Commit Graph

217 Commits

Author SHA1 Message Date
Lege19
3978ba9783
Allowed creating uninitialized images (for use as storage textures) (#17760)
# Objective
https://github.com/bevyengine/bevy/issues/17746
## Solution
- Change `Image.data` from being a `Vec<u8>` to a `Option<Vec<u8>>`
- Added functions to help with creating images
## Testing

- Did you test these changes? If so, how?
All current tests pass
Tested a variety of existing examples to make sure they don't crash
(they don't)
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
Linux x86 64-bit NixOS 
---
## Migration Guide
Code that directly access `Image` data will now need to use unwrap or
handle the case where no data is provided.
Behaviour of new_fill slightly changed, but not in a way that is likely
to affect anything. It no longer panics and will fill the whole texture
instead of leaving black pixels if the data provided is not a nice
factor of the size of the image.

---------

Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
2025-02-10 22:22:07 +00:00
JMS55
669d139c13
Upgrade to wgpu v24 (#17542)
Didn't remove WgpuWrapper. Not sure if it's needed or not still.

## Testing

- Did you test these changes? If so, how? Example runner
- Are there any parts that need more testing? Web (portable atomics
thingy?), DXC.

## Migration Guide
- Bevy has upgraded to [wgpu
v24](https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md#v2400-2025-01-15).
- When using the DirectX 12 rendering backend, the new priority system
for choosing a shader compiler is as follows:
- If the `WGPU_DX12_COMPILER` environment variable is set at runtime, it
is used
- Else if the new `statically-linked-dxc` feature is enabled, a custom
version of DXC will be statically linked into your app at compile time.
- Else Bevy will look in the app's working directory for
`dxcompiler.dll` and `dxil.dll` at runtime.
- Else if they are missing, Bevy will fall back to FXC (not recommended)

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: IceSentry <c.giguere42@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
2025-02-09 19:40:53 +00:00
Sludge
989f547080
Weak handle migration (#17695)
# Objective

- Make use of the new `weak_handle!` macro added in
https://github.com/bevyengine/bevy/pull/17384

## Solution

- Migrate bevy from `Handle::weak_from_u128` to the new `weak_handle!`
macro that takes a random UUID
- Deprecate `Handle::weak_from_u128`, since there are no remaining use
cases that can't also be addressed by constructing the type manually

## Testing

- `cargo run -p ci -- test`

---

## Migration Guide

Replace `Handle::weak_from_u128` with `weak_handle!` and a random UUID.
2025-02-05 22:44:20 +00:00
charlotte
2ea5e9b846
Cold Specialization (#17567)
# Cold Specialization

## Objective

An ongoing part of our quest to retain everything in the render world,
cold-specialization aims to cache pipeline specialization so that
pipeline IDs can be recomputed only when necessary, rather than every
frame. This approach reduces redundant work in stable scenes, while
still accommodating scenarios in which materials, views, or visibility
might change, as well as unlocking future optimization work like
retaining render bins.

## Solution

Queue systems are split into a specialization system and queue system,
the former of which only runs when necessary to compute a new pipeline
id. Pipelines are invalidated using a combination of change detection
and ECS ticks.

### The difficulty with change detection

Detecting “what changed” can be tricky because pipeline specialization
depends not only on the entity’s components (e.g., mesh, material, etc.)
but also on which view (camera) it is rendering in. In other words, the
cache key for a given pipeline id is a view entity/render entity pair.
As such, it's not sufficient simply to react to change detection in
order to specialize -- an entity could currently be out of view or could
be rendered in the future in camera that is currently disabled or hasn't
spawned yet.

### Why ticks?

Ticks allow us to ensure correctness by allowing us to compare the last
time a view or entity was updated compared to the cached pipeline id.
This ensures that even if an entity was out of view or has never been
seen in a given camera before we can still correctly determine whether
it needs to be re-specialized or not.

## Testing

TODO: Tested a bunch of different examples, need to test more.

## Migration Guide

TODO

- `AssetEvents` has been moved into the `PostUpdate` schedule.

---------

Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
2025-02-05 18:31:20 +00:00
Patrick Walton
7aeb1c51a6
Disable clustered decals on Metal. (#17554)
Unfortunately, Apple platforms don't have enough texture bindings to
properly support clustered decals. This should be fixed once `wgpu` has
first-class bindless texture support. In the meantime, we disable them.

Closes #17553.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-01-27 05:39:07 +00:00
Patrick Walton
dda97880c4
Implement experimental GPU two-phase occlusion culling for the standard 3D mesh pipeline. (#17413)
*Occlusion culling* allows the GPU to skip the vertex and fragment
shading overhead for objects that can be quickly proved to be invisible
because they're behind other geometry. A depth prepass already
eliminates most fragment shading overhead for occluded objects, but the
vertex shading overhead, as well as the cost of testing and rejecting
fragments against the Z-buffer, is presently unavoidable for standard
meshes. We currently perform occlusion culling only for meshlets. But
other meshes, such as skinned meshes, can benefit from occlusion culling
too in order to avoid the transform and skinning overhead for unseen
meshes.

This commit adapts the same [*two-phase occlusion culling*] technique
that meshlets use to Bevy's standard 3D mesh pipeline when the new
`OcclusionCulling` component, as well as the `DepthPrepass` component,
are present on the camera. It has these steps:

1. *Early depth prepass*: We use the hierarchical Z-buffer from the
previous frame to cull meshes for the initial depth prepass, effectively
rendering only the meshes that were visible in the last frame.

2. *Early depth downsample*: We downsample the depth buffer to create
another hierarchical Z-buffer, this time with the current view
transform.

3. *Late depth prepass*: We use the new hierarchical Z-buffer to test
all meshes that weren't rendered in the early depth prepass. Any meshes
that pass this check are rendered.

4. *Late depth downsample*: Again, we downsample the depth buffer to
create a hierarchical Z-buffer in preparation for the early depth
prepass of the next frame. This step is done after all the rendering, in
order to account for custom phase items that might write to the depth
buffer.

Note that this patch has no effect on the per-mesh CPU overhead for
occluded objects, which remains high for a GPU-driven renderer due to
the lack of `cold-specialization` and retained bins. If
`cold-specialization` and retained bins weren't on the horizon, then a
more traditional approach like potentially visible sets (PVS) or low-res
CPU rendering would probably be more efficient than the GPU-driven
approach that this patch implements for most scenes. However, at this
point the amount of effort required to implement a PVS baking tool or a
low-res CPU renderer would probably be greater than landing
`cold-specialization` and retained bins, and the GPU driven approach is
the more modern one anyway. It does mean that the performance
improvements from occlusion culling as implemented in this patch *today*
are likely to be limited, because of the high CPU overhead for occluded
meshes.

Note also that this patch currently doesn't implement occlusion culling
for 2D objects or shadow maps. Those can be addressed in a follow-up.
Additionally, note that the techniques in this patch require compute
shaders, which excludes support for WebGL 2.

This PR is marked experimental because of known precision issues with
the downsampling approach when applied to non-power-of-two framebuffer
sizes (i.e. most of them). These precision issues can, in rare cases,
cause objects to be judged occluded that in fact are not. (I've never
seen this in practice, but I know it's possible; it tends to be likelier
to happen with small meshes.) As a follow-up to this patch, we desire to
switch to the [SPD-based hi-Z buffer shader from the Granite engine],
which doesn't suffer from these problems, at which point we should be
able to graduate this feature from experimental status. I opted not to
include that rewrite in this patch for two reasons: (1) @JMS55 is
planning on doing the rewrite to coincide with the new availability of
image atomic operations in Naga; (2) to reduce the scope of this patch.

A new example, `occlusion_culling`, has been added. It demonstrates
objects becoming quickly occluded and disoccluded by dynamic geometry
and shows the number of objects that are actually being rendered. Also,
a new `--occlusion-culling` switch has been added to `scene_viewer`, in
order to make it easy to test this patch with large scenes like Bistro.

[*two-phase occlusion culling*]:
https://medium.com/@mil_kru/two-pass-occlusion-culling-4100edcad501

[Aaltonen SIGGRAPH 2015]:

https://www.advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf

[Some literature]:

https://gist.github.com/reduz/c5769d0e705d8ab7ac187d63be0099b5?permalink_comment_id=5040452#gistcomment-5040452

[SPD-based hi-Z buffer shader from the Granite engine]:
https://github.com/Themaister/Granite/blob/master/assets/shaders/post/hiz.comp

## Migration guide

* When enqueuing a custom mesh pipeline, work item buffers are now
created with
`bevy::render::batching::gpu_preprocessing::get_or_create_work_item_buffer`,
not `PreprocessWorkItemBuffers::new`. See the
`specialized_mesh_pipeline` example.

## Showcase

Occlusion culling example:
![Screenshot 2025-01-15
175051](https://github.com/user-attachments/assets/1544f301-68a3-45f8-84a6-7af3ad431258)

Bistro zoomed out, before occlusion culling:
![Screenshot 2025-01-16
185425](https://github.com/user-attachments/assets/5114bbdf-5dec-4de9-b17e-7aa77e7b61ed)

Bistro zoomed out, after occlusion culling:
![Screenshot 2025-01-16
184949](https://github.com/user-attachments/assets/9dd67713-656c-4276-9768-6d261ca94300)

In this scene, occlusion culling reduces the number of meshes Bevy has
to render from 1591 to 585.
2025-01-27 05:02:46 +00:00
Patrick Walton
1c765c9ae7
Add support for specular tints and maps per the KHR_materials_specular glTF extension. (#14069)
This commit allows specular highlights to be tinted with a color and for
the reflectance and color tint values to vary across a model via a pair
of maps. The implementation follows the [`KHR_materials_specular`] glTF
extension. In order to reduce the number of samplers and textures in the
default `StandardMaterial` configuration, the maps are gated behind the
`pbr_specular_textures` Cargo feature.

Specular tinting is currently unsupported in the deferred renderer,
because I didn't want to bloat the deferred G-buffers. A possible fix
for this in the future would be to make the G-buffer layout more
configurable, so that specular tints could be supported on an opt-in
basis. As an alternative, Bevy could force meshes with specular tints to
render in forward mode. Both of these solutions require some more
design, so I consider them out of scope for now.

Note that the map is a *specular* map, not a *reflectance* map. In Bevy
and Filament terms, the reflectance values in the specular map range
from [0.0, 0.5], rather than [0.0, 1.0]. This is an unfortunate
[`KHR_materials_specular`] specification requirement that stems from the
fact that glTF is specified in terms of a specular strength model, not
the reflectance model that Filament and Bevy use. A workaround, which is
noted in the `StandardMaterial` documentation, is to set the
`reflectance` value to 2.0, which spreads the specular map range from
[0.0, 1.0] as normal.

The glTF loader has been updated to parse the [`KHR_materials_specular`]
extension. Note that, unless the non-default `pbr_specular_textures` is
supplied, the maps are ignored. The `specularFactor` value is applied as
usual. Note that, as with the specular map, the glTF `specularFactor` is
twice Bevy's `reflectance` value.

This PR adds a new example, `specular_tint`, which demonstrates the
specular tint and map features. Note that this example requires the
[`KHR_materials_specular`] Cargo feature.

[`KHR_materials_specular`]:
https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_specular

## Changelog

### Added

* Specular highlights can now be tinted with the `specular_tint` field
in `StandardMaterial`.
* Specular maps are now available in `StandardMaterial`, gated behind
the `pbr_specular_textures` Cargo feature.
* The `KHR_materials_specular` glTF extension is now supported, allowing
for customization of specular reflectance and specular maps. Note that
the latter are gated behind the `pbr_specular_textures` Cargo feature.
2025-01-26 20:38:46 +00:00
Patrick Walton
fc831c390d
Implement basic clustered decal projectors. (#17315)
This commit adds support for *decal projectors* to Bevy, allowing for
textures to be projected on top of geometry. Decal projectors are
clusterable objects, just as punctual lights and light probes are. This
means that decals are only evaluated for objects within the conservative
bounds of the projector, and they don't require a second pass.

These clustered decals require support for bindless textures and as such
currently don't work on WebGL 2, WebGPU, macOS, or iOS. For an
alternative that doesn't require bindless, see PR #16600. I believe that
both contact projective decals in #16600 and clustered decals are
desirable to have in Bevy. Contact projective decals offer broader
hardware and driver support, while clustered decals don't require the
creation of bounding geometry.

A new example, `decal_projectors`, has been added, which demonstrates
multiple decals on a rotating object. The decal projectors can be scaled
and rotated with the mouse.

There are several limitations of this initial patch that can be
addressed in follow-ups:

1. There's no way to specify the Z-index of decals. That is, the order
in which multiple decals are blended on top of one another is arbitrary.
A follow-up could introduce some sort of Z-index field so that artists
can specify that some decals should be blended on top of others.

2. Decals don't take the normal of the surface they're projected onto
into account. Most decal implementations in other engines have a feature
whereby the angle between the decal projector and the normal of the
surface must be within some threshold for the decal to appear. Often,
artists can specify a fade-off range for a smooth transition between
oblique surfaces and aligned surfaces.

3. There's no distance-based fadeoff toward the end of the projector
range. Many decal implementations have this.

This addresses #2401.
 
## Showcase

![Screenshot 2025-01-11
052913](https://github.com/user-attachments/assets/8fabbafc-60fb-461d-b715-d7977e10fe1f)
2025-01-26 20:13:39 +00:00
Zachary Harrold
9bc0ae33c3
Move hashbrown and foldhash out of bevy_utils (#17460)
# Objective

- Contributes to #16877

## Solution

- Moved `hashbrown`, `foldhash`, and related types out of `bevy_utils`
and into `bevy_platform_support`
- Refactored the above to match the layout of these types in `std`.
- Updated crates as required.

## Testing

- CI

---

## Migration Guide

- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::hash`:
  - `FixedState`
  - `DefaultHasher`
  - `RandomState`
  - `FixedHasher`
  - `Hashed`
  - `PassHash`
  - `PassHasher`
  - `NoOpHash`
- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::collections`:
  - `HashMap`
  - `HashSet`
- `bevy_utils::hashbrown` has been removed. Instead, import from
`bevy_platform_support::collections` _or_ take a dependency on
`hashbrown` directly.
- `bevy_utils::Entry` has been removed. Instead, import from
`bevy_platform_support::collections::hash_map` or
`bevy_platform_support::collections::hash_set` as appropriate.
- All of the above equally apply to `bevy::utils` and
`bevy::platform_support`.

## Notes

- I left `PreHashMap`, `PreHashMapExt`, and `TypeIdMap` in `bevy_utils`
as they might be candidates for micro-crating. They can always be moved
into `bevy_platform_support` at a later date if desired.
2025-01-23 16:46:08 +00:00
Patrick Walton
56aa90240e
Only include distance fog in the PBR shader if the view uses it. (#17495)
Right now, we always include distance fog in the shader, which is
unfortunate as it's complex code and is rare. This commit changes it to
be a `#define` instead. I haven't confirmed that removing distance fog
meaningfully reduces VGPR usage, but it can't hurt.
2025-01-23 05:24:54 +00:00
Patrick Walton
72ddac140a
Retain RenderMaterialInstances and RenderMeshMaterialIds from frame to frame. (#16985)
This commit makes Bevy use change detection to only update
`RenderMaterialInstances` and `RenderMeshMaterialIds` when meshes have
been added, changed, or removed. `extract_mesh_materials`, the system
that extracts these, now follows the pattern that
`extract_meshes_for_gpu_building` established.

This improves frame time of `many_cubes` from 3.9ms to approximately
3.1ms, which slightly surpasses the performance of Bevy 0.14.

(Resubmitted from #16878 to clean up history.)

![Screenshot 2024-12-17
182109](https://github.com/user-attachments/assets/dfb26e20-b314-4c67-a59a-dc9623fabb62)

---------

Co-authored-by: Charlotte McElwain <charlotte.c.mcelwain@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-01-22 03:35:46 +00:00
Patrick Walton
35101f3ed5
Use multi_draw_indirect_count where available, in preparation for two-phase occlusion culling. (#17211)
This commit allows Bevy to use `multi_draw_indirect_count` for drawing
meshes. The `multi_draw_indirect_count` feature works just like
`multi_draw_indirect`, but it takes the number of indirect parameters
from a GPU buffer rather than specifying it on the CPU.

Currently, the CPU constructs the list of indirect draw parameters with
the instance count for each batch set to zero, uploads the resulting
buffer to the GPU, and dispatches a compute shader that bumps the
instance count for each mesh that survives culling. Unfortunately, this
is inefficient when we support `multi_draw_indirect_count`. Draw
commands corresponding to meshes for which all instances were culled
will remain present in the list when calling
`multi_draw_indirect_count`, causing overhead. Proper use of
`multi_draw_indirect_count` requires eliminating these empty draw
commands.

To address this inefficiency, this PR makes Bevy fully construct the
indirect draw commands on the GPU instead of on the CPU. Instead of
writing instance counts to the draw command buffer, the mesh
preprocessing shader now writes them to a separate *indirect metadata
buffer*. A second compute dispatch known as the *build indirect
parameters* shader runs after mesh preprocessing and converts the
indirect draw metadata into actual indirect draw commands for the GPU.
The build indirect parameters shader operates on a batch at a time,
rather than an instance at a time, and as such each thread writes only 0
or 1 indirect draw parameters, simplifying the current logic in
`mesh_preprocessing`, which currently has to have special cases for the
first mesh in each batch. The build indirect parameters shader emits
draw commands in a tightly packed manner, enabling maximally efficient
use of `multi_draw_indirect_count`.

Along the way, this patch switches mesh preprocessing to dispatch one
compute invocation per render phase per view, instead of dispatching one
compute invocation per view. This is preparation for two-phase occlusion
culling, in which we will have two mesh preprocessing stages. In that
scenario, the first mesh preprocessing stage must only process opaque
and alpha tested objects, so the work items must be separated into those
that are opaque or alpha tested and those that aren't. Thus this PR
splits out the work items into a separate buffer for each phase. As this
patch rewrites so much of the mesh preprocessing infrastructure, it was
simpler to just fold the change into this patch instead of deferring it
to the forthcoming occlusion culling PR.

Finally, this patch changes mesh preprocessing so that it runs
separately for indexed and non-indexed meshes. This is because draw
commands for indexed and non-indexed meshes have different sizes and
layouts. *The existing code is actually broken for non-indexed meshes*,
as it attempts to overlay the indirect parameters for non-indexed meshes
on top of those for indexed meshes. Consequently, right now the
parameters will be read incorrectly when multiple non-indexed meshes are
multi-drawn together. *This is a bug fix* and, as with the change to
dispatch phases separately noted above, was easiest to include in this
patch as opposed to separately.

## Migration Guide

* Systems that add custom phase items now need to populate the indirect
drawing-related buffers. See the `specialized_mesh_pipeline` example for
an example of how this is done.
2025-01-14 21:19:20 +00:00
JMS55
bb0a82b9a7
Higher quality bicubic lightmap sampling (#16740)
# Objective
- Closes https://github.com/bevyengine/bevy/issues/14322.

## Solution
- Implement fast 4-sample bicubic filtering based on this shader toy
https://www.shadertoy.com/view/4df3Dn, with a small speedup from a ghost
of tushima presentation.

## Testing

- Did you test these changes? If so, how?
  - Ran on lightmapped example. Practically no difference in that scene.
- Are there any parts that need more testing?
  - Lightmapping a better scene.

## Changelog
- Lightmaps now have a higher quality bicubic sampling method (off by
default).

---------

Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
2025-01-12 05:40:30 +00:00
MichiRecRoom
3742e621ef
Allow clippy::too_many_arguments to lint without warnings (#17249)
# Objective
Many instances of `clippy::too_many_arguments` linting happen to be on
systems - functions which we don't call manually, and thus there's not
much reason to worry about the argument count.

## Solution
Allow `clippy::too_many_arguments` globally, and remove all lint
attributes related to it.
2025-01-09 07:26:15 +00:00
Tim Overbeek
1162e03cec
Make the get function on InstanceInputUniformBuffer less error prone (#17131)
# Objective

the `get` function on [`InstanceInputUniformBuffer`] seems very
error-prone. This PR hopes to fix this.

## Solution

Do a few checks to ensure the index is in bounds and that the `BDI` is
not removed.
Return `Option<BDI>` instead of `BDI`. 

## Testing

- Did you test these changes? If so, how?
added a test to verify that the instance buffer works correctly

## Future Work
Performance decreases when using .binary_search(). However this is
likely due to the fact that [`InstanceInputUniformBuffer::get`] for now
is never used, and only get_unchecked.

## Migration Guide
`InstanceInputUniformBuffer::get` now returns `Option<BDI>` instead of
`BDI` to reduce panics. If you require the old functionality of
`InstanceInputUniformBuffer::get` consider using
`InstanceInputUniformBuffer::get_unchecked`.

---------

Co-authored-by: Tim Overbeek <oorbeck@gmail.com>
2025-01-06 19:15:19 +00:00
Zachary Harrold
a371ee3019
Remove tracing re-export from bevy_utils (#17161)
# Objective

- Contributes to #11478

## Solution

- Made `bevy_utils::tracing` `doc(hidden)`
- Re-exported `tracing` from `bevy_log` for end-users
- Added `tracing` directly to crates that need it.

## Testing

- CI

---

## Migration Guide

If you were importing `tracing` via `bevy::utils::tracing`, instead use
`bevy::log::tracing`. Note that many items within `tracing` are also
directly re-exported from `bevy::log` as well, so you may only need
`bevy::log` for the most common items (e.g., `warn!`, `trace!`, etc.).
This also applies to the `log_once!` family of macros.

## Notes

- While this doesn't reduce the line-count in `bevy_utils`, it further
decouples the internal crates from `bevy_utils`, making its eventual
removal more feasible in the future.
- I have just imported `tracing` as we do for all dependencies. However,
a workspace dependency may be more appropriate for version management.
2025-01-05 23:06:34 +00:00
Patrick Walton
7767a8d161
Refactor batch_and_prepare_binned_render_phase in preparation for bin retention. (#16922)
This commit makes the following changes:

* `IndirectParametersBuffer` has been changed from a `BufferVec` to a
`RawBufferVec`. This won about 20us or so on Bistro by avoiding `encase`
overhead.

* The methods on the `GetFullBatchData` trait no longer have the
`entity` parameter, as it was unused.

* `PreprocessWorkItem`, which specifies a transform-and-cull operation,
now supplies the mesh instance uniform output index directly instead of
having the shader look it up from the indirect draw parameters.
Accordingly, the responsibility of writing the output index to the
indirect draw parameters has been moved from the CPU to the GPU. This is
in preparation for retained indirect instance draw commands, where the
mesh instance uniform output index may change from frame to frame, while
the indirect instance draw commands will be cached. We won't want the
CPU to have to upload the same indirect draw parameters again and again
if a batch didn't change from frame to frame.

* `batch_and_prepare_binned_render_phase` and
`batch_and_prepare_sorted_render_phase` now allocate indirect draw
commands for an entire batch set at a time when possible, instead of one
batch at a time. This change will allow us to retain the indirect draw
commands for whole batch sets.

* `GetFullBatchData::get_batch_indirect_parameters_index` has been
replaced with `GetFullBatchData::write_batch_indirect_parameters`, which
takes an offset and writes into it instead of allocating. This is
necessary in order to use the optimization mentioned in the previous
point.

* At the WGSL level, `IndirectParameters` has been factored out into
`mesh_preprocess_types.wgsl`. This is because we'll need a new compute
shader that zeroes out the instance counts in preparation for a new
frame. That shader will need to access `IndirectParameters`, so it was
moved to a separate file.

* Bins are no longer raw vectors but are instances of a separate type,
`RenderBin`. This is so that the bin can eventually contain its retained
batches.
2024-12-30 20:11:31 +00:00
Patrick Walton
11c4339f45
Get lightmaps working in deferred rendering. (#16836)
A previous PR, #14599, attempted to enable lightmaps in deferred mode,
but it still used the `OpaqueNoLightmap3dBinKey`, which meant that it
would be broken if multiple lightmaps were used. This commit fixes that
issue, and allows bindless lightmaps to work with deferred rendering as
well.
2024-12-26 22:13:05 +00:00
MiniaczQ
460de77a55
Set panic as default fallible system param behavior (#16638)
# Objective

Fixes: #16578

## Solution

This is a patch fix, proper fix requires a breaking change.

Added `Panic` enum variant and using is as the system meta default.
Warn once behavior can be enabled same way disabling panic (originally
disabling wans) is.

To fix an issue with the current architecture, where **all** combinator
system params get checked together,
combinator systems only check params of the first system.
This will result in old, panicking behavior on subsequent systems and
will be fixed in 0.16.

## Testing

Ran unit tests and `fallible_params` example.

---------

Co-authored-by: François Mockers <mockersf@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-12-24 02:36:03 +00:00
Patrick Walton
6a4e0c801e
Fix several regressions from recent rendering changes. (#16890)
This commit fixes the following regressions:

1. Transmission-specific calls to shader lighting functions didn't pass
the `enable_diffuse` parameter, breaking the `transmission` example.

2. The combination of bindless `StandardMaterial` and bindless lightmaps
caused us to blow past the 128 texture limit on M1/M2 chips in some
cases, in particular the `depth_of_field` example.
https://github.com/gfx-rs/wgpu/issues/3334 should fix this, but in the
meantime this patch reduces the number of bindless lightmaps from 16 to
4 in order to stay under the limit.

3. The renderer was crashing on startup on Adreno 610 chips. This PR
simply disables bindless on Adreno 610 and lower.
2024-12-22 23:03:06 +00:00
noxmore
73d68d60bb
Change GpuImage::size from UVec2 to Extent3d (#16815)
# Objective

When preparing `GpuImage`s, we currently discard the
`depth_or_array_layers` of the `Image`'s size by converting it into a
`UVec2`.

Fixes #16715.

## Solution

Change `GpuImage::size` to `Extent3d`, and just pass that through when
creating `GpuImage`s.
Also copy the `aspect_ratio`, and `size` (now `size_2d` for
disambiguation from the field) functions from `Image` to `GpuImage` for
ease of use with 2D textures.
I originally copied all size-related functions (like `width`, and
`height`), but i think they are unnecessary considering how visible the
`size` field on `GpuImage` is compared to `Image`.

## Testing

Tested via `cargo r -p ci` for everything except docs, when generating
docs it keeps spitting out a ton of
```
error[E0554]: `#![feature]` may not be used on the stable release channel
 --> crates/bevy_dylib/src/lib.rs:1:21
  |
1 | #![cfg_attr(docsrs, feature(doc_auto_cfg))]
  | 
```
Not sure why this is happening, but it also happens without my changes,
so it's almost certainly some strange issue specific to my machine.

## Migration Guide

- `GpuImage::size` is now an `Extent3d`. To easily get 2D size, use
`size_2d()`.
2024-12-17 19:08:09 +00:00
Patrick Walton
7be844be36
Allow extract_meshes_for_gpu_building and extract_mesh_materials to run in parallel. (#16799)
The only thing that was preventing `extract_meshes_for_gpu_building` and
`extract_mesh_materials` from running in parallel was the
`ResMut<RenderMeshMaterialIds>`. This lookup can be safely moved to the
`collect_meshes_for_gpu_building` phase, which runs after the extraction
phase.

This results in a small win on `many_cubes`. `extract_mesh_materials` is
currently nonretained, so it's still slow, but running it in parallel is
an easy win.

Before:
![Screenshot 2024-12-13
015318](https://github.com/user-attachments/assets/e5cfa4d6-3feb-40b7-8405-f727de2c2813)

After:
![Screenshot 2024-12-13
015300](https://github.com/user-attachments/assets/7dc08135-aa1d-4e3a-a863-d2b7492f865f)
2024-12-17 04:45:00 +00:00
Patrick Walton
35826be6f7
Implement bindless lightmaps. (#16653)
This commit allows Bevy to bind 16 lightmaps at a time, if the current
platform supports bindless textures. Naturally, if bindless textures
aren't supported, Bevy falls back to binding only a single lightmap at a
time. As lightmaps are usually heavily atlased, I doubt many scenes will
use more than 16 lightmap textures.

This has little performance impact now, but it's desirable for us to
reap the benefits of multidraw and bindless textures on scenes that use
lightmaps. Otherwise, we might have to break batches in order to switch
those lightmaps.

Additionally, this PR slightly reduces the cost of binning because it
makes the lightmap index in `Opaque3dBinKey` 32 bits instead of an
`AssetId`.

## Migration Guide

* The `Opaque3dBinKey::lightmap_image` field is now
`Opaque3dBinKey::lightmap_slab`, which is a lightweight identifier for
an entire binding array of lightmaps.
2024-12-16 23:37:06 +00:00
Patrick Walton
00722b8d0f
Make indirect drawing opt-out instead of opt-in, enabling multidraw by default. (#16757)
This patch replaces the undocumented `NoGpuCulling` component with a new
component, `NoIndirectDrawing`, effectively turning indirect drawing on
by default. Indirect mode is needed for the recently-landed multidraw
feature (#16427). Since multidraw is such a win for performance, when
that feature is supported the small performance tax that indirect mode
incurs is virtually always worth paying.

To ensure that custom drawing code such as that in the
`custom_shader_instancing` example continues to function, this commit
additionally makes GPU culling take the `NoFrustumCulling` component
into account.

This PR is an alternative to #16670 that doesn't break the
`custom_shader_instancing` example. **PR #16755 should land first in
order to avoid breaking deferred rendering, as multidraw currently
breaks it**.

## Migration Guide

* Indirect drawing (GPU culling) is now enabled by default, so the
`GpuCulling` component is no longer available. To disable indirect mode,
which may be useful with custom render nodes, add the new
`NoIndirectDrawing` component to your camera.
2024-12-13 06:16:57 +00:00
Clar Fon
711246aa34
Update hashbrown to 0.15 (#15801)
Updating dependencies; adopted version of #15696. (Supercedes #15696.)

Long answer: hashbrown is no longer using ahash by default, meaning that
we can't use the default-hasher methods with ahasher. So, we have to use
the longer-winded versions instead. This takes the opportunity to also
switch our default hasher as well, but without actually enabling the
default-hasher feature for hashbrown, meaning that we'll be able to
change our hasher more easily at the cost of all of these method calls
being obnoxious forever.

One large change from 0.15 is that `insert_unique_unchecked` is now
`unsafe`, and for cases where unsafe code was denied at the crate level,
I replaced it with `insert`.

## Migration Guide

`bevy_utils` has updated its version of `hashbrown` to 0.15 and now
defaults to `foldhash` instead of `ahash`. This means that if you've
hard-coded your hasher to `bevy_utils::AHasher` or separately used the
`ahash` crate in your code, you may need to switch to `foldhash` to
ensure that everything works like it does in Bevy.
2024-12-10 19:45:50 +00:00
Patrick Walton
3188e5af61
Batch skinned meshes on platforms where storage buffers are available. (#16599)
This commit makes skinned meshes batchable on platforms other than WebGL
2. On supported platforms, it replaces the two uniform buffers used for
joint matrices with a pair of storage buffers containing all matrices
for all skinned meshes packed together. The indices into the buffer are
stored in the mesh uniform and mesh input uniform. The GPU mesh
preprocessing step copies the indices in if that step is enabled.

On the `many_foxes` demo, I observed a frame time decrease from 15.470ms
to 11.935ms. This is the result of reducing the `submit_graph_commands`
time from an average of 5.45ms to 0.489ms, an 11x speedup in that
portion of rendering.

![Screenshot 2024-12-01
192838](https://github.com/user-attachments/assets/7d2db997-8939-466e-8b9e-050d4a6a78ee)

This is what the profile looks like for `many_foxes` after these
changes.

![Screenshot 2024-12-01
193026](https://github.com/user-attachments/assets/68983fc3-01b8-41fd-835e-3d93cb65d0fa)

---------

Co-authored-by: François Mockers <mockersf@gmail.com>
2024-12-10 17:50:03 +00:00
Patrick Walton
1e7b89cdf5
Allow holes in the MeshInputUniform buffer. (#16695)
This commit removes the logic that attempted to keep the
`MeshInputUniform` buffer contiguous. Not only was it slow and complex,
but it was also incorrect, which caused #16686 and #16690. I changed the
logic to simply maintain a free list of unused slots in the buffer and
preferentially fill them when pushing new mesh input uniforms.

Closes #16686.
Closes #16690.
2024-12-09 02:11:27 +00:00
Patrick Walton
f5de3f08fb
Use multidraw for opaque meshes when GPU culling is in use. (#16427)
This commit adds support for *multidraw*, which is a feature that allows
multiple meshes to be drawn in a single drawcall. `wgpu` currently
implements multidraw on Vulkan, so this feature is only enabled there.
Multiple meshes can be drawn at once if they're in the same vertex and
index buffers and are otherwise placed in the same bin. (Thus, for
example, at present the materials and textures must be identical, but
see #16368.) Multidraw is a significant performance improvement during
the draw phase because it reduces the number of rebindings, as well as
the number of drawcalls.

This feature is currently only enabled when GPU culling is used: i.e.
when `GpuCulling` is present on a camera. Therefore, if you run for
example `scene_viewer`, you will not see any performance improvements,
because `scene_viewer` doesn't add the `GpuCulling` component to its
camera.

Additionally, the multidraw feature is only implemented for opaque 3D
meshes and not for shadows or 2D meshes. I plan to make GPU culling the
default and to extend the feature to shadows in the future. Also, in the
future I suspect that polyfilling multidraw on APIs that don't support
it will be fruitful, as even without driver-level support use of
multidraw allows us to avoid expensive `wgpu` rebindings.
2024-12-06 17:22:03 +00:00
Patrick Walton
d3241c4f8d
Fix the texture_binding_array, specialized_mesh_pipeline, and custom_shader_instancing examples after the bindless change. (#16641)
The bindless PR (#16368) broke some examples:

* `specialized_mesh_pipeline` and `custom_shader_instancing` failed
because they expect to be able to render a mesh with no material, by
overriding enough of the render pipeline to be able to do so. This PR
fixes the issue by restoring the old behavior in which we extract meshes
even if they have no material.

* `texture_binding_array` broke because it doesn't implement
`AsBindGroup::unprepared_bind_group`. This was tricky to fix because
there's a very good reason why `texture_binding_array` doesn't implement
that method: there's no sensible way to do so with `wgpu`'s current
bindless API, due to its multiple levels of borrowed references. To fix
the example, I split `MaterialBindGroup` into
`MaterialBindlessBindGroup` and `MaterialNonBindlessBindGroup`, and
allow direct custom implementations of `AsBindGroup::as_bind_group` for
the latter type of bind groups. To opt in to the new behavior, return
the `AsBindGroupError::CreateBindGroupDirectly` error from your
`AsBindGroup::unprepared_bind_group` implementation, and Bevy will call
your custom `AsBindGroup::as_bind_group` method as before.

## Migration Guide

* Bevy will now unconditionally call
`AsBindGroup::unprepared_bind_group` for your materials, so you must no
longer panic in that function. Instead, return the new
`AsBindGroupError::CreateBindGroupDirectly` error, and Bevy will fall
back to calling `AsBindGroup::as_bind_group` as before.
2024-12-05 21:22:14 +00:00
Patrick Walton
8c2c07b1c8
Retain RenderMeshInstance and MeshInputUniform data from frame to frame. (#16385)
This commit moves the front end of the rendering pipeline to a retained
model when GPU preprocessing is in use (i.e. by default, except in
constrained environments). `RenderMeshInstance` and `MeshUniformData`
are stored from frame to frame and are updated only for the entities
that changed state. This was rather tricky and requires some careful
surgery to keep the data valid in the case of removals.

This patch is built on top of Bevy's change detection. Generally, this
worked, except that `ViewVisibility` isn't currently properly tracked.
Therefore, this commit adds proper change tracking for `ViewVisibility`.
Doing this required adding a new system that runs after all
`check_visibility` invocations, as no single `check_visibility`
invocation has enough global information to detect changes.

On the Bistro exterior scene, with all textures forced to opaque, this
patch improves steady-state `extract_meshes_for_gpu_building` from
93.8us to 34.5us and steady-state `collect_meshes_for_gpu_building` from
195.7us to 4.28us. Altogether this constitutes an improvement from 290us
to 38us, which is a 7.46x speedup.

![Screenshot 2024-11-13
143841](https://github.com/user-attachments/assets/40b1aacc-373d-4016-b7fd-b0284bc33de4)

![Screenshot 2024-11-13
143850](https://github.com/user-attachments/assets/53b401c3-7461-43b3-918b-cff89ea780d6)

This patch is only lightly tested and shouldn't land before 0.15 is
released anyway, so I'm releasing it as a draft.
2024-12-05 21:16:04 +00:00
Patrick Walton
5adf831b42
Add a bindless mode to AsBindGroup. (#16368)
This patch adds the infrastructure necessary for Bevy to support
*bindless resources*, by adding a new `#[bindless]` attribute to
`AsBindGroup`.

Classically, only a single texture (or sampler, or buffer) can be
attached to each shader binding. This means that switching materials
requires breaking a batch and issuing a new drawcall, even if the mesh
is otherwise identical. This adds significant overhead not only in the
driver but also in `wgpu`, as switching bind groups increases the amount
of validation work that `wgpu` must do.

*Bindless resources* are the typical solution to this problem. Instead
of switching bindings between each texture, the renderer instead
supplies a large *array* of all textures in the scene up front, and the
material contains an index into that array. This pattern is repeated for
buffers and samplers as well. The renderer now no longer needs to switch
binding descriptor sets while drawing the scene.

Unfortunately, as things currently stand, this approach won't quite work
for Bevy. Two aspects of `wgpu` conspire to make this ideal approach
unacceptably slow:

1. In the DX12 backend, all binding arrays (bindless resources) must
have a constant size declared in the shader, and all textures in an
array must be bound to actual textures. Changing the size requires a
recompile.

2. Changing even one texture incurs revalidation of all textures, a
process that takes time that's linear in the total size of the binding
array.

This means that declaring a large array of textures big enough to
encompass the entire scene is presently unacceptably slow. For example,
if you declare 4096 textures, then `wgpu` will have to revalidate all
4096 textures if even a single one changes. This process can take
multiple frames.

To work around this problem, this PR groups bindless resources into
small *slabs* and maintains a free list for each. The size of each slab
for the bindless arrays associated with a material is specified via the
`#[bindless(N)]` attribute. For instance, consider the following
declaration:

```rust
#[derive(AsBindGroup)]
#[bindless(16)]
struct MyMaterial {
    #[buffer(0)]
    color: Vec4,
    #[texture(1)]
    #[sampler(2)]
    diffuse: Handle<Image>,
}
```

The `#[bindless(N)]` attribute specifies that, if bindless arrays are
supported on the current platform, each resource becomes a binding array
of N instances of that resource. So, for `MyMaterial` above, the `color`
attribute is exposed to the shader as `binding_array<vec4<f32>, 16>`,
the `diffuse` texture is exposed to the shader as
`binding_array<texture_2d<f32>, 16>`, and the `diffuse` sampler is
exposed to the shader as `binding_array<sampler, 16>`. Inside the
material's vertex and fragment shaders, the applicable index is
available via the `material_bind_group_slot` field of the `Mesh`
structure. So, for instance, you can access the current color like so:

```wgsl
// `uniform` binding arrays are a non-sequitur, so `uniform` is automatically promoted
// to `storage` in bindless mode.
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
    let color = material_color[mesh[in.instance_index].material_bind_group_slot];
    ...
}
```

Note that portable shader code can't guarantee that the current platform
supports bindless textures. Indeed, bindless mode is only available in
Vulkan and DX12. The `BINDLESS` shader definition is available for your
use to determine whether you're on a bindless platform or not. Thus a
portable version of the shader above would look like:

```wgsl
#ifdef BINDLESS
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
#else // BINDLESS
@group(2) @binding(0) var<uniform> material_color: Color;
#endif // BINDLESS
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
#ifdef BINDLESS
    let color = material_color[mesh[in.instance_index].material_bind_group_slot];
#else // BINDLESS
    let color = material_color;
#endif // BINDLESS
    ...
}
```

Importantly, this PR *doesn't* update `StandardMaterial` to be bindless.
So, for example, `scene_viewer` will currently not run any faster. I
intend to update `StandardMaterial` to use bindless mode in a follow-up
patch.

A new example, `shaders/shader_material_bindless`, has been added to
demonstrate how to use this new feature.

Here's a Tracy profile of `submit_graph_commands` of this patch and an
additional patch (not submitted yet) that makes `StandardMaterial` use
bindless. Red is those patches; yellow is `main`. The scene was Bistro
Exterior with a hack that forces all textures to opaque. You can see a
1.47x mean speedup.
![Screenshot 2024-11-12
161713](https://github.com/user-attachments/assets/4334b362-42c8-4d64-9cfb-6835f019b95c)

## Migration Guide

* `RenderAssets::prepare_asset` now takes an `AssetId` parameter.
* Bin keys now have Bevy-specific material bind group indices instead of
`wgpu` material bind group IDs, as part of the bindless change. Use the
new `MaterialBindGroupAllocator` to map from bind group index to bind
group ID.
2024-12-03 18:00:34 +00:00
JMS55
d221665386
Native unclipped depth on supported platforms (#16095)
# Objective
- Fixes #16078

## Solution

- Rename things to clarify that we _want_ unclipped depth for
directional light shadow views, and need some way of disabling the GPU's
builtin depth clipping
- Use DEPTH_CLIP_CONTROL instead of the fragment shader emulation on
supported platforms
- Pass only the clip position depth instead of the whole clip position
between vertex->fragment shader (no idea if this helps performance or
not, compiler might optimize it anyways)
- Meshlets
- HW raster always uses DEPTH_CLIP_CONTROL since it targets a more
limited set of platforms
- SW raster was not handling DEPTH_CLAMP_ORTHO correctly, it ended up
pretty much doing nothing.
- This PR made me realize that SW raster technically should have depth
clipping for all views that are not directional light shadows, but I
decided not to bother writing it. I'm not sure that it ever matters in
practice. If proven otherwise, I can add it.

## Testing

- Did you test these changes? If so, how?
- Lighting example. Both opaque (no fragment shader) and alpha masked
geometry (fragment shader emulation) are working with
depth_clip_control, and both work when it's turned off. Also tested
meshlet example.
- Are there any parts that need more testing?
  - Performance. I can't figure out a good test scene.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Toggle depth_clip_control_supported in prepass/mod.rs line 323 to turn
this PR on or off.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
  - Native

---

## Migration Guide
- `MeshPipelineKey::DEPTH_CLAMP_ORTHO` is now
`MeshPipelineKey::UNCLIPPED_DEPTH_ORTHO`
- The `DEPTH_CLAMP_ORTHO` shaderdef has been renamed to
`UNCLIPPED_DEPTH_ORTHO_EMULATION`
- `clip_position_unclamped: vec4<f32>` is now `unclipped_depth: f32`
2024-12-03 17:30:14 +00:00
Carter Anderson
6beeaa89d3
Make PCSS experimental (#16382)
# Objective

PCSS still has some fundamental issues (#16155). We should resolve them
before "releasing" the feature.

## Solution

1. Rename the already-optional `pbr_pcss` cargo feature to
`experimental_pbr_pcss` to better communicate its state to developers.
2. Adjust the description of the `experimental_pbr_pcss` cargo feature
to better communicate its state to developers.
3. Gate PCSS-related light component fields behind that cargo feature,
to prevent surfacing them to developers by default.
2024-11-14 07:39:26 +00:00
Benjamin Brienen
40640fdf42
Don't reëxport bevy_image from bevy_render (#16163)
# Objective

Fixes #15940

## Solution

Remove the `pub use` and fix the compile errors.
Make `bevy_image` available as `bevy::image`.

## Testing

Feature Frenzy would be good here! Maybe I'll learn how to use it if I
have some time this weekend, or maybe a reviewer can use it.

## Migration Guide

Use `bevy_image` instead of `bevy_render::texture` items.

---------

Co-authored-by: chompaa <antony.m.3012@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-11-10 06:54:38 +00:00
atlv
c29e67153b
Expose Pipeline Compilation Zero Initialize Workgroup Memory Option (#16301)
# Objective

- wgpu 0.20 made workgroup vars stop being zero-init by default. this
broke some applications (cough foresight cough) and now we workaround
it. wgpu exposes a compilation option that zero initializes workgroup
memory by default, but bevy does not expose it.

## Solution

- expose the compilation option wgpu gives us

## Testing

- ran examples: 3d_scene, compute_shader_game_of_life, gpu_readback,
lines, specialized_mesh_pipeline. they all work
- confirmed fix for our own problems

---

</details>

## Migration Guide

- add `zero_initialize_workgroup_memory: false,` to
`ComputePipelineDescriptor` or `RenderPipelineDescriptor` structs to
preserve 0.14 functionality, add `zero_initialize_workgroup_memory:
true,` to restore bevy 0.13 functionality.
2024-11-08 21:42:37 +00:00
Hexroll by Pen, Dice & Paper
d01db9b672
Adding alpha_threshold to OrderIndependentTransparencySettings for user-level optimization (#16090)
# Objective

Order independent transparency can filter fragment writes based on the
alpha value and it is currently hard-coded to anything higher than 0.0.
By making that value configurable, users can optimize fragment writes,
potentially reducing the number of layers needed and improving
performance in favor of some transparency quality.

## Solution

This PR adds `alpha_threshold` to the
OrderIndependentTransparencySettings component and uses the struct to
configure a corresponding shader uniform. This uniform is then used
instead of the hard-coded value.

To configure OIT with a custom alpha threshold, use:

```rust
fn setup(mut commands: Commands) {
    commands.spawn((
        Camera3d::default(),
        OrderIndependentTransparencySettings {
            layer_count: 8,
            alpha_threshold: 0.2,
        },
    ));
}
```

## Testing

I tested this change using the included OIT example, as well as with two
additional projects.

## Migration Guide

If you previously explicitly initialized
OrderIndependentTransparencySettings with your own `layer_count`, you
will now have to add either a `..default()` statement or an explicit
`alpha_threshold` value:

```rust
fn setup(mut commands: Commands) {
    commands.spawn((
        Camera3d::default(),
        OrderIndependentTransparencySettings {
            layer_count: 16,
            ..default()
        },
    ));
}
```

---------

Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
2024-10-27 19:08:34 +00:00
Patrick Walton
c6a66a7e96
Place percentage-closer soft shadows behind a feature gate to save on samplers. (#16068)
The two additional linear texture samplers that PCSS added caused us to
blow past the limit on Apple Silicon macOS and WebGL. To fix the issue,
this commit adds a `--feature pbr_pcss` feature gate that disables PCSS
if not present.

Closes #15345.
Closes #15525.
Closes #15821.

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
2024-10-24 21:16:00 +00:00
charlotte
dd812b3e49
Type safe retained render world (#15756)
# Objective

In the Render World, there are a number of collections that are derived
from Main World entities and are used to drive rendering. The most
notable are:
- `VisibleEntities`, which is generated in the `check_visibility` system
and contains visible entities for a view.
- `ExtractedInstances`, which maps entity ids to asset ids.

In the old model, these collections were trivially kept in sync -- any
extracted phase item could look itself up because the render entity id
was guaranteed to always match the corresponding main world id.

After #15320, this became much more complicated, and was leading to a
number of subtle bugs in the Render World. The main rendering systems,
i.e. `queue_material_meshes` and `queue_material2d_meshes`, follow a
similar pattern:

```rust
for visible_entity in visible_entities.iter::<With<Mesh2d>>() {
    let Some(mesh_instance) = render_mesh_instances.get_mut(visible_entity) else {
        continue;
    };
            
    // Look some more stuff up and specialize the pipeline...
            
    let bin_key = Opaque2dBinKey {
        pipeline: pipeline_id,
        draw_function: draw_opaque_2d,
        asset_id: mesh_instance.mesh_asset_id.into(),
        material_bind_group_id: material_2d.get_bind_group_id().0,
    };
    opaque_phase.add(
        bin_key,
        *visible_entity,
        BinnedRenderPhaseType::mesh(mesh_instance.automatic_batching),
    );
}
```

In this case, `visible_entities` and `render_mesh_instances` are both
collections that are created and keyed by Main World entity ids, and so
this lookup happens to work by coincidence. However, there is a major
unintentional bug here: namely, because `visible_entities` is a
collection of Main World ids, the phase item being queued is created
with a Main World id rather than its correct Render World id.

This happens to not break mesh rendering because the render commands
used for drawing meshes do not access the `ItemQuery` parameter, but
demonstrates the confusion that is now possible: our UI phase items are
correctly being queued with Render World ids while our meshes aren't.

Additionally, this makes it very easy and error prone to use the wrong
entity id to look up things like assets. For example, if instead we
ignored visibility checks and queued our meshes via a query, we'd have
to be extra careful to use `&MainEntity` instead of the natural
`Entity`.

## Solution

Make all collections that are derived from Main World data use
`MainEntity` as their key, to ensure type safety and avoid accidentally
looking up data with the wrong entity id:

```rust
pub type MainEntityHashMap<V> = hashbrown::HashMap<MainEntity, V, EntityHash>;
```

Additionally, we make all `PhaseItem` be able to provide both their Main
and Render World ids, to allow render phase implementors maximum
flexibility as to what id should be used to look up data.

You can think of this like tracking at the type level whether something
in the Render World should use it's "primary key", i.e. entity id, or
needs to use a foreign key, i.e. `MainEntity`.

## Testing

##### TODO:

This will require extensive testing to make sure things didn't break!
Additionally, some extraction logic has become more complicated and
needs to be checked for regressions.

## Migration Guide

With the advent of the retained render world, collections that contain
references to `Entity` that are extracted into the render world have
been changed to contain `MainEntity` in order to prevent errors where a
render world entity id is used to look up an item by accident. Custom
rendering code may need to be changed to query for `&MainEntity` in
order to look up the correct item from such a collection. Additionally,
users who implement their own extraction logic for collections of main
world entity should strongly consider extracting into a different
collection that uses `MainEntity` as a key.

Additionally, render phases now require specifying both the `Entity` and
`MainEntity` for a given `PhaseItem`. Custom render phases should ensure
`MainEntity` is available when queuing a phase item.
2024-10-10 18:47:04 +00:00
Emerson Coskey
f18be66a0c
Fix mesh flags (#15804)
Fixed incorrect mesh flags offsets

## Testing

Ran OIT example since that was the affected flag
2024-10-09 23:50:48 +00:00
IceSentry
4bf647ff3b
Add Order Independent Transparency (#14876)
# Objective

- Alpha blending can easily fail in many situations and requires sorting
on the cpu

## Solution

- Implement order independent transparency (OIT) as an alternative to
alpha blending
- The implementation uses 2 passes
- The first pass records all the fragments colors and position to a
buffer that is the size of N layers * the render target resolution.
- The second pass sorts the fragments, blends them and draws them to the
screen. It also currently does manual depth testing because early-z
fails in too many cases in the first pass.

## Testing

- We've been using this implementation at foresight in production for
many months now and we haven't had any issues related to OIT.

---

## Showcase


![image](https://github.com/user-attachments/assets/157f3e32-adaf-4782-b25b-c10313b9bc43)

![image](https://github.com/user-attachments/assets/bef23258-0c22-4b67-a0b8-48a9f571c44f)

## Future work

- Add an example showing how to use OIT for a custom material
- Next step would be to implement a per-pixel linked list to reduce
memory use
- I'd also like to investigate using a BinnedRenderPhase instead of a
SortedRenderPhase. If it works, it would make the transparent pass
significantly faster.

---------

Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
Co-authored-by: Charlotte McElwain <charlotte.c.mcelwain@gmail.com>
2024-10-07 23:50:28 +00:00
Patrick Walton
0a1d60f3b0
Fix a system ordering issue with motion blur for skinned meshes. (#15693)
Currently, it's possible for the `collect_meshes_for_gpu_building`
system to run after `set_mesh_motion_vector_flags`. This will cause
those motion vector flags to be overwritten, which will cause the shader
to ignore the motion vectors for skinned meshes, which will cause
graphical artifacts.

This patch corrects the issue by forcing `set_mesh_motion_vector_flags`
to run after `collect_meshes_for_gpu_building`.
2024-10-07 16:33:15 +00:00
Kristoffer Søholm
ddd4b4daf8
Fix deferred rendering (#15656)
# Objective

Fixes #15525

The deferred and mesh pipelines tonemapping LUT bindings were
accidentally out of sync, breaking deferred rendering.

As noted in the issue it's still broken on wasm due to hitting a texture
limit.

## Solution

Add constants for these instead of hardcoding them.

## Testing

Test with `cargo run --example deferred_rendering` and see it works, run
the same on main and see it crash.
2024-10-04 22:51:23 +00:00
Joona Aalto
54006b107b
Migrate meshes and materials to required components (#15524)
# Objective

A big step in the migration to required components: meshes and
materials!

## Solution

As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):

- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:

![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)

![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)

Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.

## Testing

I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!

## Implementation Notes

- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.

---

## Migration Guide

Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.

Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.

The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.

---------

Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
Zachary Harrold
d70595b667
Add core and alloc over std Lints (#15281)
# Objective

- Fixes #6370
- Closes #6581

## Solution

- Added the following lints to the workspace:
  - `std_instead_of_core`
  - `std_instead_of_alloc`
  - `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.

## Testing

- Ran CI locally

## Migration Guide

The MSRV is now 1.81. Please update to this version or higher.

## Notes

- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
Clar Fon
efda7f3f9c
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this
comment:
https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300

See #15375 for more reasoning/motivation.

## Rebasing (rerunning)

```rust
git switch simpler-lint-fixes
git reset --hard main
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "rustfmt"
cargo clippy --workspace --all-targets --all-features --fix
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "clippy"
git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887
```
2024-09-24 11:42:59 +00:00
Patrick Walton
2ae5a21009
Implement percentage-closer soft shadows (PCSS). (#13497)
[*Percentage-closer soft shadows*] are a technique from 2004 that allow
shadows to become blurrier farther from the objects that cast them. It
works by introducing a *blocker search* step that runs before the normal
shadow map sampling. The blocker search step detects the difference
between the depth of the fragment being rasterized and the depth of the
nearby samples in the depth buffer. Larger depth differences result in a
larger penumbra and therefore a blurrier shadow.

To enable PCSS, fill in the `soft_shadow_size` value in
`DirectionalLight`, `PointLight`, or `SpotLight`, as appropriate. This
shadow size value represents the size of the light and should be tuned
as appropriate for your scene. Higher values result in a wider penumbra
(i.e. blurrier shadows).

When using PCSS, temporal shadow maps
(`ShadowFilteringMethod::Temporal`) are recommended. If you don't use
`ShadowFilteringMethod::Temporal` and instead use
`ShadowFilteringMethod::Gaussian`, Bevy will use the same technique as
`Temporal`, but the result won't vary over time. This produces a rather
noisy result. Doing better would likely require downsampling the shadow
map, which would be complex and slower (and would require PR #13003 to
land first).

In addition to PCSS, this commit makes the near Z plane for the shadow
map configurable on a per-light basis. Previously, it had been hardcoded
to 0.1 meters. This change was necessary to make the point light shadow
map in the example look reasonable, as otherwise the shadows appeared
far too aliased.

A new example, `pcss`, has been added. It demonstrates the
percentage-closer soft shadow technique with directional lights, point
lights, spot lights, non-temporal operation, and temporal operation. The
assets are my original work.

Both temporal and non-temporal shadows are rather noisy in the example,
and, as mentioned before, this is unavoidable without downsampling the
depth buffer, which we can't do yet. Note also that the shadows don't
look particularly great for point lights; the example simply isn't an
ideal scene for them. Nevertheless, I felt that the benefits of the
ability to do a side-by-side comparison of directional and point lights
outweighed the unsightliness of the point light shadows in that example,
so I kept the point light feature in.

Fixes #3631.

[*Percentage-closer soft shadows*]:
https://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf

## Changelog

### Added

* Percentage-closer soft shadows (PCSS) are now supported, allowing
shadows to become blurrier as they stretch away from objects. To use
them, set the `soft_shadow_size` field in `DirectionalLight`,
`PointLight`, or `SpotLight`, as applicable.

* The near Z value for shadow maps is now customizable via the
`shadow_map_near_z` field in `DirectionalLight`, `PointLight`, and
`SpotLight`.

## Screenshots

PCSS off:
![Screenshot 2024-05-24
120012](https://github.com/bevyengine/bevy/assets/157897/0d35fe98-245b-44fb-8a43-8d0272a73b86)

PCSS on:
![Screenshot 2024-05-24
115959](https://github.com/bevyengine/bevy/assets/157897/83397ef8-1317-49dd-bfb3-f8286d7610cd)

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
2024-09-18 18:07:17 +00:00
EdJoPaTo
938d810766
Apply unused_qualifications lint (#14828)
# Objective

Fixes #14782

## Solution

Enable the lint and fix all upcoming hints (`--fix`). Also tried to
figure out the false-positive (see review comment). Maybe split this PR
up into multiple parts where only the last one enables the lint, so some
can already be merged resulting in less many files touched / less
potential for merge conflicts?

Currently, there are some cases where it might be easier to read the
code with the qualifier, so perhaps remove the import of it and adapt
its cases? In the current stage it's just a plain adoption of the
suggestions in order to have a base to discuss.

## Testing

`cargo clippy` and `cargo run -p ci` are happy.
2024-08-21 12:29:33 +00:00
IceSentry
3faca1e549
Don't ignore draw errors (#13240)
# Objective

- It's possible to have errors in a draw command, but these errors are
ignored

## Solution

- Return a result with the error

## Changelog

Renamed `RenderCommandResult::Failure` to `RenderCommandResult::Skip`
Added a `reason` string parameter to `RenderCommandResult::Failure`

## Migration Guide
If you were using `RenderCommandResult::Failure` to just ignore an error
and retry later, use `RenderCommandResult::Skip` instead.

This wasn't intentional, but this PR should also help with
https://github.com/bevyengine/bevy/issues/12660 since we can turn a few
unwraps into error messages now.

---------

Co-authored-by: Charlotte McElwain <charlotte.c.mcelwain@gmail.com>
2024-07-22 19:22:30 +00:00
Patrick Walton
d235d41af1
Fix the example regressions from packed growable buffers. (#14375)
The "uberbuffers" PR #14257 caused some examples to fail intermittently
for different reasons:

1. `morph_targets` could fail because vertex displacements for morph
targets are keyed off the vertex index. With buffer packing, the vertex
index can vary based on the position in the buffer, which caused the
morph targets to be potentially incorrect. The solution is to include
the first vertex index with the `MeshUniform` (and `MeshInputUniform` if
GPU preprocessing is in use), so that the shader can calculate the true
vertex index before performing the morph operation. This results in
wasted space in `MeshUniform`, which is unfortunate, but we'll soon be
filling in the padding with the ID of the material when bindless
textures land, so this had to happen sooner or later anyhow.

Including the vertex index in the `MeshInputUniform` caused an ordering
problem. The `MeshInputUniform` was created during the extraction phase,
before the allocations occurred, so the extraction logic didn't know
where the mesh vertex data was going to end up. The solution is to move
the `MeshInputUniform` creation (the `collect_meshes_for_gpu_building`
system) to after the allocations phase. This should be better for
parallelism anyhow, because it allows the extraction phase to finish
quicker. It's also something we'll have to do for bindless in any event.

2. The `lines` and `fog_volumes` examples could fail because their
custom drawing nodes weren't updated to supply the vertex and index
offsets in their `draw_indexed` and `draw` calls. This commit fixes this
oversight.

Fixes #14366.
2024-07-22 18:55:51 +00:00
Sou1gh0st
9da18cce2a
Add support for environment map transformation (#14290)
# Objective

- Fixes: https://github.com/bevyengine/bevy/issues/14036

## Solution

- Add a world space transformation for the environment sample direction.

## Testing

- I have tested the newly added `transform` field using the newly added
`rotate_environment_map` example.


https://github.com/user-attachments/assets/2de77c65-14bc-48ee-b76a-fb4e9782dbdb


## Migration Guide

- Since we have added a new filed to the `EnvironmentMapLight` struct,
users will need to include `..default()` or some rotation value in their
initialization code.
2024-07-19 15:00:50 +00:00