Currently, `check_visibility` is parameterized over a query filter that
specifies the type of potentially-visible object. This has the
unfortunate side effect that we need a separate system,
`mark_view_visibility_as_changed_if_necessary`, to trigger view
visibility change detection. That system is quite slow because it must
iterate sequentially over all entities in the scene.
This PR moves the query filter from `check_visibility` to a new
component, `VisibilityClass`. `VisibilityClass` stores a list of type
IDs, each corresponding to one of the query filters we used to use.
Because `check_visibility` is no longer specialized to the query filter
at the type level, Bevy now only needs to invoke it once, leading to
better performance as `check_visibility` can do change detection on the
fly rather than delegating it to a separate system.
This commit also has ergonomic improvements, as there's no need for
applications that want to add their own custom renderable components to
add specializations of the `check_visibility` system to the schedule.
Instead, they only need to ensure that the `ViewVisibility` component is
properly kept up to date. The recommended way to do this, and the way
that's demonstrated in the `custom_phase_item` and
`specialized_mesh_pipeline` examples, is to make `ViewVisibility` a
required component and to add the type ID to it in a component add hook.
This patch does this for `Mesh3d`, `Mesh2d`, `Sprite`, `Light`, and
`Node`, which means that most app code doesn't need to change at all.
Note that, although this patch has a large impact on the performance of
visibility determination, it doesn't actually improve the end-to-end
frame time of `many_cubes`. That's because the render world was already
effectively hiding the latency from
`mark_view_visibility_as_changed_if_necessary`. This patch is, however,
necessary for *further* improvements to `many_cubes` performance.
`many_cubes` trace before:

`many_cubes` trace after:

## Migration Guide
* `check_visibility` no longer takes a `QueryFilter`, and there's no
need to add it manually to your app schedule anymore for custom
rendering items. Instead, entities with custom renderable components
should add the appropriate type IDs to `VisibilityClass`. See
`custom_phase_item` for an example.
This PR adds support for *mixed lighting* to Bevy, whereby some parts of
the scene are lightmapped, while others take part in real-time lighting.
(Here *real-time lighting* means lighting at runtime via the PBR shader,
as opposed to precomputed light using lightmaps.) It does so by adding a
new field, `affects_lightmapped_meshes` to `IrradianceVolume` and
`AmbientLight`, and a corresponding field
`affects_lightmapped_mesh_diffuse` to `DirectionalLight`, `PointLight`,
`SpotLight`, and `EnvironmentMapLight`. By default, this value is set to
true; when set to false, the light contributes nothing to the diffuse
irradiance component to meshes with lightmaps.
Note that specular light is unaffected. This is because the correct way
to bake specular lighting is *directional lightmaps*, which we have no
support for yet.
There are two general ways I expect this field to be used:
1. When diffuse indirect light is baked into lightmaps, irradiance
volumes and reflection probes shouldn't contribute any diffuse light to
the static geometry that has a lightmap. That's because the baking tool
should have already accounted for it, and in a higher-quality fashion,
as lightmaps typically offer a higher effective texture resolution than
the light probe does.
2. When direct diffuse light is baked into a lightmap, punctual lights
shouldn't contribute any diffuse light to static geometry with a
lightmap, to avoid double-counting. It may seem odd to bake *direct*
light into a lightmap, as opposed to indirect light. But there is a use
case: in a scene with many lights, avoiding light leaks requires shadow
mapping, which quickly becomes prohibitive when many lights are
involved. Baking lightmaps allows light leaks to be eliminated on static
geometry.
A new example, `mixed_lighting`, has been added. It demonstrates a sofa
(model from the [glTF Sample Assets]) that has been lightmapped offline
using [Bakery]. It has four modes:
1. In *baked* mode, all objects are locked in place, and all the diffuse
direct and indirect light has been calculated ahead of time. Note that
the bottom of the sphere has a red tint from the sofa, illustrating that
the baking tool captured indirect light for it.
2. In *mixed direct* mode, lightmaps capturing diffuse direct and
indirect light have been pre-calculated for the static objects, but the
dynamic sphere has real-time lighting. Note that, because the diffuse
lighting has been entirely pre-calculated for the scenery, the dynamic
sphere casts no shadow. In a real app, you would typically use real-time
lighting for the most important light so that dynamic objects can shadow
the scenery and relegate baked lighting to the less important lights for
which shadows aren't as important. Also note that there is no red tint
on the sphere, because there is no global illumination applied to it. In
an actual game, you could fix this problem by supplementing the
lightmapped objects with an irradiance volume.
3. In *mixed indirect* mode, all direct light is calculated in
real-time, and the static objects have pre-calculated indirect lighting.
This corresponds to the mode that most applications are expected to use.
Because direct light on the scenery is computed dynamically, shadows are
fully supported. As in mixed direct mode, there is no global
illumination on the sphere; in a real application, irradiance volumes
could be used to supplement the lightmaps.
4. In *real-time* mode, no lightmaps are used at all, and all punctual
lights are rendered in real-time. No global illumination exists.
In the example, you can click around to move the sphere, unless you're
in baked mode, in which case the sphere must be locked in place to be
lit correctly.
## Showcase
Baked mode:

Mixed direct mode:

Mixed indirect mode (default):

Real-time mode:

## Migration guide
* The `AmbientLight` resource, the `IrradianceVolume` component, and the
`EnvironmentMapLight` component now have `affects_lightmapped_meshes`
fields. If you don't need to use that field (for example, if you aren't
using lightmaps), you can safely set the field to true.
* `DirectionalLight`, `PointLight`, and `SpotLight` now have
`affects_lightmapped_mesh_diffuse` fields. If you don't need to use that
field (for example, if you aren't using lightmaps), you can safely set
the field to true.
[glTF Sample Assets]:
https://github.com/KhronosGroup/glTF-Sample-Assets/tree/main
[Bakery]:
https://geom.io/bakery/wiki/index.php?title=Bakery_-_GPU_Lightmapper
# Objective
PCSS still has some fundamental issues (#16155). We should resolve them
before "releasing" the feature.
## Solution
1. Rename the already-optional `pbr_pcss` cargo feature to
`experimental_pbr_pcss` to better communicate its state to developers.
2. Adjust the description of the `experimental_pbr_pcss` cargo feature
to better communicate its state to developers.
3. Gate PCSS-related light component fields behind that cargo feature,
to prevent surfacing them to developers by default.
# Objective
Fixes#15560
Fixes (most of) #15570
Currently a lot of examples (and presumably some user code) depend on
toggling certain render features by adding/removing a single component
to an entity, e.g. `SpotLight` to toggle a light. Because of the
retained render world this no longer works: Extract will add any new
components, but when it is removed the entity persists unchanged in the
render world.
## Solution
Add `SyncComponentPlugin<C: Component>` that registers
`SyncToRenderWorld` as a required component for `C`, and adds a
component hook that will clear all components from the render world
entity when `C` is removed. We add this plugin to
`ExtractComponentPlugin` which fixes most instances of the problem. For
custom extraction logic we can manually add `SyncComponentPlugin` for
that component.
We also rename `WorldSyncPlugin` to `SyncWorldPlugin` so we start a
naming convention like all the `Extract` plugins.
In this PR I also fixed a bunch of breakage related to the retained
render world, stemming from old code that assumed that `Entity` would be
the same in both worlds.
I found that using the `RenderEntity` wrapper instead of `Entity` in
data structures when referring to render world entities makes intent
much clearer, so I propose we make this an official pattern.
## Testing
Run examples like
```
cargo run --features pbr_multi_layer_material_textures --example clearcoat
cargo run --example volumetric_fog
```
and see that they work, and that toggles work correctly. But really we
should test every single example, as we might not even have caught all
the breakage yet.
---
## Migration Guide
The retained render world notes should be updated to explain this edge
case and `SyncComponentPlugin`
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Trashtalk217 <trashtalk217@gmail.com>
# Objective
Another step in the migration to required components: lights!
Note that this does not include `EnvironmentMapLight` or reflection
probes yet, because their API hasn't been fully chosen yet.
## Solution
As per the [selected
proposals](https://hackmd.io/@bevy/required_components/%2FLLnzwz9XTxiD7i2jiUXkJg):
- Deprecate `PointLightBundle` in favor of the `PointLight` component
- Deprecate `SpotLightBundle` in favor of the `PointLight` component
- Deprecate `DirectionalLightBundle` in favor of the `DirectionalLight`
component
## Testing
I ran some examples with lights.
---
## Migration Guide
`PointLightBundle`, `SpotLightBundle`, and `DirectionalLightBundle` have
been deprecated. Use the `PointLight`, `SpotLight`, and
`DirectionalLight` components instead. Adding them will now insert the
other components required by them automatically.
[*Percentage-closer soft shadows*] are a technique from 2004 that allow
shadows to become blurrier farther from the objects that cast them. It
works by introducing a *blocker search* step that runs before the normal
shadow map sampling. The blocker search step detects the difference
between the depth of the fragment being rasterized and the depth of the
nearby samples in the depth buffer. Larger depth differences result in a
larger penumbra and therefore a blurrier shadow.
To enable PCSS, fill in the `soft_shadow_size` value in
`DirectionalLight`, `PointLight`, or `SpotLight`, as appropriate. This
shadow size value represents the size of the light and should be tuned
as appropriate for your scene. Higher values result in a wider penumbra
(i.e. blurrier shadows).
When using PCSS, temporal shadow maps
(`ShadowFilteringMethod::Temporal`) are recommended. If you don't use
`ShadowFilteringMethod::Temporal` and instead use
`ShadowFilteringMethod::Gaussian`, Bevy will use the same technique as
`Temporal`, but the result won't vary over time. This produces a rather
noisy result. Doing better would likely require downsampling the shadow
map, which would be complex and slower (and would require PR #13003 to
land first).
In addition to PCSS, this commit makes the near Z plane for the shadow
map configurable on a per-light basis. Previously, it had been hardcoded
to 0.1 meters. This change was necessary to make the point light shadow
map in the example look reasonable, as otherwise the shadows appeared
far too aliased.
A new example, `pcss`, has been added. It demonstrates the
percentage-closer soft shadow technique with directional lights, point
lights, spot lights, non-temporal operation, and temporal operation. The
assets are my original work.
Both temporal and non-temporal shadows are rather noisy in the example,
and, as mentioned before, this is unavoidable without downsampling the
depth buffer, which we can't do yet. Note also that the shadows don't
look particularly great for point lights; the example simply isn't an
ideal scene for them. Nevertheless, I felt that the benefits of the
ability to do a side-by-side comparison of directional and point lights
outweighed the unsightliness of the point light shadows in that example,
so I kept the point light feature in.
Fixes#3631.
[*Percentage-closer soft shadows*]:
https://developer.download.nvidia.com/shaderlibrary/docs/shadow_PCSS.pdf
## Changelog
### Added
* Percentage-closer soft shadows (PCSS) are now supported, allowing
shadows to become blurrier as they stretch away from objects. To use
them, set the `soft_shadow_size` field in `DirectionalLight`,
`PointLight`, or `SpotLight`, as applicable.
* The near Z value for shadow maps is now customizable via the
`shadow_map_near_z` field in `DirectionalLight`, `PointLight`, and
`SpotLight`.
## Screenshots
PCSS off:

PCSS on:

---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com>
# Objective
Follow up from PR #12369 to extract lighting structs from light/mod.rs
into their own file.
Part of the Purdue Refactoring Team's goals issue #12349
## Solution
- Moved PointLight from light/mod.rs to light/point_light.rs
- Moved SpotLight from light/mod.rs to light/spot_light.rs
- Moved DirectionalLight from light/mod.rs to light/directional_light.rs