# Cold Specialization
## Objective
An ongoing part of our quest to retain everything in the render world,
cold-specialization aims to cache pipeline specialization so that
pipeline IDs can be recomputed only when necessary, rather than every
frame. This approach reduces redundant work in stable scenes, while
still accommodating scenarios in which materials, views, or visibility
might change, as well as unlocking future optimization work like
retaining render bins.
## Solution
Queue systems are split into a specialization system and queue system,
the former of which only runs when necessary to compute a new pipeline
id. Pipelines are invalidated using a combination of change detection
and ECS ticks.
### The difficulty with change detection
Detecting “what changed” can be tricky because pipeline specialization
depends not only on the entity’s components (e.g., mesh, material, etc.)
but also on which view (camera) it is rendering in. In other words, the
cache key for a given pipeline id is a view entity/render entity pair.
As such, it's not sufficient simply to react to change detection in
order to specialize -- an entity could currently be out of view or could
be rendered in the future in camera that is currently disabled or hasn't
spawned yet.
### Why ticks?
Ticks allow us to ensure correctness by allowing us to compare the last
time a view or entity was updated compared to the cached pipeline id.
This ensures that even if an entity was out of view or has never been
seen in a given camera before we can still correctly determine whether
it needs to be re-specialized or not.
## Testing
TODO: Tested a bunch of different examples, need to test more.
## Migration Guide
TODO
- `AssetEvents` has been moved into the `PostUpdate` schedule.
---------
Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
This patch fixes a bug whereby we're re-extracting every mesh every
frame. It's a regression from PR #17413. The code in question has
actually been in the tree with this bug for quite a while; it's that
just the code didn't actually run unless the renderer considered the
previous view transforms necessary. Occlusion culling expanded the set
of circumstances under which Bevy computes the previous view transforms,
causing this bug to appear more often.
This patch fixes the issue by checking to see if the previous transform
of a mesh actually differs from the current transform before copying the
current transform to the previous transform.
*Occlusion culling* allows the GPU to skip the vertex and fragment
shading overhead for objects that can be quickly proved to be invisible
because they're behind other geometry. A depth prepass already
eliminates most fragment shading overhead for occluded objects, but the
vertex shading overhead, as well as the cost of testing and rejecting
fragments against the Z-buffer, is presently unavoidable for standard
meshes. We currently perform occlusion culling only for meshlets. But
other meshes, such as skinned meshes, can benefit from occlusion culling
too in order to avoid the transform and skinning overhead for unseen
meshes.
This commit adapts the same [*two-phase occlusion culling*] technique
that meshlets use to Bevy's standard 3D mesh pipeline when the new
`OcclusionCulling` component, as well as the `DepthPrepass` component,
are present on the camera. It has these steps:
1. *Early depth prepass*: We use the hierarchical Z-buffer from the
previous frame to cull meshes for the initial depth prepass, effectively
rendering only the meshes that were visible in the last frame.
2. *Early depth downsample*: We downsample the depth buffer to create
another hierarchical Z-buffer, this time with the current view
transform.
3. *Late depth prepass*: We use the new hierarchical Z-buffer to test
all meshes that weren't rendered in the early depth prepass. Any meshes
that pass this check are rendered.
4. *Late depth downsample*: Again, we downsample the depth buffer to
create a hierarchical Z-buffer in preparation for the early depth
prepass of the next frame. This step is done after all the rendering, in
order to account for custom phase items that might write to the depth
buffer.
Note that this patch has no effect on the per-mesh CPU overhead for
occluded objects, which remains high for a GPU-driven renderer due to
the lack of `cold-specialization` and retained bins. If
`cold-specialization` and retained bins weren't on the horizon, then a
more traditional approach like potentially visible sets (PVS) or low-res
CPU rendering would probably be more efficient than the GPU-driven
approach that this patch implements for most scenes. However, at this
point the amount of effort required to implement a PVS baking tool or a
low-res CPU renderer would probably be greater than landing
`cold-specialization` and retained bins, and the GPU driven approach is
the more modern one anyway. It does mean that the performance
improvements from occlusion culling as implemented in this patch *today*
are likely to be limited, because of the high CPU overhead for occluded
meshes.
Note also that this patch currently doesn't implement occlusion culling
for 2D objects or shadow maps. Those can be addressed in a follow-up.
Additionally, note that the techniques in this patch require compute
shaders, which excludes support for WebGL 2.
This PR is marked experimental because of known precision issues with
the downsampling approach when applied to non-power-of-two framebuffer
sizes (i.e. most of them). These precision issues can, in rare cases,
cause objects to be judged occluded that in fact are not. (I've never
seen this in practice, but I know it's possible; it tends to be likelier
to happen with small meshes.) As a follow-up to this patch, we desire to
switch to the [SPD-based hi-Z buffer shader from the Granite engine],
which doesn't suffer from these problems, at which point we should be
able to graduate this feature from experimental status. I opted not to
include that rewrite in this patch for two reasons: (1) @JMS55 is
planning on doing the rewrite to coincide with the new availability of
image atomic operations in Naga; (2) to reduce the scope of this patch.
A new example, `occlusion_culling`, has been added. It demonstrates
objects becoming quickly occluded and disoccluded by dynamic geometry
and shows the number of objects that are actually being rendered. Also,
a new `--occlusion-culling` switch has been added to `scene_viewer`, in
order to make it easy to test this patch with large scenes like Bistro.
[*two-phase occlusion culling*]:
https://medium.com/@mil_kru/two-pass-occlusion-culling-4100edcad501
[Aaltonen SIGGRAPH 2015]:
https://www.advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
[Some literature]:
https://gist.github.com/reduz/c5769d0e705d8ab7ac187d63be0099b5?permalink_comment_id=5040452#gistcomment-5040452
[SPD-based hi-Z buffer shader from the Granite engine]:
https://github.com/Themaister/Granite/blob/master/assets/shaders/post/hiz.comp
## Migration guide
* When enqueuing a custom mesh pipeline, work item buffers are now
created with
`bevy::render::batching::gpu_preprocessing::get_or_create_work_item_buffer`,
not `PreprocessWorkItemBuffers::new`. See the
`specialized_mesh_pipeline` example.
## Showcase
Occlusion culling example:

Bistro zoomed out, before occlusion culling:

Bistro zoomed out, after occlusion culling:

In this scene, occlusion culling reduces the number of meshes Bevy has
to render from 1591 to 585.
This commit adds support for *decal projectors* to Bevy, allowing for
textures to be projected on top of geometry. Decal projectors are
clusterable objects, just as punctual lights and light probes are. This
means that decals are only evaluated for objects within the conservative
bounds of the projector, and they don't require a second pass.
These clustered decals require support for bindless textures and as such
currently don't work on WebGL 2, WebGPU, macOS, or iOS. For an
alternative that doesn't require bindless, see PR #16600. I believe that
both contact projective decals in #16600 and clustered decals are
desirable to have in Bevy. Contact projective decals offer broader
hardware and driver support, while clustered decals don't require the
creation of bounding geometry.
A new example, `decal_projectors`, has been added, which demonstrates
multiple decals on a rotating object. The decal projectors can be scaled
and rotated with the mouse.
There are several limitations of this initial patch that can be
addressed in follow-ups:
1. There's no way to specify the Z-index of decals. That is, the order
in which multiple decals are blended on top of one another is arbitrary.
A follow-up could introduce some sort of Z-index field so that artists
can specify that some decals should be blended on top of others.
2. Decals don't take the normal of the surface they're projected onto
into account. Most decal implementations in other engines have a feature
whereby the angle between the decal projector and the normal of the
surface must be within some threshold for the decal to appear. Often,
artists can specify a fade-off range for a smooth transition between
oblique surfaces and aligned surfaces.
3. There's no distance-based fadeoff toward the end of the projector
range. Many decal implementations have this.
This addresses #2401.
## Showcase

This commit allows Bevy to use `multi_draw_indirect_count` for drawing
meshes. The `multi_draw_indirect_count` feature works just like
`multi_draw_indirect`, but it takes the number of indirect parameters
from a GPU buffer rather than specifying it on the CPU.
Currently, the CPU constructs the list of indirect draw parameters with
the instance count for each batch set to zero, uploads the resulting
buffer to the GPU, and dispatches a compute shader that bumps the
instance count for each mesh that survives culling. Unfortunately, this
is inefficient when we support `multi_draw_indirect_count`. Draw
commands corresponding to meshes for which all instances were culled
will remain present in the list when calling
`multi_draw_indirect_count`, causing overhead. Proper use of
`multi_draw_indirect_count` requires eliminating these empty draw
commands.
To address this inefficiency, this PR makes Bevy fully construct the
indirect draw commands on the GPU instead of on the CPU. Instead of
writing instance counts to the draw command buffer, the mesh
preprocessing shader now writes them to a separate *indirect metadata
buffer*. A second compute dispatch known as the *build indirect
parameters* shader runs after mesh preprocessing and converts the
indirect draw metadata into actual indirect draw commands for the GPU.
The build indirect parameters shader operates on a batch at a time,
rather than an instance at a time, and as such each thread writes only 0
or 1 indirect draw parameters, simplifying the current logic in
`mesh_preprocessing`, which currently has to have special cases for the
first mesh in each batch. The build indirect parameters shader emits
draw commands in a tightly packed manner, enabling maximally efficient
use of `multi_draw_indirect_count`.
Along the way, this patch switches mesh preprocessing to dispatch one
compute invocation per render phase per view, instead of dispatching one
compute invocation per view. This is preparation for two-phase occlusion
culling, in which we will have two mesh preprocessing stages. In that
scenario, the first mesh preprocessing stage must only process opaque
and alpha tested objects, so the work items must be separated into those
that are opaque or alpha tested and those that aren't. Thus this PR
splits out the work items into a separate buffer for each phase. As this
patch rewrites so much of the mesh preprocessing infrastructure, it was
simpler to just fold the change into this patch instead of deferring it
to the forthcoming occlusion culling PR.
Finally, this patch changes mesh preprocessing so that it runs
separately for indexed and non-indexed meshes. This is because draw
commands for indexed and non-indexed meshes have different sizes and
layouts. *The existing code is actually broken for non-indexed meshes*,
as it attempts to overlay the indirect parameters for non-indexed meshes
on top of those for indexed meshes. Consequently, right now the
parameters will be read incorrectly when multiple non-indexed meshes are
multi-drawn together. *This is a bug fix* and, as with the change to
dispatch phases separately noted above, was easiest to include in this
patch as opposed to separately.
## Migration Guide
* Systems that add custom phase items now need to populate the indirect
drawing-related buffers. See the `specialized_mesh_pipeline` example for
an example of how this is done.
We won't be able to retain render phases from frame to frame if the keys
are unstable. It's not as simple as simply keying off the main world
entity, however, because some main world entities extract to multiple
render world entities. For example, directional lights extract to
multiple shadow cascades, and point lights extract to one view per
cubemap face. Therefore, we key off a new type, `RetainedViewEntity`,
which contains the main entity plus a *subview ID*.
This is part of the preparation for retained bins.
---------
Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
# Objective
- Closes https://github.com/bevyengine/bevy/issues/14322.
## Solution
- Implement fast 4-sample bicubic filtering based on this shader toy
https://www.shadertoy.com/view/4df3Dn, with a small speedup from a ghost
of tushima presentation.
## Testing
- Did you test these changes? If so, how?
- Ran on lightmapped example. Practically no difference in that scene.
- Are there any parts that need more testing?
- Lightmapping a better scene.
## Changelog
- Lightmaps now have a higher quality bicubic sampling method (off by
default).
---------
Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
# Objective
Many instances of `clippy::too_many_arguments` linting happen to be on
systems - functions which we don't call manually, and thus there's not
much reason to worry about the argument count.
## Solution
Allow `clippy::too_many_arguments` globally, and remove all lint
attributes related to it.
Currently, our batchable binned items are stored in a hash table that
maps bin key, which includes the batch set key, to a list of entities.
Multidraw is handled by sorting the bin keys and accumulating adjacent
bins that can be multidrawn together (i.e. have the same batch set key)
into multidraw commands during `batch_and_prepare_binned_render_phase`.
This is reasonably efficient right now, but it will complicate future
work to retain indirect draw parameters from frame to frame. Consider
what must happen when we have retained indirect draw parameters and the
application adds a bin (i.e. a new mesh) that shares a batch set key
with some pre-existing meshes. (That is, the new mesh can be multidrawn
with the pre-existing meshes.) To be maximally efficient, our goal in
that scenario will be to update *only* the indirect draw parameters for
the batch set (i.e. multidraw command) containing the mesh that was
added, while leaving the others alone. That means that we have to
quickly locate all the bins that belong to the batch set being modified.
In the existing code, we would have to sort the list of bin keys so that
bins that can be multidrawn together become adjacent to one another in
the list. Then we would have to do a binary search through the sorted
list to find the location of the bin that was just added. Next, we would
have to widen our search to adjacent indexes that contain the same batch
set, doing expensive comparisons against the batch set key every time.
Finally, we would reallocate the indirect draw parameters and update the
stored pointers to the indirect draw parameters that the bins store.
By contrast, it'd be dramatically simpler if we simply changed the way
bins are stored to first map from batch set key (i.e. multidraw command)
to the bins (i.e. meshes) within that batch set key, and then from each
individual bin to the mesh instances. That way, the scenario above in
which we add a new mesh will be simpler to handle. First, we will look
up the batch set key corresponding to that mesh in the outer map to find
an inner map corresponding to the single multidraw command that will
draw that batch set. We will know how many meshes the multidraw command
is going to draw by the size of that inner map. Then we simply need to
reallocate the indirect draw parameters and update the pointers to those
parameters within the bins as necessary. There will be no need to do any
binary search or expensive batch set key comparison: only a single hash
lookup and an iteration over the inner map to update the pointers.
This patch implements the above technique. Because we don't have
retained bins yet, this PR provides no performance benefits. However, it
opens the door to maximally efficient updates when only a small number
of meshes change from frame to frame.
The main churn that this patch causes is that the *batch set key* (which
uniquely specifies a multidraw command) and *bin key* (which uniquely
specifies a mesh *within* that multidraw command) are now separate,
instead of the batch set key being embedded *within* the bin key.
In order to isolate potential regressions, I think that at least #16890,
#16836, and #16825 should land before this PR does.
## Migration Guide
* The *batch set key* is now separate from the *bin key* in
`BinnedPhaseItem`. The batch set key is used to collect multidrawable
meshes together. If you aren't using the multidraw feature, you can
safely set the batch set key to `()`.
# Objective
- Contributes to #11478
## Solution
- Made `bevy_utils::tracing` `doc(hidden)`
- Re-exported `tracing` from `bevy_log` for end-users
- Added `tracing` directly to crates that need it.
## Testing
- CI
---
## Migration Guide
If you were importing `tracing` via `bevy::utils::tracing`, instead use
`bevy::log::tracing`. Note that many items within `tracing` are also
directly re-exported from `bevy::log` as well, so you may only need
`bevy::log` for the most common items (e.g., `warn!`, `trace!`, etc.).
This also applies to the `log_once!` family of macros.
## Notes
- While this doesn't reduce the line-count in `bevy_utils`, it further
decouples the internal crates from `bevy_utils`, making its eventual
removal more feasible in the future.
- I have just imported `tracing` as we do for all dependencies. However,
a workspace dependency may be more appropriate for version management.
A previous PR, #14599, attempted to enable lightmaps in deferred mode,
but it still used the `OpaqueNoLightmap3dBinKey`, which meant that it
would be broken if multiple lightmaps were used. This commit fixes that
issue, and allows bindless lightmaps to work with deferred rendering as
well.
Currently, `check_visibility` is parameterized over a query filter that
specifies the type of potentially-visible object. This has the
unfortunate side effect that we need a separate system,
`mark_view_visibility_as_changed_if_necessary`, to trigger view
visibility change detection. That system is quite slow because it must
iterate sequentially over all entities in the scene.
This PR moves the query filter from `check_visibility` to a new
component, `VisibilityClass`. `VisibilityClass` stores a list of type
IDs, each corresponding to one of the query filters we used to use.
Because `check_visibility` is no longer specialized to the query filter
at the type level, Bevy now only needs to invoke it once, leading to
better performance as `check_visibility` can do change detection on the
fly rather than delegating it to a separate system.
This commit also has ergonomic improvements, as there's no need for
applications that want to add their own custom renderable components to
add specializations of the `check_visibility` system to the schedule.
Instead, they only need to ensure that the `ViewVisibility` component is
properly kept up to date. The recommended way to do this, and the way
that's demonstrated in the `custom_phase_item` and
`specialized_mesh_pipeline` examples, is to make `ViewVisibility` a
required component and to add the type ID to it in a component add hook.
This patch does this for `Mesh3d`, `Mesh2d`, `Sprite`, `Light`, and
`Node`, which means that most app code doesn't need to change at all.
Note that, although this patch has a large impact on the performance of
visibility determination, it doesn't actually improve the end-to-end
frame time of `many_cubes`. That's because the render world was already
effectively hiding the latency from
`mark_view_visibility_as_changed_if_necessary`. This patch is, however,
necessary for *further* improvements to `many_cubes` performance.
`many_cubes` trace before:

`many_cubes` trace after:

## Migration Guide
* `check_visibility` no longer takes a `QueryFilter`, and there's no
need to add it manually to your app schedule anymore for custom
rendering items. Instead, entities with custom renderable components
should add the appropriate type IDs to `VisibilityClass`. See
`custom_phase_item` for an example.
This commit resolves most of the failures seen in #16670. It contains
two major fixes:
1. The prepass shaders weren't updated for bindless mode, so they were
accessing `material` as a single element instead of as an array. I added
the needed `BINDLESS` check.
2. If the mesh didn't support batch set keys (i.e. `get_batch_set_key()`
returns `None`), and multidraw was enabled, the batching logic would try
to multidraw all the meshes in a bin together instead of disabling
multidraw. This is because we checked whether the `Option<BatchSetKey>`
for the previous batch was equal to the `Option<BatchSetKey>` for the
next batch to determine whether objects could be multidrawn together,
which would return true if batch set keys were absent, causing an entire
bin to be multidrawn together. This patch fixes the logic so that
multidraw is only enabled if the batch set keys match *and are `Some`*.
Additionally, this commit adds batch key support for bins that use
`Opaque3dNoLightmapBinKey`, which in practice means prepasses.
Consequently, this patch enables multidraw for the prepass when GPU
culling is enabled.
When testing this patch, try adding `GpuCulling` to the camera in the
`deferred_rendering` and `ssr` examples. You can see that these examples
break without this patch and work properly with it.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
This commit makes skinned meshes batchable on platforms other than WebGL
2. On supported platforms, it replaces the two uniform buffers used for
joint matrices with a pair of storage buffers containing all matrices
for all skinned meshes packed together. The indices into the buffer are
stored in the mesh uniform and mesh input uniform. The GPU mesh
preprocessing step copies the indices in if that step is enabled.
On the `many_foxes` demo, I observed a frame time decrease from 15.470ms
to 11.935ms. This is the result of reducing the `submit_graph_commands`
time from an average of 5.45ms to 0.489ms, an 11x speedup in that
portion of rendering.

This is what the profile looks like for `many_foxes` after these
changes.

---------
Co-authored-by: François Mockers <mockersf@gmail.com>
This commit makes `StandardMaterial` use bindless textures, as
implemented in PR #16368. Non-bindless mode, as used for example in
Metal and WebGL 2, remains fully supported via a plethora of `#ifdef
BINDLESS` preprocessor definitions.
Unfortunately, this PR introduces quite a bit of unsightliness into the
PBR shaders. This is a result of the fact that WGSL supports neither
passing binding arrays to functions nor passing individual *elements* of
binding arrays to functions, except directly to texture sample
functions. Thus we're unable to use the `sample_texture` abstraction
that helped abstract over the meshlet and non-meshlet paths. I don't
think there's anything we can do to help this other than to suggest
improvements to upstream Naga.
Currently, the prepass has no support for visibility ranges, so
artifacts appear when using dithering visibility ranges in conjunction
with a prepass. This patch fixes that problem.
Note that this patch changes the prepass to use sparse bind group
indices instead of sequential ones. I figured this is cleaner, because
it allows for greater sharing of WGSL code between the forward pipeline
and the prepass pipeline.
The `visibility_range` example has been updated to allow the prepass to
be toggled on and off.
This patch adds the infrastructure necessary for Bevy to support
*bindless resources*, by adding a new `#[bindless]` attribute to
`AsBindGroup`.
Classically, only a single texture (or sampler, or buffer) can be
attached to each shader binding. This means that switching materials
requires breaking a batch and issuing a new drawcall, even if the mesh
is otherwise identical. This adds significant overhead not only in the
driver but also in `wgpu`, as switching bind groups increases the amount
of validation work that `wgpu` must do.
*Bindless resources* are the typical solution to this problem. Instead
of switching bindings between each texture, the renderer instead
supplies a large *array* of all textures in the scene up front, and the
material contains an index into that array. This pattern is repeated for
buffers and samplers as well. The renderer now no longer needs to switch
binding descriptor sets while drawing the scene.
Unfortunately, as things currently stand, this approach won't quite work
for Bevy. Two aspects of `wgpu` conspire to make this ideal approach
unacceptably slow:
1. In the DX12 backend, all binding arrays (bindless resources) must
have a constant size declared in the shader, and all textures in an
array must be bound to actual textures. Changing the size requires a
recompile.
2. Changing even one texture incurs revalidation of all textures, a
process that takes time that's linear in the total size of the binding
array.
This means that declaring a large array of textures big enough to
encompass the entire scene is presently unacceptably slow. For example,
if you declare 4096 textures, then `wgpu` will have to revalidate all
4096 textures if even a single one changes. This process can take
multiple frames.
To work around this problem, this PR groups bindless resources into
small *slabs* and maintains a free list for each. The size of each slab
for the bindless arrays associated with a material is specified via the
`#[bindless(N)]` attribute. For instance, consider the following
declaration:
```rust
#[derive(AsBindGroup)]
#[bindless(16)]
struct MyMaterial {
#[buffer(0)]
color: Vec4,
#[texture(1)]
#[sampler(2)]
diffuse: Handle<Image>,
}
```
The `#[bindless(N)]` attribute specifies that, if bindless arrays are
supported on the current platform, each resource becomes a binding array
of N instances of that resource. So, for `MyMaterial` above, the `color`
attribute is exposed to the shader as `binding_array<vec4<f32>, 16>`,
the `diffuse` texture is exposed to the shader as
`binding_array<texture_2d<f32>, 16>`, and the `diffuse` sampler is
exposed to the shader as `binding_array<sampler, 16>`. Inside the
material's vertex and fragment shaders, the applicable index is
available via the `material_bind_group_slot` field of the `Mesh`
structure. So, for instance, you can access the current color like so:
```wgsl
// `uniform` binding arrays are a non-sequitur, so `uniform` is automatically promoted
// to `storage` in bindless mode.
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
let color = material_color[mesh[in.instance_index].material_bind_group_slot];
...
}
```
Note that portable shader code can't guarantee that the current platform
supports bindless textures. Indeed, bindless mode is only available in
Vulkan and DX12. The `BINDLESS` shader definition is available for your
use to determine whether you're on a bindless platform or not. Thus a
portable version of the shader above would look like:
```wgsl
#ifdef BINDLESS
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
#else // BINDLESS
@group(2) @binding(0) var<uniform> material_color: Color;
#endif // BINDLESS
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
#ifdef BINDLESS
let color = material_color[mesh[in.instance_index].material_bind_group_slot];
#else // BINDLESS
let color = material_color;
#endif // BINDLESS
...
}
```
Importantly, this PR *doesn't* update `StandardMaterial` to be bindless.
So, for example, `scene_viewer` will currently not run any faster. I
intend to update `StandardMaterial` to use bindless mode in a follow-up
patch.
A new example, `shaders/shader_material_bindless`, has been added to
demonstrate how to use this new feature.
Here's a Tracy profile of `submit_graph_commands` of this patch and an
additional patch (not submitted yet) that makes `StandardMaterial` use
bindless. Red is those patches; yellow is `main`. The scene was Bistro
Exterior with a hack that forces all textures to opaque. You can see a
1.47x mean speedup.

## Migration Guide
* `RenderAssets::prepare_asset` now takes an `AssetId` parameter.
* Bin keys now have Bevy-specific material bind group indices instead of
`wgpu` material bind group IDs, as part of the bindless change. Use the
new `MaterialBindGroupAllocator` to map from bind group index to bind
group ID.
# Objective
- Fixes#16078
## Solution
- Rename things to clarify that we _want_ unclipped depth for
directional light shadow views, and need some way of disabling the GPU's
builtin depth clipping
- Use DEPTH_CLIP_CONTROL instead of the fragment shader emulation on
supported platforms
- Pass only the clip position depth instead of the whole clip position
between vertex->fragment shader (no idea if this helps performance or
not, compiler might optimize it anyways)
- Meshlets
- HW raster always uses DEPTH_CLIP_CONTROL since it targets a more
limited set of platforms
- SW raster was not handling DEPTH_CLAMP_ORTHO correctly, it ended up
pretty much doing nothing.
- This PR made me realize that SW raster technically should have depth
clipping for all views that are not directional light shadows, but I
decided not to bother writing it. I'm not sure that it ever matters in
practice. If proven otherwise, I can add it.
## Testing
- Did you test these changes? If so, how?
- Lighting example. Both opaque (no fragment shader) and alpha masked
geometry (fragment shader emulation) are working with
depth_clip_control, and both work when it's turned off. Also tested
meshlet example.
- Are there any parts that need more testing?
- Performance. I can't figure out a good test scene.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Toggle depth_clip_control_supported in prepass/mod.rs line 323 to turn
this PR on or off.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- Native
---
## Migration Guide
- `MeshPipelineKey::DEPTH_CLAMP_ORTHO` is now
`MeshPipelineKey::UNCLIPPED_DEPTH_ORTHO`
- The `DEPTH_CLAMP_ORTHO` shaderdef has been renamed to
`UNCLIPPED_DEPTH_ORTHO_EMULATION`
- `clip_position_unclamped: vec4<f32>` is now `unclipped_depth: f32`
# Objective
- wgpu 0.20 made workgroup vars stop being zero-init by default. this
broke some applications (cough foresight cough) and now we workaround
it. wgpu exposes a compilation option that zero initializes workgroup
memory by default, but bevy does not expose it.
## Solution
- expose the compilation option wgpu gives us
## Testing
- ran examples: 3d_scene, compute_shader_game_of_life, gpu_readback,
lines, specialized_mesh_pipeline. they all work
- confirmed fix for our own problems
---
</details>
## Migration Guide
- add `zero_initialize_workgroup_memory: false,` to
`ComputePipelineDescriptor` or `RenderPipelineDescriptor` structs to
preserve 0.14 functionality, add `zero_initialize_workgroup_memory:
true,` to restore bevy 0.13 functionality.
# Objective
- Make the meshlet fill cluster buffers pass slightly faster
- Address https://github.com/bevyengine/bevy/issues/15920 for meshlets
- Added PreviousGlobalTransform as a required meshlet component to avoid
extra archetype moves, slightly alleviating
https://github.com/bevyengine/bevy/issues/14681 for meshlets
- Enforce that MeshletPlugin::cluster_buffer_slots is not greater than
2^25 (glitches will occur otherwise). Technically this field controls
post-lod/culling cluster count, and the issue is on pre-lod/culling
cluster count, but it's still valid now, and in the future this will be
more true.
Needs to be merged after https://github.com/bevyengine/bevy/pull/15846
and https://github.com/bevyengine/bevy/pull/15886
## Solution
- Old pass dispatched a thread per cluster, and did a binary search over
the instances to find which instance the cluster belongs to, and what
meshlet index within the instance it is.
- New pass dispatches a workgroup per instance, and has the workgroup
loop over all meshlets in the instance in order to write out the cluster
data.
- Use a push constant instead of arrayLength to fix the linked bug
- Remap 1d->2d dispatch for software raster only if actually needed to
save on spawning excess workgroups
## Testing
- Did you test these changes? If so, how?
- Ran the meshlet example, and an example with 1041 instances of 32217
meshlets per instance. Profiled the second scene with nsight, went from
0.55ms -> 0.40ms. Small savings. We're pretty much VRAM bandwidth bound
at this point.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Run the meshlet example
## Changelog (non-meshlets)
- PreviousGlobalTransform now implements the Default trait
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/15871
(Camera is done in #15946)
## Solution
- Do the same as #15904 for other extraction systems
- Added missing `SyncComponentPlugin` for DOF, TAA, and SSAO
(According to the
[documentation](https://dev-docs.bevyengine.org/bevy/render/sync_component/struct.SyncComponentPlugin.html),
this plugin "needs to be added for manual extraction implementations."
We may need to check this is done.)
## Testing
Modified example locally to add toggles if not exist.
- [x] DOF - toggling DOF component and perspective in `depth_of_field`
example
- [x] TAA - toggling `Camera.is_active` and TAA component
- [x] clusters - not entirely sure, toggling `Camera.is_active` in
`many_lights` example (no crash/glitch even without this PR)
- [x] previous_view - toggling `Camera.is_active` in `skybox` (no
crash/glitch even without this PR)
- [x] lights - toggling `Visibility` of `DirectionalLight` in `lighting`
example
- [x] SSAO - toggling `Camera.is_active` and SSAO component in `ssao`
example
- [x] default UI camera view - toggling `Camera.is_active` (nop without
#15946 because UI defaults to some camera even if `DefaultCameraView` is
not there)
- [x] volumetric fog - toggling existence of volumetric light. Looks
like optimization, no change in behavior/visuals
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/13552
## Solution
- Thanks for the guidance from @DGriffin91, the current solution is to
transmit the light_map through the emissive channel to avoid increasing
the bandwidth of deferred shading.
- <del>Store lightmap sample result into G-Buffer and pass them into the
`Deferred Lighting Pipeline`, therefore we can get the correct indirect
lighting via the `apply_pbr_lighting` function.</del>
- <del>The original G-Buffer lacks storage for lightmap data, therefore
a new buffer is added. We can only use Rgba16Uint here due to the
32-byte limit on the render targets.</del>
## Testing
- Need to test all the examples that contains a prepass, with both the
forward and deferred rendering mode.
- I have tested the ones below.
- `lightmaps` (adjust the code based on the issue and check the
rendering result)
- `transmission` (it contains a prepass)
- `ssr` (it also uses the G-Bufffer)
- `meshlet` (forward and deferred)
- `pbr`
## Showcase
By updating the `lightmaps` example to use deferred rendering, this pull
request enables correct rendering result of the Cornell Box.
```
diff --git a/examples/3d/lightmaps.rs b/examples/3d/lightmaps.rs
index 564a3162b..11a748fba 100644
--- a/examples/3d/lightmaps.rs
+++ b/examples/3d/lightmaps.rs
@@ -1,12 +1,14 @@
//! Rendering a scene with baked lightmaps.
-use bevy::pbr::Lightmap;
+use bevy::core_pipeline::prepass::DeferredPrepass;
+use bevy::pbr::{DefaultOpaqueRendererMethod, Lightmap};
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(AmbientLight::NONE)
+ .insert_resource(DefaultOpaqueRendererMethod::deferred())
.add_systems(Startup, setup)
.add_systems(Update, add_lightmaps_to_meshes)
.run();
@@ -19,10 +21,12 @@ fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
..default()
});
- commands.spawn(Camera3dBundle {
- transform: Transform::from_xyz(-278.0, 273.0, 800.0),
- ..default()
- });
+ commands
+ .spawn(Camera3dBundle {
+ transform: Transform::from_xyz(-278.0, 273.0, 800.0),
+ ..default()
+ })
+ .insert(DeferredPrepass);
}
fn add_lightmaps_to_meshes(
```
<img width="1280" alt="image"
src="https://github.com/user-attachments/assets/17fd3367-61cc-4c23-b956-e7cfc751af3c">
## Emissive Issue
**The emissive light object appears incorrectly rendered because the
alpha channel of emission is set to 1 in deferred rendering and 0 in
forward rendering, leading to different emissive light result. Could
this be a bug?**
```wgsl
// pbr_deferred_functions.wgsl - pbr_input_from_deferred_gbuffer
let emissive = rgb9e5::rgb9e5_to_vec3_(gbuffer.g);
if ((pbr.material.flags & STANDARD_MATERIAL_FLAGS_UNLIT_BIT) != 0u) {
pbr.material.base_color = vec4(emissive, 1.0);
pbr.material.emissive = vec4(vec3(0.0), 1.0);
} else {
pbr.material.base_color = vec4(pow(base_rough.rgb, vec3(2.2)), 1.0);
pbr.material.emissive = vec4(emissive, 1.0);
}
// pbr_functions.wgsl - apply_pbr_lighting
emissive_light = emissive_light * mix(1.0, view_bindings::view.exposure, emissive.a);
```
---------
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
# Objective
#15320 is a particularly painful breaking change, and the new
`RenderEntity` in particular is very noisy, with a lot of `let entity =
entity.id()` spam.
## Solution
Implement `WorldQuery`, `QueryData` and `ReadOnlyQueryData` for
`RenderEntity` and `WorldEntity`.
These work the same as the `Entity` impls from a user-facing
perspective: they simply return an owned (copied) `Entity` identifier.
This dramatically reduces noise and eases migration.
Under the hood, these impls defer to the implementations for `&T` for
everything other than the "call .id() for the user" bit, as they involve
read-only access to component data. Doing it this way (as opposed to
implementing a custom fetch, as tried in the first commit) dramatically
reduces the maintenance risk of complex unsafe code outside of
`bevy_ecs`.
To make this easier (and encourage users to do this themselves!), I've
made `ReadFetch` and `WriteFetch` slightly more public: they're no
longer `doc(hidden)`. This is a good change, since trying to vendor the
logic is much worse than just deferring to the existing tested impls.
## Testing
I've run a handful of rendering examples (breakout, alien_cake_addict,
auto_exposure, fog_volumes, box_shadow) and nothing broke.
## Follow-up
We should lint for the uses of `&RenderEntity` and `&MainEntity` in
queries: this is just less nice for no reason.
---------
Co-authored-by: Trashtalk217 <trashtalk217@gmail.com>
# Objective
In the Render World, there are a number of collections that are derived
from Main World entities and are used to drive rendering. The most
notable are:
- `VisibleEntities`, which is generated in the `check_visibility` system
and contains visible entities for a view.
- `ExtractedInstances`, which maps entity ids to asset ids.
In the old model, these collections were trivially kept in sync -- any
extracted phase item could look itself up because the render entity id
was guaranteed to always match the corresponding main world id.
After #15320, this became much more complicated, and was leading to a
number of subtle bugs in the Render World. The main rendering systems,
i.e. `queue_material_meshes` and `queue_material2d_meshes`, follow a
similar pattern:
```rust
for visible_entity in visible_entities.iter::<With<Mesh2d>>() {
let Some(mesh_instance) = render_mesh_instances.get_mut(visible_entity) else {
continue;
};
// Look some more stuff up and specialize the pipeline...
let bin_key = Opaque2dBinKey {
pipeline: pipeline_id,
draw_function: draw_opaque_2d,
asset_id: mesh_instance.mesh_asset_id.into(),
material_bind_group_id: material_2d.get_bind_group_id().0,
};
opaque_phase.add(
bin_key,
*visible_entity,
BinnedRenderPhaseType::mesh(mesh_instance.automatic_batching),
);
}
```
In this case, `visible_entities` and `render_mesh_instances` are both
collections that are created and keyed by Main World entity ids, and so
this lookup happens to work by coincidence. However, there is a major
unintentional bug here: namely, because `visible_entities` is a
collection of Main World ids, the phase item being queued is created
with a Main World id rather than its correct Render World id.
This happens to not break mesh rendering because the render commands
used for drawing meshes do not access the `ItemQuery` parameter, but
demonstrates the confusion that is now possible: our UI phase items are
correctly being queued with Render World ids while our meshes aren't.
Additionally, this makes it very easy and error prone to use the wrong
entity id to look up things like assets. For example, if instead we
ignored visibility checks and queued our meshes via a query, we'd have
to be extra careful to use `&MainEntity` instead of the natural
`Entity`.
## Solution
Make all collections that are derived from Main World data use
`MainEntity` as their key, to ensure type safety and avoid accidentally
looking up data with the wrong entity id:
```rust
pub type MainEntityHashMap<V> = hashbrown::HashMap<MainEntity, V, EntityHash>;
```
Additionally, we make all `PhaseItem` be able to provide both their Main
and Render World ids, to allow render phase implementors maximum
flexibility as to what id should be used to look up data.
You can think of this like tracking at the type level whether something
in the Render World should use it's "primary key", i.e. entity id, or
needs to use a foreign key, i.e. `MainEntity`.
## Testing
##### TODO:
This will require extensive testing to make sure things didn't break!
Additionally, some extraction logic has become more complicated and
needs to be checked for regressions.
## Migration Guide
With the advent of the retained render world, collections that contain
references to `Entity` that are extracted into the render world have
been changed to contain `MainEntity` in order to prevent errors where a
render world entity id is used to look up an item by accident. Custom
rendering code may need to be changed to query for `&MainEntity` in
order to look up the correct item from such a collection. Additionally,
users who implement their own extraction logic for collections of main
world entity should strongly consider extracting into a different
collection that uses `MainEntity` as a key.
Additionally, render phases now require specifying both the `Entity` and
`MainEntity` for a given `PhaseItem`. Custom render phases should ensure
`MainEntity` is available when queuing a phase item.
# Objective
- Closes#15716
- Closes#15718
## Solution
- Replace `Handle<MeshletMesh>` with a new `MeshletMesh3d` component
- As expected there were some random things that needed fixing:
- A couple tests were storing handles just to prevent them from being
dropped I believe, which seems to have been unnecessary in some.
- The `SpriteBundle` still had a `Handle<Image>` field. I've removed
this.
- Tests in `bevy_sprite` incorrectly added a `Handle<Image>` field
outside of the `Sprite` component.
- A few examples were still inserting `Handle`s, switched those to their
corresponding wrappers.
- 2 examples that were still querying for `Handle<Image>` were changed
to query `Sprite`
## Testing
- I've verified that the changed example work now
## Migration Guide
`Handle` can no longer be used as a `Component`. All existing Bevy types
using this pattern have been wrapped in their own semantically
meaningful type. You should do the same for any custom `Handle`
components your project needs.
The `Handle<MeshletMesh>` component is now `MeshletMesh3d`.
The `WithMeshletMesh` type alias has been removed. Use
`With<MeshletMesh3d>` instead.
# Objective
Fixes#15560
Fixes (most of) #15570
Currently a lot of examples (and presumably some user code) depend on
toggling certain render features by adding/removing a single component
to an entity, e.g. `SpotLight` to toggle a light. Because of the
retained render world this no longer works: Extract will add any new
components, but when it is removed the entity persists unchanged in the
render world.
## Solution
Add `SyncComponentPlugin<C: Component>` that registers
`SyncToRenderWorld` as a required component for `C`, and adds a
component hook that will clear all components from the render world
entity when `C` is removed. We add this plugin to
`ExtractComponentPlugin` which fixes most instances of the problem. For
custom extraction logic we can manually add `SyncComponentPlugin` for
that component.
We also rename `WorldSyncPlugin` to `SyncWorldPlugin` so we start a
naming convention like all the `Extract` plugins.
In this PR I also fixed a bunch of breakage related to the retained
render world, stemming from old code that assumed that `Entity` would be
the same in both worlds.
I found that using the `RenderEntity` wrapper instead of `Entity` in
data structures when referring to render world entities makes intent
much clearer, so I propose we make this an official pattern.
## Testing
Run examples like
```
cargo run --features pbr_multi_layer_material_textures --example clearcoat
cargo run --example volumetric_fog
```
and see that they work, and that toggles work correctly. But really we
should test every single example, as we might not even have caught all
the breakage yet.
---
## Migration Guide
The retained render world notes should be updated to explain this edge
case and `SyncComponentPlugin`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Trashtalk217 <trashtalk217@gmail.com>
# Objective
After merging retained rendering world #15320, we now have a good way of
creating a link between worlds (*HIYAA intensifies*). This means that
`get_or_spawn` is no longer necessary for that function. Entity should
be opaque as the warning above `get_or_spawn` says. This is also part of
#15459.
I'm deprecating `get_or_spawn_batch` in a different PR in order to keep
the PR small in size.
## Solution
Deprecate `get_or_spawn` and replace it with `get_entity` in most
contexts. If it's possible to query `&RenderEntity`, then the entity is
synced and `render_entity.id()` is initialized in the render world.
## Migration Guide
If you are given an `Entity` and you want to do something with it, use
`Commands.entity(...)` or `World.entity(...)`. If instead you want to
spawn something use `Commands.spawn(...)` or `World.spawn(...)`. If you
are not sure if an entity exists, you can always use `get_entity` and
match on the `Option<...>` that is returned.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
As discussed in #15521
- Partial revert of #14897, reverting the change to the methods to
consume `self`
- The `insert_if` method is kept
The migration guide of #14897 should be removed
Closes#15521
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
A big step in the migration to required components: meshes and
materials!
## Solution
As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):
- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:


Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.
## Testing
I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!
## Implementation Notes
- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.
---
## Migration Guide
Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.
Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.
Previously:
```rust
commands.spawn(MaterialMesh2dBundle {
mesh: meshes.add(Circle::new(100.0)).into(),
material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
..default()
});
```
Now:
```rust
commands.spawn((
Mesh2d(meshes.add(Circle::new(100.0))),
MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```
If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.
The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.
---------
Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
- Adopted from #14449
- Still fixes#12144.
## Migration Guide
The retained render world is a complex change: migrating might take one
of a few different forms depending on the patterns you're using.
For every example, we specify in which world the code is run. Most of
the changes affect render world code, so for the average Bevy user who's
using Bevy's high-level rendering APIs, these changes are unlikely to
affect your code.
### Spawning entities in the render world
Previously, if you spawned an entity with `world.spawn(...)`,
`commands.spawn(...)` or some other method in the rendering world, it
would be despawned at the end of each frame. In 0.15, this is no longer
the case and so your old code could leak entities. This can be mitigated
by either re-architecting your code to no longer continuously spawn
entities (like you're used to in the main world), or by adding the
`bevy_render::world_sync::TemporaryRenderEntity` component to the entity
you're spawning. Entities tagged with `TemporaryRenderEntity` will be
removed at the end of each frame (like before).
### Extract components with `ExtractComponentPlugin`
```
// main world
app.add_plugins(ExtractComponentPlugin::<ComponentToExtract>::default());
```
`ExtractComponentPlugin` has been changed to only work with synced
entities. Entities are automatically synced if `ComponentToExtract` is
added to them. However, entities are not "unsynced" if any given
`ComponentToExtract` is removed, because an entity may have multiple
components to extract. This would cause the other components to no
longer get extracted because the entity is not synced.
So be careful when only removing extracted components from entities in
the render world, because it might leave an entity behind in the render
world. The solution here is to avoid only removing extracted components
and instead despawn the entire entity.
### Manual extraction using `Extract<Query<(Entity, ...)>>`
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(Entity, &Clusters, &Camera)>>,
) {
for (entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(entity).insert(...);
}
}
```
One of the primary consequences of the retained rendering world is that
there's no longer a one-to-one mapping from entity IDs in the main world
to entity IDs in the render world. Unlike in Bevy 0.14, Entity 42 in the
main world doesn't necessarily map to entity 42 in the render world.
Previous code which called `get_or_spawn(main_world_entity)` in the
render world (`Extract<Query<(Entity, ...)>>` returns main world
entities). Instead, you should use `&RenderEntity` and
`render_entity.id()` to get the correct entity in the render world. Note
that this entity does need to be synced first in order to have a
`RenderEntity`.
When performing manual abstraction, this won't happen automatically
(like with `ExtractComponentPlugin`) so add a `SyncToRenderWorld` marker
component to the entities you want to extract.
This results in the following code:
```rust
// in render world, inspired by bevy_pbr/src/cluster/mod.rs
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(&RenderEntity, &Clusters, &Camera)>>,
) {
for (render_entity, clusters, camera) in &views {
// some code
commands.get_or_spawn(render_entity.id()).insert(...);
}
}
// in main world, when spawning
world.spawn(Clusters::default(), Camera::default(), SyncToRenderWorld)
```
### Looking up `Entity` ids in the render world
As previously stated, there's now no correspondence between main world
and render world `Entity` identifiers.
Querying for `Entity` in the render world will return the `Entity` id in
the render world: query for `MainEntity` (and use its `id()` method) to
get the corresponding entity in the main world.
This is also a good way to tell the difference between synced and
unsynced entities in the render world, because unsynced entities won't
have a `MainEntity` component.
---------
Co-authored-by: re0312 <re0312@outlook.com>
Co-authored-by: re0312 <45868716+re0312@users.noreply.github.com>
Co-authored-by: Periwink <charlesbour@gmail.com>
Co-authored-by: Anselmo Sampietro <ans.samp@gmail.com>
Co-authored-by: Emerson Coskey <56370779+ecoskey@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com>
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
Fixes#14883
## Solution
Pretty simple update to `EntityCommands` methods to consume `self` and
return it rather than taking `&mut self`. The things probably worth
noting:
* I added `#[allow(clippy::should_implement_trait)]` to the `add` method
because it causes a linting conflict with `std::ops::Add`.
* `despawn` and `log_components` now return `Self`. I'm not sure if
that's exactly the desired behavior so I'm happy to adjust if that seems
wrong.
## Testing
Tested with `cargo run -p ci`. I think that should be sufficient to call
things good.
## Migration Guide
The most likely migration needed is changing code from this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity.insert(DepthPrepass);
}
if normal_prepass {
entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
to this:
```
let mut entity = commands.get_or_spawn(entity);
if depth_prepass {
entity = entity.insert(DepthPrepass);
}
if normal_prepass {
entity = entity.insert(NormalPrepass);
}
if motion_vector_prepass {
entity = entity.insert(MotionVectorPrepass);
}
if deferred_prepass {
entity.insert(DeferredPrepass);
}
```
as can be seen in several of the example code updates here. There will
probably also be instances where mutable `EntityCommands` vars no longer
need to be mutable.
# Objective
- Faster meshlet rasterization path for small triangles
- Avoid having to allocate and write out a triangle buffer
- Refactor gpu_scene.rs
## Solution
- Replace the 32bit visbuffer texture with a 64bit visbuffer buffer,
where the left 32 bits encode depth, and the right 32 bits encode the
existing cluster + triangle IDs. Can't use 64bit textures, wgpu/naga
doesn't support atomic ops on textures yet.
- Instead of writing out a buffer of packed cluster + triangle IDs (per
triangle) to raster, the culling pass now writes out a buffer of just
cluster IDs (per cluster, so less memory allocated, cheaper to write
out).
- Clusters for software raster are allocated from the left side
- Clusters for hardware raster are allocated in the same buffer, from
the right side
- The buffer size is fixed at MeshletPlugin build time, and should be
set to a reasonable value for your scene (no warning on overflow, and no
good way to determine what value you need outside of renderdoc - I plan
to fix this in a future PR adding a meshlet stats overlay)
- Currently I don't have a heuristic for software vs hardware raster
selection for each cluster. The existing code is just a placeholder. I
need to profile on a release scene and come up with a heuristic,
probably in a future PR.
- The culling shader is getting pretty hard to follow at this point, but
I don't want to spend time improving it as the entire shader/pass is
getting rewritten/replaced in the near future.
- Software raster is a compute workgroup per-cluster. Each workgroup
loads and transforms the <=64 vertices of the cluster, and then
rasterizes the <=64 triangles of the cluster.
- Two variants are implemented: Scanline for clusters with any larger
triangles (still smaller than hardware is good at), and brute-force for
very very tiny triangles
- Once the shader determines that a pixel should be filled in, it does
an atomicMax() on the visbuffer to store the results, copying how Nanite
works
- On devices with a low max workgroups per dispatch limit, an extra
compute pass is inserted before software raster to convert from a 1d to
2d dispatch (I don't think 3d would ever be necessary).
- I haven't implemented the top-left rule or subpixel precision yet, I'm
leaving that for a future PR since I get usable results without it for
now
- Resources used:
https://kristoffer-dyrkorn.github.io/triangle-rasterizer and chapters
6-8 of
https://fgiesen.wordpress.com/2013/02/17/optimizing-sw-occlusion-culling-index
- Hardware raster now spawns 64*3 vertex invocations per meshlet,
instead of the actual meshlet vertex count. Extra invocations just
early-exit.
- While this is slower than the existing system, hardware draws should
be rare now that software raster is usable, and it saves a ton of memory
using the unified cluster ID buffer. This would be fixed if wgpu had
support for mesh shaders.
- Instead of writing to a color+depth attachment, the hardware raster
pass also does the same atomic visbuffer writes that software raster
uses.
- We have to bind a dummy render target anyways, as wgpu doesn't
currently support render passes without any attachments
- Material IDs are no longer written out during the main rasterization
passes.
- If we had async compute queues, we could overlap the software and
hardware raster passes.
- New material and depth resolve passes run at the end of the visbuffer
node, and write out view depth and material ID depth textures
### Misc changes
- Fixed cluster culling importing, but never actually using the previous
view uniforms when doing occlusion culling
- Fixed incorrectly adding the LOD error twice when building the meshlet
mesh
- Splitup gpu_scene module into meshlet_mesh_manager, instance_manager,
and resource_manager
- resource_manager is still too complex and inefficient (extract and
prepare are way too expensive). I plan on improving this in a future PR,
but for now ResourceManager is mostly a 1:1 port of the leftover
MeshletGpuScene bits.
- Material draw passes have been renamed to the more accurate material
shade pass, as well as some other misc renaming (in the future, these
will be compute shaders even, and not actual draw calls)
---
## Migration Guide
- TBD (ask me at the end of the release for meshlet changes as a whole)
---------
Co-authored-by: vero <email@atlasdostal.com>
The "uberbuffers" PR #14257 caused some examples to fail intermittently
for different reasons:
1. `morph_targets` could fail because vertex displacements for morph
targets are keyed off the vertex index. With buffer packing, the vertex
index can vary based on the position in the buffer, which caused the
morph targets to be potentially incorrect. The solution is to include
the first vertex index with the `MeshUniform` (and `MeshInputUniform` if
GPU preprocessing is in use), so that the shader can calculate the true
vertex index before performing the morph operation. This results in
wasted space in `MeshUniform`, which is unfortunate, but we'll soon be
filling in the padding with the ID of the material when bindless
textures land, so this had to happen sooner or later anyhow.
Including the vertex index in the `MeshInputUniform` caused an ordering
problem. The `MeshInputUniform` was created during the extraction phase,
before the allocations occurred, so the extraction logic didn't know
where the mesh vertex data was going to end up. The solution is to move
the `MeshInputUniform` creation (the `collect_meshes_for_gpu_building`
system) to after the allocations phase. This should be better for
parallelism anyhow, because it allows the extraction phase to finish
quicker. It's also something we'll have to do for bindless in any event.
2. The `lines` and `fog_volumes` examples could fail because their
custom drawing nodes weren't updated to supply the vertex and index
offsets in their `draw_indexed` and `draw` calls. This commit fixes this
oversight.
Fixes#14366.
Switches `Msaa` from being a globally configured resource to a per
camera view component.
Closes#7194
# Objective
Allow individual views to describe their own MSAA settings. For example,
when rendering to different windows or to different parts of the same
view.
## Solution
Make `Msaa` a component that is required on all camera bundles.
## Testing
Ran a variety of examples to ensure that nothing broke.
TODO:
- [ ] Make sure android still works per previous comment in
`extract_windows`.
---
## Migration Guide
`Msaa` is no longer configured as a global resource, and should be
specified on each spawned camera if a non-default setting is desired.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
This commit uses the [`offset-allocator`] crate to combine vertex and
index arrays from different meshes into single buffers. Since the
primary source of `wgpu` overhead is from validation and synchronization
when switching buffers, this significantly improves Bevy's rendering
performance on many scenes.
This patch is a more flexible version of #13218, which also used slabs.
Unlike #13218, which used slabs of a fixed size, this commit implements
slabs that start small and can grow. In addition to reducing memory
usage, supporting slab growth reduces the number of vertex and index
buffer switches that need to happen during rendering, leading to
improved performance. To prevent pathological fragmentation behavior,
slabs are capped to a maximum size, and mesh arrays that are too large
get their own dedicated slabs.
As an additional improvement over #13218, this commit allows the
application to customize all allocator heuristics. The
`MeshAllocatorSettings` resource contains values that adjust the minimum
and maximum slab sizes, the cutoff point at which meshes get their own
dedicated slabs, and the rate at which slabs grow. Hopefully-sensible
defaults have been chosen for each value.
Unfortunately, WebGL 2 doesn't support the *base vertex* feature, which
is necessary to pack vertex arrays from different meshes into the same
buffer. `wgpu` represents this restriction as the downlevel flag
`BASE_VERTEX`. This patch detects that bit and ensures that all vertex
buffers get dedicated slabs on that platform. Even on WebGL 2, though,
we can combine all *index* arrays into single buffers to reduce buffer
changes, and we do so.
The following measurements are on Bistro:
Overall frame time improves from 8.74 ms to 5.53 ms (1.58x speedup):

Render system time improves from 6.57 ms to 3.54 ms (1.86x speedup):

Opaque pass time improves from 4.64 ms to 2.33 ms (1.99x speedup):

## Migration Guide
### Changed
* Vertex and index buffers for meshes may now be packed alongside other
buffers, for performance.
* `GpuMesh` has been renamed to `RenderMesh`, to reflect the fact that
it no longer directly stores handles to GPU objects.
* Because meshes no longer have their own vertex and index buffers, the
responsibility for the buffers has moved from `GpuMesh` (now called
`RenderMesh`) to the `MeshAllocator` resource. To access the vertex data
for a mesh, use `MeshAllocator::mesh_vertex_slice`. To access the index
data for a mesh, use `MeshAllocator::mesh_index_slice`.
[`offset-allocator`]: https://github.com/pcwalton/offset-allocator
# Objective
- After #11804 , The queue_prepass_material_meshes function is now
executed in parallel with other queue_* systems. This optimization
introduced a potential issue where mesh_instance.should_batch() could
return false in queue_prepass_material_meshes due to an unset
material_bind_group_id.
As reported in #14004, many third-party plugins, such as Hanabi, enqueue
entities that don't have meshes into render phases. However, the
introduction of indirect mode added a dependency on mesh-specific data,
breaking this workflow. This is because GPU preprocessing requires that
the render phases manage indirect draw parameters, which don't apply to
objects that aren't meshes. The existing code skips over binned entities
that don't have indirect draw parameters, which causes the rendering to
be skipped for such objects.
To support this workflow, this commit adds a new field,
`non_mesh_items`, to `BinnedRenderPhase`. This field contains a simple
list of (bin key, entity) pairs. After drawing batchable and unbatchable
objects, the non-mesh items are drawn one after another. Bevy itself
doesn't enqueue any items into this list; it exists solely for the
application and/or plugins to use.
Additionally, this commit switches the asset ID in the standard bin keys
to be an untyped asset ID rather than that of a mesh. This allows more
flexibility, allowing bins to be keyed off any type of asset.
This patch adds a new example, `custom_phase_item`, which simultaneously
serves to demonstrate how to use this new feature and to act as a
regression test so this doesn't break again.
Fixes#14004.
## Changelog
### Added
* `BinnedRenderPhase` now contains a `non_mesh_items` field for plugins
to add custom items to.
# Objective
- Fixes#13728
## Solution
- add a new feature `smaa_luts`. if enables, it also enables `ktx2` and
`zstd`. if not, it doesn't load the files but use placeholders instead
- adds all the resources needed in the same places that system that uses
them are added.
# Objective
- Fixes#13811 (probably, I lost my test code...)
## Solution
- Turns out that Queue and PrepareAssets are _not_ ordered. We should
probably either rethink our system sets (again), or improve the
documentation here. For reference, I've included the current ordering
below.
- The `prepare_meshlet_meshes_X` systems need to run after
`prepare_assets::<PreparedMaterial<M>>`, and have also been moved to
QueueMeshes.
```rust
schedule.configure_sets(
(
ExtractCommands,
ManageViews,
Queue,
PhaseSort,
Prepare,
Render,
Cleanup,
)
.chain(),
);
schedule.configure_sets((ExtractCommands, PrepareAssets, Prepare).chain());
schedule.configure_sets(QueueMeshes.in_set(Queue).after(prepare_assets::<GpuMesh>));
schedule.configure_sets(
(PrepareResources, PrepareResourcesFlush, PrepareBindGroups)
.chain()
.in_set(Prepare),
);
```
## Testing
- Ambiguity checker to make sure I don't have ambiguous system ordering
# Objective
- Fixes#10909
- Fixes#8492
## Solution
- Name all matrices `x_from_y`, for example `world_from_view`.
## Testing
- I've tested most of the 3D examples. The `lighting` example
particularly should hit a lot of the changes and appears to run fine.
---
## Changelog
- Renamed matrices across the engine to follow a `y_from_x` naming,
making the space conversion more obvious.
## Migration Guide
- `Frustum`'s `from_view_projection`, `from_view_projection_custom_far`
and `from_view_projection_no_far` were renamed to
`from_clip_from_world`, `from_clip_from_world_custom_far` and
`from_clip_from_world_no_far`.
- `ComputedCameraValues::projection_matrix` was renamed to
`clip_from_view`.
- `CameraProjection::get_projection_matrix` was renamed to
`get_clip_from_view` (this affects implementations on `Projection`,
`PerspectiveProjection` and `OrthographicProjection`).
- `ViewRangefinder3d::from_view_matrix` was renamed to
`from_world_from_view`.
- `PreviousViewData`'s members were renamed to `view_from_world` and
`clip_from_world`.
- `ExtractedView`'s `projection`, `transform` and `view_projection` were
renamed to `clip_from_view`, `world_from_view` and `clip_from_world`.
- `ViewUniform`'s `view_proj`, `unjittered_view_proj`,
`inverse_view_proj`, `view`, `inverse_view`, `projection` and
`inverse_projection` were renamed to `clip_from_world`,
`unjittered_clip_from_world`, `world_from_clip`, `world_from_view`,
`view_from_world`, `clip_from_view` and `view_from_clip`.
- `GpuDirectionalCascade::view_projection` was renamed to
`clip_from_world`.
- `MeshTransforms`' `transform` and `previous_transform` were renamed to
`world_from_local` and `previous_world_from_local`.
- `MeshUniform`'s `transform`, `previous_transform`,
`inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed
to `world_from_local`, `previous_world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh` type in WGSL mirrors this, however `transform` and
`previous_transform` were named `model` and `previous_model`).
- `Mesh2dTransforms::transform` was renamed to `world_from_local`.
- `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and
`inverse_transpose_model_b` were renamed to `world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh2d` type in WGSL mirrors this).
- In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and
`get_previous_model_matrix` were renamed to `get_world_from_local` and
`get_previous_world_from_local`.
- In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed
to `get_world_from_local`.
# Objective
- Add motion vector support to the skybox
- This fixes the last remaining "gap" to complete the motion blur
feature
## Solution
- Add a pipeline for the skybox to write motion vectors to the prepass
## Testing
- Used examples to test motion vectors using motion blur
https://github.com/bevyengine/bevy/assets/2632925/74c0778a-7e77-4e68-8111-05791e4bfdd2
---------
Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
This is a revamped equivalent to #9902, though it shares none of the
code. It handles all special cases that I've tested correctly.
The overall technique consists of double-buffering the joint matrix and
morph weights buffers, as most of the previous attempts to solve this
problem did. The process is generally straightforward. Note that, to
avoid regressing the ability of mesh extraction, skin extraction, and
morph target extraction to run in parallel, I had to add a new system to
rendering, `set_mesh_motion_vector_flags`. The comment there explains
the details; it generally runs very quickly.
I've tested this with modified versions of the `animated_fox`,
`morph_targets`, and `many_foxes` examples that add TAA, and the patch
works. To avoid bloating those examples, I didn't add switches for TAA
to them.
Addresses points (1) and (2) of #8423.
## Changelog
### Fixed
* Motion vectors, and therefore TAA, are now supported for meshes with
skins and/or morph targets.
This commit makes us stop using the render world ECS for
`BinnedRenderPhase` and `SortedRenderPhase` and instead use resources
with `EntityHashMap`s inside. There are three reasons to do this:
1. We can use `clear()` to clear out the render phase collections
instead of recreating the components from scratch, allowing us to reuse
allocations.
2. This is a prerequisite for retained bins, because components can't be
retained from frame to frame in the render world, but resources can.
3. We want to move away from storing anything in components in the
render world ECS, and this is a step in that direction.
This patch results in a small performance benefit, due to point (1)
above.
## Changelog
### Changed
* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources.
## Migration Guide
* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources. Instead of querying for the
components, look the camera entity up in the
`ViewBinnedRenderPhases`/`ViewSortedRenderPhases` tables.
# Objective
Optimize vertex prepass shader maybe?
Make it consistent with the base vertex shader
## Solution
`mesh_position_local_to_clip` just calls `mesh_position_local_to_world`
and then `position_world_to_clip`
since `out.world_position` is getting calculated anyway a few lines
below, just move it up and use it's output to calculate `out.position`.
It is the same as in the base vertex shader (`mesh.wgsl`).
Note: I have no idea if there is a reason that it was this way. I'm not
an expert, just noticed this inconsistency while messing with custom
shaders.
Keeping track of explicit visibility per cluster between frames does not
work with LODs, and leads to worse culling (using the final depth buffer
from the previous frame is more accurate).
Instead, we need to generate a second depth pyramid after the second
raster pass, and then use that in the first culling pass in the next
frame to test if a cluster would have been visible last frame or not.
As part of these changes, the write_index_buffer pass has been folded
into the culling pass for a large performance gain, and to avoid
tracking a lot of extra state that would be needed between passes.
Prepass previous model/view stuff was adapted to work with meshlets as
well.
Also fixed a bug with materials, and other misc improvements.
---------
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: atlas dostal <rodol@rivalrebels.com>
Co-authored-by: vero <email@atlasdostal.com>
Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
Co-authored-by: Robert Swain <robert.swain@gmail.com>