDoot:
https://hackmd.io/@doot/rJeefFHc1x
Removes IntoSystemConfigs and IntoSystemSetConfigs, instead using
IntoNodeConfigs with generics.
## Testing
Pending
---
## Showcase
N/A
## Migration Guide
SystemSetConfigs -> NodeConfigs<InternedSystemSet>
SystemConfigs -> NodeConfigs<ScheduleSystem>
IntoSystemSetConfigs -> IntoNodeConfigs<InternedSystemSet, M>
IntoSystemConfigs -> IntoNodeConfigs<ScheduleSystem, M>
---------
Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>