35ac1b152e
				
			
			
		
	
	
		
			21 Commits
		
	
	
	| Author | SHA1 | Message | Date | |
|---|---|---|---|---|
|  Elabajaba | 35ac1b152e | Update to wgpu 0.19 and raw-window-handle 0.6 (#11280) # Objective Keep core dependencies up to date. ## Solution Update the dependencies. wgpu 0.19 only supports raw-window-handle (rwh) 0.6, so bumping that was included in this. The rwh 0.6 version bump is just the simplest way of doing it. There might be a way we can take advantage of wgpu's new safe surface creation api, but I'm not familiar enough with bevy's window management to untangle it and my attempt ended up being a mess of lifetimes and rustc complaining about missing trait impls (that were implemented). Thanks to @MiniaczQ for the (much simpler) rwh 0.6 version bump code. Unblocks https://github.com/bevyengine/bevy/pull/9172 and https://github.com/bevyengine/bevy/pull/10812 ~~This might be blocked on cpal and oboe updating their ndk versions to 0.8, as they both currently target ndk 0.7 which uses rwh 0.5.2~~ Tested on android, and everything seems to work correctly (audio properly stops when minimized, and plays when re-focusing the app). --- ## Changelog - `wgpu` has been updated to 0.19! The long awaited arcanization has been merged (for more info, see https://gfx-rs.github.io/2023/11/24/arcanization.html), and Vulkan should now be working again on Intel GPUs. - Targeting WebGPU now requires that you add the new `webgpu` feature (setting the `RUSTFLAGS` environment variable to `--cfg=web_sys_unstable_apis` is still required). This feature currently overrides the `webgl2` feature if you have both enabled (the `webgl2` feature is enabled by default), so it is not recommended to add it as a default feature to libraries without putting it behind a flag that allows library users to opt out of it! In the future we plan on supporting wasm binaries that can target both webgl2 and webgpu now that wgpu added support for doing so (see https://github.com/bevyengine/bevy/issues/11505). - `raw-window-handle` has been updated to version 0.6. ## Migration Guide - `bevy_render::instance_index::get_instance_index()` has been removed as the webgl2 workaround is no longer required as it was fixed upstream in wgpu. The `BASE_INSTANCE_WORKAROUND` shaderdef has also been removed. - WebGPU now requires the new `webgpu` feature to be enabled. The `webgpu` feature currently overrides the `webgl2` feature so you no longer need to disable all default features and re-add them all when targeting `webgpu`, but binaries built with both the `webgpu` and `webgl2` features will only target the webgpu backend, and will only work on browsers that support WebGPU. - Places where you conditionally compiled things for webgl2 need to be updated because of this change, eg: - `#[cfg(any(not(feature = "webgl"), not(target_arch = "wasm32")))]` becomes `#[cfg(any(not(feature = "webgl") ,not(target_arch = "wasm32"), feature = "webgpu"))]` - `#[cfg(all(feature = "webgl", target_arch = "wasm32"))]` becomes `#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]` - `if cfg!(all(feature = "webgl", target_arch = "wasm32"))` becomes `if cfg!(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))` - `create_texture_with_data` now also takes a `TextureDataOrder`. You can probably just set this to `TextureDataOrder::default()` - `TextureFormat`'s `block_size` has been renamed to `block_copy_size` - See the `wgpu` changelog for anything I might've missed: https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md --------- Co-authored-by: François <mockersf@gmail.com> | ||
|  JMS55 | a796d53a05 | Meshlet prep (#11442) # Objective - Prep for https://github.com/bevyengine/bevy/pull/10164 - Make deferred_lighting_pass_id a ColorAttachment - Correctly extract shadow view frusta so that the view uniforms get populated - Make some needed things public - Misc formatting | ||
|  Alice Cecile | eb07d16871 | Revert rendering-related associated type name changes (#11027) # Objective > Can anyone explain to me the reasoning of renaming all the types named Query to Data. I'm talking about this PR https://github.com/bevyengine/bevy/pull/10779 It doesn't make sense to me that a bunch of types that are used to run queries aren't named Query anymore. Like ViewQuery on the ViewNode is the type of the Query. I don't really understand the point of the rename, it just seems like it hides the fact that a query will run based on those types. [@IceSentry](https://discord.com/channels/691052431525675048/692572690833473578/1184946251431694387) ## Solution Revert several renames in #10779. ## Changelog - `ViewNode::ViewData` is now `ViewNode::ViewQuery` again. ## Migration Guide - This PR amends the migration guide in https://github.com/bevyengine/bevy/pull/10779 --------- Co-authored-by: atlas dostal <rodol@rivalrebels.com> | ||
|  Patrick Walton | 83d6600267 | Implement minimal reflection probes (fixed macOS, iOS, and Android). (#11366) This pull request re-submits #10057, which was backed out for breaking macOS, iOS, and Android. I've tested this version on macOS and Android and on the iOS simulator. # Objective This pull request implements *reflection probes*, which generalize environment maps to allow for multiple environment maps in the same scene, each of which has an axis-aligned bounding box. This is a standard feature of physically-based renderers and was inspired by [the corresponding feature in Blender's Eevee renderer]. ## Solution This is a minimal implementation of reflection probes that allows artists to define cuboid bounding regions associated with environment maps. For every view, on every frame, a system builds up a list of the nearest 4 reflection probes that are within the view's frustum and supplies that list to the shader. The PBR fragment shader searches through the list, finds the first containing reflection probe, and uses it for indirect lighting, falling back to the view's environment map if none is found. Both forward and deferred renderers are fully supported. A reflection probe is an entity with a pair of components, *LightProbe* and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to position it in the world). The *LightProbe* component (along with the *Transform*) defines the bounding region, while the *EnvironmentMapLight* component specifies the associated diffuse and specular cubemaps. A frequent question is "why two components instead of just one?" The advantages of this setup are: 1. It's readily extensible to other types of light probes, in particular *irradiance volumes* (also known as ambient cubes or voxel global illumination), which use the same approach of bounding cuboids. With a single component that applies to both reflection probes and irradiance volumes, we can share the logic that implements falloff and blending between multiple light probes between both of those features. 2. It reduces duplication between the existing *EnvironmentMapLight* and these new reflection probes. Systems can treat environment maps attached to cameras the same way they treat environment maps applied to reflection probes if they wish. Internally, we gather up all environment maps in the scene and place them in a cubemap array. At present, this means that all environment maps must have the same size, mipmap count, and texture format. A warning is emitted if this restriction is violated. We could potentially relax this in the future as part of the automatic mipmap generation work, which could easily do texture format conversion as part of its preprocessing. An easy way to generate reflection probe cubemaps is to bake them in Blender and use the `export-blender-gi` tool that's part of the [`bevy-baked-gi`] project. This tool takes a `.blend` file containing baked cubemaps as input and exports cubemap images, pre-filtered with an embedded fork of the [glTF IBL Sampler], alongside a corresponding `.scn.ron` file that the scene spawner can use to recreate the reflection probes. Note that this is intentionally a minimal implementation, to aid reviewability. Known issues are: * Reflection probes are basically unsupported on WebGL 2, because WebGL 2 has no cubemap arrays. (Strictly speaking, you can have precisely one reflection probe in the scene if you have no other cubemaps anywhere, but this isn't very useful.) * Reflection probes have no falloff, so reflections will abruptly change when objects move from one bounding region to another. * As mentioned before, all cubemaps in the world of a given type (diffuse or specular) must have the same size, format, and mipmap count. Future work includes: * Blending between multiple reflection probes. * A falloff/fade-out region so that reflected objects disappear gradually instead of vanishing all at once. * Irradiance volumes for voxel-based global illumination. This should reuse much of the reflection probe logic, as they're both GI techniques based on cuboid bounding regions. * Support for WebGL 2, by breaking batches when reflection probes are used. These issues notwithstanding, I think it's best to land this with roughly the current set of functionality, because this patch is useful as is and adding everything above would make the pull request significantly larger and harder to review. --- ## Changelog ### Added * A new *LightProbe* component is available that specifies a bounding region that an *EnvironmentMapLight* applies to. The combination of a *LightProbe* and an *EnvironmentMapLight* offers *reflection probe* functionality similar to that available in other engines. [the corresponding feature in Blender's Eevee renderer]: https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html [`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi [glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler | ||
|  Aevyrie | 839d2f8353 | Approximate indirect specular occlusion (#11152) # Objective - The current PBR renderer over-brightens indirect specular reflections, which tends to cause objects to appear to glow, because specular occlusion is not accounted for. ## Solution - Attenuate indirect specular term with an approximation for specular occlusion, using [[Lagarde et al., 2014] (pg. 76)](https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf). | Before | After | Animation | | --- | --- | --- | | <img width="1840" alt="before bike" src="https://github.com/bevyengine/bevy/assets/2632925/b6e10d15-a998-4a94-875a-1c2b1e98348a"> | <img width="1840" alt="after bike" src="https://github.com/bevyengine/bevy/assets/2632925/53b1479c-b1e4-427f-b140-53df26ca7193"> |  | | <img width="1840" alt="classroom before" src="https://github.com/bevyengine/bevy/assets/2632925/b16c0e74-741e-4f40-a7df-8863eaa62596"> | <img width="1840" alt="classroom after" src="https://github.com/bevyengine/bevy/assets/2632925/26f9e971-0c63-4ee9-9544-964e5703d65e"> |  | --- ## Changelog - Ambient occlusion now applies to indirect specular reflections to approximate how objects occlude specular light. ## Migration Guide - Renamed `PbrInput::occlusion` to `diffuse_occlusion`, and added `specular_occlusion`. | ||
|  François | 3d996639a0 | Revert "Implement minimal reflection probes. (#10057)" (#11307) # Objective - Fix working on macOS, iOS, Android on main - Fixes #11281 - Fixes #11282 - Fixes #11283 - Fixes #11299 ## Solution - Revert #10057 | ||
|  Patrick Walton | 54a943d232 | Implement minimal reflection probes. (#10057) # Objective This pull request implements *reflection probes*, which generalize environment maps to allow for multiple environment maps in the same scene, each of which has an axis-aligned bounding box. This is a standard feature of physically-based renderers and was inspired by [the corresponding feature in Blender's Eevee renderer]. ## Solution This is a minimal implementation of reflection probes that allows artists to define cuboid bounding regions associated with environment maps. For every view, on every frame, a system builds up a list of the nearest 4 reflection probes that are within the view's frustum and supplies that list to the shader. The PBR fragment shader searches through the list, finds the first containing reflection probe, and uses it for indirect lighting, falling back to the view's environment map if none is found. Both forward and deferred renderers are fully supported. A reflection probe is an entity with a pair of components, *LightProbe* and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to position it in the world). The *LightProbe* component (along with the *Transform*) defines the bounding region, while the *EnvironmentMapLight* component specifies the associated diffuse and specular cubemaps. A frequent question is "why two components instead of just one?" The advantages of this setup are: 1. It's readily extensible to other types of light probes, in particular *irradiance volumes* (also known as ambient cubes or voxel global illumination), which use the same approach of bounding cuboids. With a single component that applies to both reflection probes and irradiance volumes, we can share the logic that implements falloff and blending between multiple light probes between both of those features. 2. It reduces duplication between the existing *EnvironmentMapLight* and these new reflection probes. Systems can treat environment maps attached to cameras the same way they treat environment maps applied to reflection probes if they wish. Internally, we gather up all environment maps in the scene and place them in a cubemap array. At present, this means that all environment maps must have the same size, mipmap count, and texture format. A warning is emitted if this restriction is violated. We could potentially relax this in the future as part of the automatic mipmap generation work, which could easily do texture format conversion as part of its preprocessing. An easy way to generate reflection probe cubemaps is to bake them in Blender and use the `export-blender-gi` tool that's part of the [`bevy-baked-gi`] project. This tool takes a `.blend` file containing baked cubemaps as input and exports cubemap images, pre-filtered with an embedded fork of the [glTF IBL Sampler], alongside a corresponding `.scn.ron` file that the scene spawner can use to recreate the reflection probes. Note that this is intentionally a minimal implementation, to aid reviewability. Known issues are: * Reflection probes are basically unsupported on WebGL 2, because WebGL 2 has no cubemap arrays. (Strictly speaking, you can have precisely one reflection probe in the scene if you have no other cubemaps anywhere, but this isn't very useful.) * Reflection probes have no falloff, so reflections will abruptly change when objects move from one bounding region to another. * As mentioned before, all cubemaps in the world of a given type (diffuse or specular) must have the same size, format, and mipmap count. Future work includes: * Blending between multiple reflection probes. * A falloff/fade-out region so that reflected objects disappear gradually instead of vanishing all at once. * Irradiance volumes for voxel-based global illumination. This should reuse much of the reflection probe logic, as they're both GI techniques based on cuboid bounding regions. * Support for WebGL 2, by breaking batches when reflection probes are used. These issues notwithstanding, I think it's best to land this with roughly the current set of functionality, because this patch is useful as is and adding everything above would make the pull request significantly larger and harder to review. --- ## Changelog ### Added * A new *LightProbe* component is available that specifies a bounding region that an *EnvironmentMapLight* applies to. The combination of a *LightProbe* and an *EnvironmentMapLight* offers *reflection probe* functionality similar to that available in other engines. [the corresponding feature in Blender's Eevee renderer]: https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html [`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi [glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler | ||
|  JMS55 | 70b0eacc3b | Keep track of when a texture is first cleared (#10325) # Objective - Custom render passes, or future passes in the engine (such as https://github.com/bevyengine/bevy/pull/10164) need a better way to know and indicate to the core passes whether the view color/depth/prepass attachments have been cleared or not yet this frame, to know if they should clear it themselves or load it. ## Solution - For all render targets (depth textures, shadow textures, prepass textures, main textures) use an atomic bool to track whether or not each texture has been cleared this frame. Abstracted away in the new ColorAttachment and DepthAttachment wrappers. --- ## Changelog - Changed `ViewTarget::get_color_attachment()`, removed arguments. - Changed `ViewTarget::get_unsampled_color_attachment()`, removed arguments. - Removed `Camera3d::clear_color`. - Removed `Camera2d::clear_color`. - Added `Camera::clear_color`. - Added `ExtractedCamera::clear_color`. - Added `ColorAttachment` and `DepthAttachment` wrappers. - Moved `ClearColor` and `ClearColorConfig` from `bevy::core_pipeline::clear_color` to `bevy::render::camera`. - Core render passes now track when a texture is first bound as an attachment in order to decide whether to clear or load it. ## Migration Guide - Remove arguments to `ViewTarget::get_color_attachment()` and `ViewTarget::get_unsampled_color_attachment()`. - Configure clear color on `Camera` instead of on `Camera3d` and `Camera2d`. - Moved `ClearColor` and `ClearColorConfig` from `bevy::core_pipeline::clear_color` to `bevy::render::camera`. - `ViewDepthTexture` must now be created via the `new()` method --------- Co-authored-by: vero <email@atlasdostal.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> | ||
|  JMS55 | 3d3a065820 | Misc cleanup (#11134) Re-exports a few types/functions I need that have no reason to be private, and some minor code quality changes. | ||
|  Elabajaba | 70a592f31a | Update to wgpu 0.18 (#10266) # Objective Keep up to date with wgpu. ## Solution Update the wgpu version. Currently blocked on naga_oil updating to naga 0.14 and releasing a new version. 3d scenes (or maybe any scene with lighting?) currently don't render anything due to ``` error: naga_oil bug, please file a report: composer failed to build a valid header: Type [2] '' is invalid = Capability Capabilities(CUBE_ARRAY_TEXTURES) is required ``` I'm not sure what should be passed in for `wgpu::InstanceFlags`, or if we want to make the gles3minorversion configurable (might be useful for debugging?) Currently blocked on https://github.com/bevyengine/naga_oil/pull/63, and https://github.com/gfx-rs/wgpu/issues/4569 to be fixed upstream in wgpu first. ## Known issues Amd+windows+vulkan has issues with texture_binding_arrays (see the image [here](https://github.com/bevyengine/bevy/pull/10266#issuecomment-1819946278)), but that'll be fixed in the next wgpu/naga version, and you can just use dx12 as a workaround for now (Amd+linux mesa+vulkan texture_binding_arrays are fixed though). --- ## Changelog Updated wgpu to 0.18, naga to 0.14.2, and naga_oil to 0.11. - Windows desktop GL should now be less painful as it no longer requires Angle. - You can now toggle shader validation and debug information for debug and release builds using `WgpuSettings.instance_flags` and [InstanceFlags](https://docs.rs/wgpu/0.18.0/wgpu/struct.InstanceFlags.html) ## Migration Guide - `RenderPassDescriptor` `color_attachments` (as well as `RenderPassColorAttachment`, and `RenderPassDepthStencilAttachment`) now use `StoreOp::Store` or `StoreOp::Discard` instead of a `boolean` to declare whether or not they should be stored. - `RenderPassDescriptor` now have `timestamp_writes` and `occlusion_query_set` fields. These can safely be set to `None`. - `ComputePassDescriptor` now have a `timestamp_writes` field. This can be set to `None` for now. - See the [wgpu changelog](https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md#v0180-2023-10-25) for additional details | ||
|  Mantas | 5af2f022d8 | Rename WorldQueryData&WorldQueryFiltertoQueryData&QueryFilter(#10779)# Rename `WorldQueryData` & `WorldQueryFilter` to `QueryData` & `QueryFilter` Fixes #10776 ## Solution Traits `WorldQueryData` & `WorldQueryFilter` were renamed to `QueryData` and `QueryFilter`, respectively. Related Trait types were also renamed. --- ## Changelog - Trait `WorldQueryData` has been renamed to `QueryData`. Derive macro's `QueryData` attribute `world_query_data` has been renamed to `query_data`. - Trait `WorldQueryFilter` has been renamed to `QueryFilter`. Derive macro's `QueryFilter` attribute `world_query_filter` has been renamed to `query_filter`. - Trait's `ExtractComponent` type `Query` has been renamed to `Data`. - Trait's `GetBatchData` types `Query` & `QueryFilter` has been renamed to `Data` & `Filter`, respectively. - Trait's `ExtractInstance` type `Query` has been renamed to `Data`. - Trait's `ViewNode` type `ViewQuery` has been renamed to `ViewData`. - Trait's `RenderCommand` types `ViewWorldQuery` & `ItemWorldQuery` has been renamed to `ViewData` & `ItemData`, respectively. ## Migration Guide Note: if merged before 0.13 is released, this should instead modify the migration guide of #10776 with the updated names. - Rename `WorldQueryData` & `WorldQueryFilter` trait usages to `QueryData` & `QueryFilter` and their respective derive macro attributes `world_query_data` & `world_query_filter` to `query_data` & `query_filter`. - Rename the following trait type usages: - Trait's `ExtractComponent` type `Query` to `Data`. - Trait's `GetBatchData` type `Query` to `Data`. - Trait's `ExtractInstance` type `Query` to `Data`. - Trait's `ViewNode` type `ViewQuery` to `ViewData`' - Trait's `RenderCommand` types `ViewWolrdQuery` & `ItemWorldQuery` to `ViewData` & `ItemData`, respectively. ```rust // Before #[derive(WorldQueryData)] #[world_query_data(derive(Debug))] struct EmptyQuery { empty: (), } // After #[derive(QueryData)] #[query_data(derive(Debug))] struct EmptyQuery { empty: (), } // Before #[derive(WorldQueryFilter)] struct CustomQueryFilter<T: Component, P: Component> { _c: With<ComponentC>, _d: With<ComponentD>, _or: Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>, _generic_tuple: (With<T>, With<P>), } // After #[derive(QueryFilter)] struct CustomQueryFilter<T: Component, P: Component> { _c: With<ComponentC>, _d: With<ComponentD>, _or: Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>, _generic_tuple: (With<T>, With<P>), } // Before impl ExtractComponent for ContrastAdaptiveSharpeningSettings { type Query = &'static Self; type Filter = With<Camera>; type Out = (DenoiseCAS, CASUniform); fn extract_component(item: QueryItem<Self::Query>) -> Option<Self::Out> { //... } } // After impl ExtractComponent for ContrastAdaptiveSharpeningSettings { type Data = &'static Self; type Filter = With<Camera>; type Out = (DenoiseCAS, CASUniform); fn extract_component(item: QueryItem<Self::Data>) -> Option<Self::Out> { //... } } // Before impl GetBatchData for MeshPipeline { type Param = SRes<RenderMeshInstances>; type Query = Entity; type QueryFilter = With<Mesh3d>; type CompareData = (MaterialBindGroupId, AssetId<Mesh>); type BufferData = MeshUniform; fn get_batch_data( mesh_instances: &SystemParamItem<Self::Param>, entity: &QueryItem<Self::Query>, ) -> (Self::BufferData, Option<Self::CompareData>) { // .... } } // After impl GetBatchData for MeshPipeline { type Param = SRes<RenderMeshInstances>; type Data = Entity; type Filter = With<Mesh3d>; type CompareData = (MaterialBindGroupId, AssetId<Mesh>); type BufferData = MeshUniform; fn get_batch_data( mesh_instances: &SystemParamItem<Self::Param>, entity: &QueryItem<Self::Data>, ) -> (Self::BufferData, Option<Self::CompareData>) { // .... } } // Before impl<A> ExtractInstance for AssetId<A> where A: Asset, { type Query = Read<Handle<A>>; type Filter = (); fn extract(item: QueryItem<'_, Self::Query>) -> Option<Self> { Some(item.id()) } } // After impl<A> ExtractInstance for AssetId<A> where A: Asset, { type Data = Read<Handle<A>>; type Filter = (); fn extract(item: QueryItem<'_, Self::Data>) -> Option<Self> { Some(item.id()) } } // Before impl ViewNode for PostProcessNode { type ViewQuery = ( &'static ViewTarget, &'static PostProcessSettings, ); fn run( &self, _graph: &mut RenderGraphContext, render_context: &mut RenderContext, (view_target, _post_process_settings): QueryItem<Self::ViewQuery>, world: &World, ) -> Result<(), NodeRunError> { // ... } } // After impl ViewNode for PostProcessNode { type ViewData = ( &'static ViewTarget, &'static PostProcessSettings, ); fn run( &self, _graph: &mut RenderGraphContext, render_context: &mut RenderContext, (view_target, _post_process_settings): QueryItem<Self::ViewData>, world: &World, ) -> Result<(), NodeRunError> { // ... } } // Before impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline { type Param = SRes<PipelineCache>; type ViewWorldQuery = (); type ItemWorldQuery = (); #[inline] fn render<'w>( item: &P, _view: (), _entity: (), pipeline_cache: SystemParamItem<'w, '_, Self::Param>, pass: &mut TrackedRenderPass<'w>, ) -> RenderCommandResult { // ... } } // After impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline { type Param = SRes<PipelineCache>; type ViewData = (); type ItemData = (); #[inline] fn render<'w>( item: &P, _view: (), _entity: (), pipeline_cache: SystemParamItem<'w, '_, Self::Param>, pass: &mut TrackedRenderPass<'w>, ) -> RenderCommandResult { // ... } } ``` | ||
|  IceSentry | 6d0c11a28f | Bind group layout entries (#10224) # Objective
- Follow up to #9694
## Solution
- Same api as #9694 but adapted for `BindGroupLayoutEntry`
- Use the same `ShaderStages` visibilty for all entries by default
- Add `BindingType` helper function that mirror the wgsl equivalent and
that make writing layouts much simpler.
Before:
```rust
let layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
    label: Some("post_process_bind_group_layout"),
    entries: &[
        BindGroupLayoutEntry {
            binding: 0,
            visibility: ShaderStages::FRAGMENT,
            ty: BindingType::Texture {
                sample_type: TextureSampleType::Float { filterable: true },
                view_dimension: TextureViewDimension::D2,
                multisampled: false,
            },
            count: None,
        },
        BindGroupLayoutEntry {
            binding: 1,
            visibility: ShaderStages::FRAGMENT,
            ty: BindingType::Sampler(SamplerBindingType::Filtering),
            count: None,
        },
        BindGroupLayoutEntry {
            binding: 2,
            visibility: ShaderStages::FRAGMENT,
            ty: BindingType::Buffer {
                ty: bevy::render::render_resource::BufferBindingType::Uniform,
                has_dynamic_offset: false,
                min_binding_size: Some(PostProcessSettings::min_size()),
            },
            count: None,
        },
    ],
});
```
After:
```rust
let layout = render_device.create_bind_group_layout(
    "post_process_bind_group_layout"),
    &BindGroupLayoutEntries::sequential(
        ShaderStages::FRAGMENT,
        (
            texture_2d_f32(),
            sampler(SamplerBindingType::Filtering),
            uniform_buffer(false, Some(PostProcessSettings::min_size())),
        ),
    ),
);
```
Here's a more extreme example in bevy_solari:
 | ||
|  François | af37ab51ec | WebGL2: fix import path for unpack_unorm3x4_plus_unorm_20_ (#10251) # Objective - Fixes #10250 ``` [Log] ERROR crates/bevy_render/src/render_resource/pipeline_cache.rs:823 failed to process shader: (wasm_example.js, line 376) error: no definition in scope for identifier: 'bevy_pbr::pbr_deferred_functions::unpack_unorm3x4_plus_unorm_20_' ┌─ crates/bevy_pbr/src/deferred/deferred_lighting.wgsl:44:20 │ 44 │ frag_coord.z = bevy_pbr::pbr_deferred_functions::unpack_unorm3x4_plus_unorm_20_(deferred_data.b).w; │ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ unknown identifier │ = no definition in scope for identifier: 'bevy_pbr::pbr_deferred_functions::unpack_unorm3x4_plus_unorm_20_' ``` ## Solution - Fix the import path The "gray" issue is since #9258 on macOS ... at least they're not white anymore <img width="1294" alt="Screenshot 2023-10-25 at 00 14 11" src="https://github.com/bevyengine/bevy/assets/8672791/df1a1138-c26c-4417-9b49-a00fbb8561d7"> | ||
|  Griffin | 1bd7e5a8e6 | View Transformations (#9726) # Objective - Add functions for common view transformations. --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> | ||
|  robtfm | 6f2a5cb862 | Bind group entries (#9694) # Objective Simplify bind group creation code. alternative to (and based on) #9476 ## Solution - Add a `BindGroupEntries` struct that can transparently be used where `&[BindGroupEntry<'b>]` is required in BindGroupDescriptors. Allows constructing the descriptor's entries as: ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &BindGroupEntries::with_indexes(( (2, &my_sampler), (3, my_uniform), )), ); ``` instead of ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &[ BindGroupEntry { binding: 2, resource: BindingResource::Sampler(&my_sampler), }, BindGroupEntry { binding: 3, resource: my_uniform, }, ], ); ``` or ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &BindGroupEntries::sequential((&my_sampler, my_uniform)), ); ``` instead of ```rust render_device.create_bind_group( "my_bind_group", &my_layout, &[ BindGroupEntry { binding: 0, resource: BindingResource::Sampler(&my_sampler), }, BindGroupEntry { binding: 1, resource: my_uniform, }, ], ); ``` the structs has no user facing macros, is tuple-type-based so stack allocated, and has no noticeable impact on compile time. - Also adds a `DynamicBindGroupEntries` struct with a similar api that uses a `Vec` under the hood and allows extending the entries. - Modifies `RenderDevice::create_bind_group` to take separate arguments `label`, `layout` and `entries` instead of a `BindGroupDescriptor` struct. The struct can't be stored due to the internal references, and with only 3 members arguably does not add enough context to justify itself. - Modify the codebase to use the new api and the `BindGroupEntries` / `DynamicBindGroupEntries` structs where appropriate (whenever the entries slice contains more than 1 member). ## Migration Guide - Calls to `RenderDevice::create_bind_group({BindGroupDescriptor { label, layout, entries })` must be amended to `RenderDevice::create_bind_group(label, layout, entries)`. - If `label`s have been specified as `"bind_group_name".into()`, they need to change to just `"bind_group_name"`. `Some("bind_group_name")` and `None` will still work, but `Some("bind_group_name")` can optionally be simplified to just `"bind_group_name"`. --------- Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> | ||
|  robtfm | 61bad4eb57 | update shader imports (#10180) # Objective
- bump naga_oil to 0.10
- update shader imports to use rusty syntax
## Migration Guide
naga_oil 0.10 reworks the import mechanism to support more syntax to
make it more rusty, and test for item use before importing to determine
which imports are modules and which are items, which allows:
- use rust-style imports
```
#import bevy_pbr::{
    pbr_functions::{alpha_discard as discard, apply_pbr_lighting}, 
    mesh_bindings,
}
```
- import partial paths:
```
#import part::of::path
...
path::remainder::function();
```
which will call to `part::of::path::remainder::function`
- use fully qualified paths without importing:
```
// #import bevy_pbr::pbr_functions
bevy_pbr::pbr_functions::pbr()
```
- use imported items without qualifying
```
#import bevy_pbr::pbr_functions::pbr
// for backwards compatibility the old style is still supported:
// #import bevy_pbr::pbr_functions pbr
...
pbr()
```
- allows most imported items to end with `_` and numbers (naga_oil#30).
still doesn't allow struct members to end with `_` or numbers but it's
progress.
- the vast majority of existing shader code will work without changes,
but will emit "deprecated" warnings for old-style imports. these can be
suppressed with the `allow-deprecated` feature.
- partly breaks overrides (as far as i'm aware nobody uses these yet) -
now overrides will only be applied if the overriding module is added as
an additional import in the arguments to `Composer::make_naga_module` or
`Composer::add_composable_module`. this is necessary to support
determining whether imports are modules or items. | ||
|  Marco Buono | 9b80205acb | Variable MeshPipelineView Bind Group Layout (#10156)# Objective This PR aims to make it so that we don't accidentally go over `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) or `maxSampledTexturesPerShaderStage` (in WebGPU), giving us some extra leeway to add more view bind group textures. (This PR is extracted from—and unblocks—#8015) ## Solution - We replace the existing `view_layout` and `view_layout_multisampled` pair with an array of 32 bind group layouts, generated ahead of time; - For now, these layouts cover all the possible combinations of: `multisampled`, `depth_prepass`, `normal_prepass`, `motion_vector_prepass` and `deferred_prepass`: - In the future, as @JMS55 pointed out, we can likely take out `motion_vector_prepass` and `deferred_prepass`, as these are not really needed for the mesh pipeline and can use separate pipelines. This would bring the possible combinations down to 8; - We can also add more "optional" textures as they become needed, allowing the engine to scale to a wider variety of use cases in lower end/web environments (e.g. some apps might just want normal and depth prepasses, others might only want light probes), while still keeping a high ceiling for high end native environments where more textures are supported. - While preallocating bind group layouts is relatively cheap, the number of combinations grows exponentially, so we should likely limit ourselves to something like at most 256–1024 total layouts until we find a better solution (like generating them lazily) - To make this mechanism a little bit more explicit/discoverable, so that compatibility with WebGPU/WebGL is not broken by accident, we add a `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` const and warn whenever the number of textures in the layout crosses it. - The warning is gated by `#[cfg(debug_assertions)]` and not issued in release builds; - We're counting the actual textures in the bind group layout instead of using some roundabout metric so it should be accurate; - Right now `MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES` is set to 10 in order to leave 6 textures free for other groups; - Currently there's no combination that would cause us to go over the limit, but that will change once #8015 lands. --- ## Changelog - `MeshPipeline` view bind group layouts now vary based on the current multisampling and prepass states, saving a couple of texture binding entries when prepasses are not in use. ## Migration Guide - `MeshPipeline::view_layout` and `MeshPipeline::view_layout_multisampled` have been replaced with a private array to accomodate for variable view bind group layouts. To obtain a view bind group layout for the current pipeline state, use the new `MeshPipeline::get_view_layout()` or `MeshPipeline::get_view_layout_from_key()` methods. | ||
|  robtfm | c99351f7c2 | allow extensions to StandardMaterial (#7820) # Objective allow extending `Material`s (including the built in `StandardMaterial`) with custom vertex/fragment shaders and additional data, to easily get pbr lighting with custom modifications, or otherwise extend a base material. # Solution - added `ExtendedMaterial<B: Material, E: MaterialExtension>` which contains a base material and a user-defined extension. - added example `extended_material` showing how to use it - modified AsBindGroup to have "unprepared" functions that return raw resources / layout entries so that the extended material can combine them note: doesn't currently work with array resources, as i can't figure out how to make the OwnedBindingResource::get_binding() work, as wgpu requires a `&'a[&'a TextureView]` and i have a `Vec<TextureView>`. # Migration Guide manual implementations of `AsBindGroup` will need to be adjusted, the changes are pretty straightforward and can be seen in the diff for e.g. the `texture_binding_array` example. --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> | ||
|  Marco Buono | 5733d2403e | *_PREPASSShader Def Cleanup (#10136)# Objective - This PR aims to make the various `*_PREPASS` shader defs we have (`NORMAL_PREPASS`, `DEPTH_PREPASS`, `MOTION_VECTORS_PREPASS` AND `DEFERRED_PREPASS`) easier to use and understand: - So that their meaning is now consistent across all contexts; (“prepass X is enabled for the current view”) - So that they're also consistently set across all contexts. - It also aims to enable us to (with a follow up PR) to conditionally gate the `BindGroupEntry` and `BindGroupLayoutEntry` items associated with these prepasses, saving us up to 4 texture slots in WebGL (currently globally limited to 16 per shader, regardless of bind groups) ## Solution - We now consistently set these from `PrepassPipeline`, the `MeshPipeline` and the `DeferredLightingPipeline`, we also set their `MeshPipelineKey`s; - We introduce `PREPASS_PIPELINE`, `MESH_PIPELINE` and `DEFERRED_LIGHTING_PIPELINE` that can be used to detect where the code is running, without overloading the meanings of the prepass shader defs; - We also gate the WGSL functions in `bevy_pbr::prepass_utils` with `#ifdef`s for their respective shader defs, so that shader code can provide a fallback whenever they're not available. - This allows us to conditionally include the bindings for these prepass textures (My next PR, which will hopefully unblock #8015) - @robtfm mentioned [these were being used to prevent accessing the same binding as read/write in the prepass](https://discord.com/channels/691052431525675048/743663924229963868/1163270458393759814), however even after reversing the `#ifndef`s I had no issues running the code, so perhaps the compiler is already smart enough even without tree shaking to know they're not being used, thanks to `#ifdef PREPASS_PIPELINE`? ## Comparison ### Before | Shader Def | `PrepassPipeline` | `MeshPipeline` | `DeferredLightingPipeline` | | ------------------------ | ----------------- | -------------- | -------------------------- | | `NORMAL_PREPASS` | Yes | No | No | | `DEPTH_PREPASS` | Yes | No | No | | `MOTION_VECTORS_PREPASS` | Yes | No | No | | `DEFERRED_PREPASS` | Yes | No | No | | View Key | `PrepassPipeline` | `MeshPipeline` | `DeferredLightingPipeline` | | ------------------------ | ----------------- | -------------- | -------------------------- | | `NORMAL_PREPASS` | Yes | Yes | No | | `DEPTH_PREPASS` | Yes | No | No | | `MOTION_VECTORS_PREPASS` | Yes | No | No | | `DEFERRED_PREPASS` | Yes | Yes\* | No | \* Accidentally was being set twice, once with only `deferred_prepass.is_some()` as a condition, and once with `deferred_p repass.is_some() && !forward` as a condition. ### After | Shader Def | `PrepassPipeline` | `MeshPipeline` | `DeferredLightingPipeline` | | ---------------------------- | ----------------- | --------------- | -------------------------- | | `NORMAL_PREPASS` | Yes | Yes | Yes | | `DEPTH_PREPASS` | Yes | Yes | Yes | | `MOTION_VECTORS_PREPASS` | Yes | Yes | Yes | | `DEFERRED_PREPASS` | Yes | Yes | Unconditionally | | `PREPASS_PIPELINE` | Unconditionally | No | No | | `MESH_PIPELINE` | No | Unconditionally | No | | `DEFERRED_LIGHTING_PIPELINE` | No | No | Unconditionally | | View Key | `PrepassPipeline` | `MeshPipeline` | `DeferredLightingPipeline` | | ------------------------ | ----------------- | -------------- | -------------------------- | | `NORMAL_PREPASS` | Yes | Yes | Yes | | `DEPTH_PREPASS` | Yes | Yes | Yes | | `MOTION_VECTORS_PREPASS` | Yes | Yes | Yes | | `DEFERRED_PREPASS` | Yes | Yes | Unconditionally | --- ## Changelog - Cleaned up WGSL `*_PREPASS` shader defs so they're now consistently used everywhere; - Introduced `PREPASS_PIPELINE`, `MESH_PIPELINE` and `DEFERRED_LIGHTING_PIPELINE` WGSL shader defs for conditionally compiling logic based the current pipeline; - WGSL functions from `bevy_pbr::prepass_utils` are now guarded with `#ifdef` based on the currently enabled prepasses; ## Migration Guide - When using functions from `bevy_pbr::prepass_utils` (`prepass_depth()`, `prepass_normal()`, `prepass_motion_vector()`) in contexts where these prepasses might be disabled, you should now wrap your calls with the appropriate `#ifdef` guards, (`#ifdef DEPTH_PREPASS`, `#ifdef NORMAL_PREPASS`, `#ifdef MOTION_VECTOR_PREPASS`) providing fallback logic where applicable. --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> | ||
|  robtfm | 979c4094d4 | pbr shader cleanup (#10105) # Objective cleanup some pbr shader code. improve shader stage io consistency and make pbr.wgsl (probably many people's first foray into bevy shader code) a little more human-readable. also fix a couple of small issues with deferred rendering. ## Solution mesh_vertex_output: - rename to forward_io (to align with prepass_io) - rename `MeshVertexOutput` to `VertexOutput` (to align with prepass_io) - move `Vertex` from mesh.wgsl into here (to align with prepass_io) prepass_io: - remove `FragmentInput`, use `VertexOutput` directly (to align with forward_io) - rename `VertexOutput::clip_position` to `position` (to align with forward_io) pbr.wgsl: - restructure so we don't need `#ifdefs` on the actual entrypoint, use VertexOutput and FragmentOutput in all cases and use #ifdefs to import the right struct definitions. - rearrange to make the flow clearer - move alpha_discard up from `pbr_functions::pbr` to avoid needing to call it on some branches and not others - add a bunch of comments deferred_lighting: - move ssao into the `!unlit` block to reflect forward behaviour correctly - fix compile error with deferred + premultiply_alpha ## Migration Guide in custom material shaders: - `pbr_functions::pbr` no longer calls to `pbr_functions::alpha_discard`. if you were using the `pbr` function in a custom shader with alpha mask mode you now also need to call alpha_discard manually - rename imports of `bevy_pbr::mesh_vertex_output` to `bevy_pbr::forward_io` - rename instances of `MeshVertexOutput` to `VertexOutput` in custom material prepass shaders: - rename instances of `VertexOutput::clip_position` to `VertexOutput::position` | ||
|  Griffin | a15d152635 | Deferred Renderer (#9258) # Objective - Add a [Deferred Renderer](https://en.wikipedia.org/wiki/Deferred_shading) to Bevy. - This allows subsequent passes to access per pixel material information before/during shading. - Accessing this per pixel material information is needed for some features, like GI. It also makes other features (ex. Decals) simpler to implement and/or improves their capability. There are multiple approaches to accomplishing this. The deferred shading approach works well given the limitations of WebGPU and WebGL2. Motivation: [I'm working on a GI solution for Bevy](https://youtu.be/eH1AkL-mwhI) # Solution - The deferred renderer is implemented with a prepass and a deferred lighting pass. - The prepass renders opaque objects into the Gbuffer attachment (`Rgba32Uint`). The PBR shader generates a `PbrInput` in mostly the same way as the forward implementation and then [packs it into the Gbuffer]( |