35826be6f7
8 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
35826be6f7
|
Implement bindless lightmaps. (#16653)
This commit allows Bevy to bind 16 lightmaps at a time, if the current platform supports bindless textures. Naturally, if bindless textures aren't supported, Bevy falls back to binding only a single lightmap at a time. As lightmaps are usually heavily atlased, I doubt many scenes will use more than 16 lightmap textures. This has little performance impact now, but it's desirable for us to reap the benefits of multidraw and bindless textures on scenes that use lightmaps. Otherwise, we might have to break batches in order to switch those lightmaps. Additionally, this PR slightly reduces the cost of binning because it makes the lightmap index in `Opaque3dBinKey` 32 bits instead of an `AssetId`. ## Migration Guide * The `Opaque3dBinKey::lightmap_image` field is now `Opaque3dBinKey::lightmap_slab`, which is a lightweight identifier for an entire binding array of lightmaps. |
||
![]() |
00722b8d0f
|
Make indirect drawing opt-out instead of opt-in, enabling multidraw by default. (#16757)
This patch replaces the undocumented `NoGpuCulling` component with a new component, `NoIndirectDrawing`, effectively turning indirect drawing on by default. Indirect mode is needed for the recently-landed multidraw feature (#16427). Since multidraw is such a win for performance, when that feature is supported the small performance tax that indirect mode incurs is virtually always worth paying. To ensure that custom drawing code such as that in the `custom_shader_instancing` example continues to function, this commit additionally makes GPU culling take the `NoFrustumCulling` component into account. This PR is an alternative to #16670 that doesn't break the `custom_shader_instancing` example. **PR #16755 should land first in order to avoid breaking deferred rendering, as multidraw currently breaks it**. ## Migration Guide * Indirect drawing (GPU culling) is now enabled by default, so the `GpuCulling` component is no longer available. To disable indirect mode, which may be useful with custom render nodes, add the new `NoIndirectDrawing` component to your camera. |
||
![]() |
3188e5af61
|
Batch skinned meshes on platforms where storage buffers are available. (#16599)
This commit makes skinned meshes batchable on platforms other than WebGL 2. On supported platforms, it replaces the two uniform buffers used for joint matrices with a pair of storage buffers containing all matrices for all skinned meshes packed together. The indices into the buffer are stored in the mesh uniform and mesh input uniform. The GPU mesh preprocessing step copies the indices in if that step is enabled. On the `many_foxes` demo, I observed a frame time decrease from 15.470ms to 11.935ms. This is the result of reducing the `submit_graph_commands` time from an average of 5.45ms to 0.489ms, an 11x speedup in that portion of rendering.  This is what the profile looks like for `many_foxes` after these changes.  --------- Co-authored-by: François Mockers <mockersf@gmail.com> |
||
![]() |
5adf831b42
|
Add a bindless mode to AsBindGroup . (#16368)
This patch adds the infrastructure necessary for Bevy to support *bindless resources*, by adding a new `#[bindless]` attribute to `AsBindGroup`. Classically, only a single texture (or sampler, or buffer) can be attached to each shader binding. This means that switching materials requires breaking a batch and issuing a new drawcall, even if the mesh is otherwise identical. This adds significant overhead not only in the driver but also in `wgpu`, as switching bind groups increases the amount of validation work that `wgpu` must do. *Bindless resources* are the typical solution to this problem. Instead of switching bindings between each texture, the renderer instead supplies a large *array* of all textures in the scene up front, and the material contains an index into that array. This pattern is repeated for buffers and samplers as well. The renderer now no longer needs to switch binding descriptor sets while drawing the scene. Unfortunately, as things currently stand, this approach won't quite work for Bevy. Two aspects of `wgpu` conspire to make this ideal approach unacceptably slow: 1. In the DX12 backend, all binding arrays (bindless resources) must have a constant size declared in the shader, and all textures in an array must be bound to actual textures. Changing the size requires a recompile. 2. Changing even one texture incurs revalidation of all textures, a process that takes time that's linear in the total size of the binding array. This means that declaring a large array of textures big enough to encompass the entire scene is presently unacceptably slow. For example, if you declare 4096 textures, then `wgpu` will have to revalidate all 4096 textures if even a single one changes. This process can take multiple frames. To work around this problem, this PR groups bindless resources into small *slabs* and maintains a free list for each. The size of each slab for the bindless arrays associated with a material is specified via the `#[bindless(N)]` attribute. For instance, consider the following declaration: ```rust #[derive(AsBindGroup)] #[bindless(16)] struct MyMaterial { #[buffer(0)] color: Vec4, #[texture(1)] #[sampler(2)] diffuse: Handle<Image>, } ``` The `#[bindless(N)]` attribute specifies that, if bindless arrays are supported on the current platform, each resource becomes a binding array of N instances of that resource. So, for `MyMaterial` above, the `color` attribute is exposed to the shader as `binding_array<vec4<f32>, 16>`, the `diffuse` texture is exposed to the shader as `binding_array<texture_2d<f32>, 16>`, and the `diffuse` sampler is exposed to the shader as `binding_array<sampler, 16>`. Inside the material's vertex and fragment shaders, the applicable index is available via the `material_bind_group_slot` field of the `Mesh` structure. So, for instance, you can access the current color like so: ```wgsl // `uniform` binding arrays are a non-sequitur, so `uniform` is automatically promoted // to `storage` in bindless mode. @group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>; ... @fragment fn fragment(in: VertexOutput) -> @location(0) vec4<f32> { let color = material_color[mesh[in.instance_index].material_bind_group_slot]; ... } ``` Note that portable shader code can't guarantee that the current platform supports bindless textures. Indeed, bindless mode is only available in Vulkan and DX12. The `BINDLESS` shader definition is available for your use to determine whether you're on a bindless platform or not. Thus a portable version of the shader above would look like: ```wgsl #ifdef BINDLESS @group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>; #else // BINDLESS @group(2) @binding(0) var<uniform> material_color: Color; #endif // BINDLESS ... @fragment fn fragment(in: VertexOutput) -> @location(0) vec4<f32> { #ifdef BINDLESS let color = material_color[mesh[in.instance_index].material_bind_group_slot]; #else // BINDLESS let color = material_color; #endif // BINDLESS ... } ``` Importantly, this PR *doesn't* update `StandardMaterial` to be bindless. So, for example, `scene_viewer` will currently not run any faster. I intend to update `StandardMaterial` to use bindless mode in a follow-up patch. A new example, `shaders/shader_material_bindless`, has been added to demonstrate how to use this new feature. Here's a Tracy profile of `submit_graph_commands` of this patch and an additional patch (not submitted yet) that makes `StandardMaterial` use bindless. Red is those patches; yellow is `main`. The scene was Bistro Exterior with a hack that forces all textures to opaque. You can see a 1.47x mean speedup.  ## Migration Guide * `RenderAssets::prepare_asset` now takes an `AssetId` parameter. * Bin keys now have Bevy-specific material bind group indices instead of `wgpu` material bind group IDs, as part of the bindless change. Use the new `MaterialBindGroupAllocator` to map from bind group index to bind group ID. |
||
![]() |
d235d41af1
|
Fix the example regressions from packed growable buffers. (#14375)
The "uberbuffers" PR #14257 caused some examples to fail intermittently for different reasons: 1. `morph_targets` could fail because vertex displacements for morph targets are keyed off the vertex index. With buffer packing, the vertex index can vary based on the position in the buffer, which caused the morph targets to be potentially incorrect. The solution is to include the first vertex index with the `MeshUniform` (and `MeshInputUniform` if GPU preprocessing is in use), so that the shader can calculate the true vertex index before performing the morph operation. This results in wasted space in `MeshUniform`, which is unfortunate, but we'll soon be filling in the padding with the ID of the material when bindless textures land, so this had to happen sooner or later anyhow. Including the vertex index in the `MeshInputUniform` caused an ordering problem. The `MeshInputUniform` was created during the extraction phase, before the allocations occurred, so the extraction logic didn't know where the mesh vertex data was going to end up. The solution is to move the `MeshInputUniform` creation (the `collect_meshes_for_gpu_building` system) to after the allocations phase. This should be better for parallelism anyhow, because it allows the extraction phase to finish quicker. It's also something we'll have to do for bindless in any event. 2. The `lines` and `fog_volumes` examples could fail because their custom drawing nodes weren't updated to supply the vertex and index offsets in their `draw_indexed` and `draw` calls. This commit fixes this oversight. Fixes #14366. |
||
![]() |
9b9d3d81cb
|
Normalise matrix naming (#13489)
# Objective - Fixes #10909 - Fixes #8492 ## Solution - Name all matrices `x_from_y`, for example `world_from_view`. ## Testing - I've tested most of the 3D examples. The `lighting` example particularly should hit a lot of the changes and appears to run fine. --- ## Changelog - Renamed matrices across the engine to follow a `y_from_x` naming, making the space conversion more obvious. ## Migration Guide - `Frustum`'s `from_view_projection`, `from_view_projection_custom_far` and `from_view_projection_no_far` were renamed to `from_clip_from_world`, `from_clip_from_world_custom_far` and `from_clip_from_world_no_far`. - `ComputedCameraValues::projection_matrix` was renamed to `clip_from_view`. - `CameraProjection::get_projection_matrix` was renamed to `get_clip_from_view` (this affects implementations on `Projection`, `PerspectiveProjection` and `OrthographicProjection`). - `ViewRangefinder3d::from_view_matrix` was renamed to `from_world_from_view`. - `PreviousViewData`'s members were renamed to `view_from_world` and `clip_from_world`. - `ExtractedView`'s `projection`, `transform` and `view_projection` were renamed to `clip_from_view`, `world_from_view` and `clip_from_world`. - `ViewUniform`'s `view_proj`, `unjittered_view_proj`, `inverse_view_proj`, `view`, `inverse_view`, `projection` and `inverse_projection` were renamed to `clip_from_world`, `unjittered_clip_from_world`, `world_from_clip`, `world_from_view`, `view_from_world`, `clip_from_view` and `view_from_clip`. - `GpuDirectionalCascade::view_projection` was renamed to `clip_from_world`. - `MeshTransforms`' `transform` and `previous_transform` were renamed to `world_from_local` and `previous_world_from_local`. - `MeshUniform`'s `transform`, `previous_transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `previous_world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh` type in WGSL mirrors this, however `transform` and `previous_transform` were named `model` and `previous_model`). - `Mesh2dTransforms::transform` was renamed to `world_from_local`. - `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed to `world_from_local`, `local_from_world_transpose_a` and `local_from_world_transpose_b` (the `Mesh2d` type in WGSL mirrors this). - In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and `get_previous_model_matrix` were renamed to `get_world_from_local` and `get_previous_world_from_local`. - In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed to `get_world_from_local`. |
||
![]() |
16531fb3e3
|
Implement GPU frustum culling. (#12889)
This commit implements opt-in GPU frustum culling, built on top of the infrastructure in https://github.com/bevyengine/bevy/pull/12773. To enable it on a camera, add the `GpuCulling` component to it. To additionally disable CPU frustum culling, add the `NoCpuCulling` component. Note that adding `GpuCulling` without `NoCpuCulling` *currently* does nothing useful. The reason why `GpuCulling` doesn't automatically imply `NoCpuCulling` is that I intend to follow this patch up with GPU two-phase occlusion culling, and CPU frustum culling plus GPU occlusion culling seems like a very commonly-desired mode. Adding the `GpuCulling` component to a view puts that view into *indirect mode*. This mode makes all drawcalls indirect, relying on the mesh preprocessing shader to allocate instances dynamically. In indirect mode, the `PreprocessWorkItem` `output_index` points not to a `MeshUniform` instance slot but instead to a set of `wgpu` `IndirectParameters`, from which it allocates an instance slot dynamically if frustum culling succeeds. Batch building has been updated to allocate and track indirect parameter slots, and the AABBs are now supplied to the GPU as `MeshCullingData`. A small amount of code relating to the frustum culling has been borrowed from meshlets and moved into `maths.wgsl`. Note that standard Bevy frustum culling uses AABBs, while meshlets use bounding spheres; this means that not as much code can be shared as one might think. This patch doesn't provide any way to perform GPU culling on shadow maps, to avoid making this patch bigger than it already is. That can be a followup. ## Changelog ### Added * Frustum culling can now optionally be done on the GPU. To enable it, add the `GpuCulling` component to a camera. * To disable CPU frustum culling, add `NoCpuCulling` to a camera. Note that `GpuCulling` doesn't automatically imply `NoCpuCulling`. |
||
![]() |
11817f4ba4
|
Generate MeshUniform s on the GPU via compute shader where available. (#12773)
Currently, `MeshUniform`s are rather large: 160 bytes. They're also somewhat expensive to compute, because they involve taking the inverse of a 3x4 matrix. Finally, if a mesh is present in multiple views, that mesh will have a separate `MeshUniform` for each and every view, which is wasteful. This commit fixes these issues by introducing the concept of a *mesh input uniform* and adding a *mesh uniform building* compute shader pass. The `MeshInputUniform` is simply the minimum amount of data needed for the GPU to compute the full `MeshUniform`. Most of this data is just the transform and is therefore only 64 bytes. `MeshInputUniform`s are computed during the *extraction* phase, much like skins are today, in order to avoid needlessly copying transforms around on CPU. (In fact, the render app has been changed to only store the translation of each mesh; it no longer cares about any other part of the transform, which is stored only on the GPU and the main world.) Before rendering, the `build_mesh_uniforms` pass runs to expand the `MeshInputUniform`s to the full `MeshUniform`. The mesh uniform building pass does the following, all on GPU: 1. Copy the appropriate fields of the `MeshInputUniform` to the `MeshUniform` slot. If a single mesh is present in multiple views, this effectively duplicates it into each view. 2. Compute the inverse transpose of the model transform, used for transforming normals. 3. If applicable, copy the mesh's transform from the previous frame for TAA. To support this, we double-buffer the `MeshInputUniform`s over two frames and swap the buffers each frame. The `MeshInputUniform`s for the current frame contain the index of that mesh's `MeshInputUniform` for the previous frame. This commit produces wins in virtually every CPU part of the pipeline: `extract_meshes`, `queue_material_meshes`, `batch_and_prepare_render_phase`, and especially `write_batched_instance_buffer` are all faster. Shrinking the amount of CPU data that has to be shuffled around speeds up the entire rendering process. | Benchmark | This branch | `main` | Speedup | |------------------------|-------------|---------|---------| | `many_cubes -nfc` | 17.259 | 24.529 | 42.12% | | `many_cubes -nfc -vpi` | 302.116 | 312.123 | 3.31% | | `many_foxes` | 3.227 | 3.515 | 8.92% | Because mesh uniform building requires compute shader, and WebGL 2 has no compute shader, the existing CPU mesh uniform building code has been left as-is. Many types now have both CPU mesh uniform building and GPU mesh uniform building modes. Developers can opt into the old CPU mesh uniform building by setting the `use_gpu_uniform_builder` option on `PbrPlugin` to `false`. Below are graphs of the CPU portions of `many-cubes --no-frustum-culling`. Yellow is this branch, red is `main`. `extract_meshes`:  It's notable that we get a small win even though we're now writing to a GPU buffer. `queue_material_meshes`:  There's a bit of a regression here; not sure what's causing it. In any case it's very outweighed by the other gains. `batch_and_prepare_render_phase`:  There's a huge win here, enough to make batching basically drop off the profile. `write_batched_instance_buffer`:  There's a massive improvement here, as expected. Note that a lot of it simply comes from the fact that `MeshInputUniform` is `Pod`. (This isn't a maintainability problem in my view because `MeshInputUniform` is so simple: just 16 tightly-packed words.) ## Changelog ### Added * Per-mesh instance data is now generated on GPU with a compute shader instead of CPU, resulting in rendering performance improvements on platforms where compute shaders are supported. ## Migration guide * Custom render phases now need multiple systems beyond just `batch_and_prepare_render_phase`. Code that was previously creating custom render phases should now add a `BinnedRenderPhasePlugin` or `SortedRenderPhasePlugin` as appropriate instead of directly adding `batch_and_prepare_render_phase`. |