Commit Graph

5 Commits

Author SHA1 Message Date
Vic
10da4dc9ae Rename EntityBorrow/TrustedEntityBorrow to ContainsEntity/EntityEquivalent (#18470)
# Objective

Fixes #9367.

Yet another follow-up to #16547.

These traits were initially based on `Borrow<Entity>` because that trait
was what they were replacing, and it felt close enough in meaning.
However, they ultimately don't quite match: `borrow` always returns
references, whereas `EntityBorrow` always returns a plain `Entity`.
Additionally, `EntityBorrow` can imply that we are borrowing an `Entity`
from the ECS, which is not what it does.

Due to its safety contract, `TrustedEntityBorrow` is important an
important and widely used trait for `EntitySet` functionality.
In contrast, the safe `EntityBorrow` does not see much use, because even
outside of `EntitySet`-related functionality, it is a better idea to
accept `TrustedEntityBorrow` over `EntityBorrow`.

Furthermore, as #9367 points out, abstracting over returning `Entity`
from pointers/structs that contain it can skip some ergonomic friction.

On top of that, there are aspects of #18319 and #18408 that are relevant
to naming:
We've run into the issue that relying on a type default can switch
generic order. This is livable in some contexts, but unacceptable in
others.

To remedy that, we'd need to switch to a type alias approach: 
The "defaulted" `Entity` case becomes a
`UniqueEntity*`/`Entity*Map`/`Entity*Set` alias, and the base type
receives a more general name. `TrustedEntityBorrow` does not mesh
clearly with sensible base type names.

## Solution
Replace any `EntityBorrow` bounds with `TrustedEntityBorrow`.
+
Rename them as such:
`EntityBorrow` -> `ContainsEntity`
`TrustedEntityBorrow` -> `EntityEquivalent`

For `EntityBorrow` we produce a change in meaning; We designate it for
types that aren't necessarily strict wrappers around `Entity` or some
pointer to `Entity`, but rather any of the myriad of types that contain
a single associated `Entity`.
This pattern can already be seen in the common `entity`/`id` methods
across the engine.
We do not mean for `ContainsEntity` to be a trait that abstracts input
API (like how `AsRef<T>` is often used, f.e.), because eliding
`entity()` would be too implicit in the general case.

We prefix "Contains" to match the intuition of a struct with an `Entity`
field, like some contain a `length` or `capacity`.
It gives the impression of structure, which avoids the implication of a
relationship to the `ECS`.
`HasEntity` f.e. could be interpreted as "a currently live entity", 

As an input trait for APIs like #9367 envisioned, `TrustedEntityBorrow`
is a better fit, because it *does* restrict itself to strict wrappers
and pointers. Which is why we replace any
`EntityBorrow`/`ContainsEntity` bounds with
`TrustedEntityBorrow`/`EntityEquivalent`.

Here, the name `EntityEquivalent` is a lot closer to its actual meaning,
which is "A type that is both equivalent to an `Entity`, and forms the
same total order when compared".
Prior art for this is the
[`Equivalent`](https://docs.rs/hashbrown/latest/hashbrown/trait.Equivalent.html)
trait in `hashbrown`, which utilizes both `Borrow` and `Eq` for its one
blanket impl!

Given that we lose the `Borrow` moniker, and `Equivalent` can carry
various meanings, we expand on the safety comment of `EntityEquivalent`
somewhat. That should help prevent the confusion we saw in
[#18408](https://github.com/bevyengine/bevy/pull/18408#issuecomment-2742094176).

The new name meshes a lot better with the type aliasing approach in
#18408, by aligning with the base name `EntityEquivalentHashMap`.
For a consistent scheme among all set types, we can use this scheme for
the `UniqueEntity*` wrapper types as well!
This allows us to undo the switched generic order that was introduced to
`UniqueEntityArray` by its `Entity` default.

Even without the type aliases, I think these renames are worth doing!

## Migration Guide

Any use of `EntityBorrow` becomes `ContainsEntity`.
Any use of `TrustedEntityBorrow` becomes `EntityEquivalent`.
2025-03-30 10:24:00 +02:00
Vic
b462f47864
add Entity default to the entity set wrappers (#18319)
# Objective

Installment of the #16547 series.

The vast majority of uses for these types will be the `Entity` case, so
it makes sense for it to be the default.

## Solution

`UniqueEntityVec`, `UniqueEntitySlice`, `UniqueEntityArray` and their
helper iterator aliases now have `Entity` as a default.

Unfortunately, this means the the `T` parameter for `UniqueEntityArray`
now has to be ordered after the `N` constant, which breaks the
consistency to `[T; N]`.
Same with about a dozen iterator aliases that take some `P`/`F`
predicate/function parameter.
This should however be an ergonomic improvement in most cases, so we'll
just have to live with this inconsistency.

## Migration Guide

Switch type parameter order for the relevant wrapper types/aliases.
2025-03-15 01:51:39 +00:00
Vic
32d53e7bd3
make various entity wrapper type modules public (#18248)
# Objective

Part of the #16547 series.

The entity wrapper types often have some associated types an aliases
with them that cannot be re-exported into an outer module together.
Some helper types are best used with part of their path:
`bevy::ecs::entity::index_set::Slice` as `index_set::Slice`.
This has already been done for `entity::hash_set` and
`entity::hash_map`.

## Solution

Publicize the `index_set`, `index_map`, `unique_vec`, `unique_slice`,
and `unique_array` modules.

## Migration Guide

Any mention or import of types in the affected modules have to add the
respective module name to the import path.
F.e.:
`bevy::ecs::entity::EntityIndexSet` ->
`bevy::ecs::entity::index_set::EntityIndexSet`
2025-03-11 05:48:31 +00:00
Zachary Harrold
cc69fdd0c6
Add no_std support to bevy (#17955)
# Objective

- Fixes #15460 (will open new issues for further `no_std` efforts)
- Supersedes #17715

## Solution

- Threaded in new features as required
- Made certain crates optional but default enabled
- Removed `compile-check-no-std` from internal `ci` tool since GitHub CI
can now simply check `bevy` itself now
- Added CI task to check `bevy` on `thumbv6m-none-eabi` to ensure
`portable-atomic` support is still valid [^1]

[^1]: This may be controversial, since it could be interpreted as
implying Bevy will maintain support for `thumbv6m-none-eabi` going
forward. In reality, just like `x86_64-unknown-none`, this is a
[canary](https://en.wiktionary.org/wiki/canary_in_a_coal_mine) target to
make it clear when `portable-atomic` no longer works as intended (fixing
atomic support on atomically challenged platforms). If a PR comes
through and makes supporting this class of platforms impossible, then
this CI task can be removed. I however wager this won't be a problem.

## Testing

- CI

---

## Release Notes

Bevy now has support for `no_std` directly from the `bevy` crate.

Users can disable default features and enable a new `default_no_std`
feature instead, allowing `bevy` to be used in `no_std` applications and
libraries.

```toml
# Bevy for `no_std` platforms
bevy = { version = "0.16", default-features = false, features = ["default_no_std"] }
```

`default_no_std` enables certain required features, such as `libm` and
`critical-section`, and as many optional crates as possible (currently
just `bevy_state`). For atomically-challenged platforms such as the
Raspberry Pi Pico, `portable-atomic` will be used automatically.

For library authors, we recommend depending on `bevy` with
`default-features = false` to allow `std` and `no_std` users to both
depend on your crate. Here are some recommended features a library crate
may want to expose:

```toml
[features]
# Most users will be on a platform which has `std` and can use the more-powerful `async_executor`.
default = ["std", "async_executor"]

# Features for typical platforms.
std = ["bevy/std"]
async_executor = ["bevy/async_executor"]

# Features for `no_std` platforms.
libm = ["bevy/libm"]
critical-section = ["bevy/critical-section"]

[dependencies]
# We disable default features to ensure we don't accidentally enable `std` on `no_std` targets, for example. 
bevy = { version = "0.16", default-features = false }
```

While this is verbose, it gives the maximum control to end-users to
decide how they wish to use Bevy on their platform.

We encourage library authors to experiment with `no_std` support. For
libraries relying exclusively on `bevy` and no other dependencies, it
may be as simple as adding `#![no_std]` to your `lib.rs` and exposing
features as above! Bevy can also provide many `std` types, such as
`HashMap`, `Mutex`, and `Instant` on all platforms. See
`bevy::platform_support` for details on what's available out of the box!

## Migration Guide

- If you were previously relying on `bevy` with default features
disabled, you may need to enable the `std` and `async_executor`
features.
- `bevy_reflect` has had its `bevy` feature removed. If you were relying
on this feature, simply enable `smallvec` and `smol_str` instead.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-03-07 03:39:46 +00:00
Vic
a1717331e4
implement UniqueEntityArray (#17954)
# Objective

Continuation of #17589 and #16547.

`get_many` is last of the `many` methods with a missing `unique`
counterpart.
It both takes and returns arrays, thus necessitates a matching
`UniqueEntityArray` type!
Plus, some slice methods involve returning arrays, which are currently
missing from `UniqueEntitySlice`.

## Solution

Add the type, the related methods and trait impls.

Note that for this PR, we abstain from some methods/trait impls that
create `&mut UniqueEntityArray`, because it can be successfully
mem-swapped. This can potentially invalidate a larger slice, which is
the same reason we punted on some mutable slice methods in #17589. We
can follow-up on all of these together in a following PR.

The new `unique_array` module is not glob-exported, because the trait
alias `unique_array::IntoIter` would conflict with
`unique_vec::IntoIter`.
The solution for this is to make the various `unique_*` modules public,
which I intend to do in yet another PR.
2025-02-24 21:36:59 +00:00