Commit Graph

9 Commits

Author SHA1 Message Date
theotherphil
7645ce91ed
Add newlines before impl blocks (#19746)
# Objective

Fix https://github.com/bevyengine/bevy/issues/19617 

# Solution

Add newlines before all impl blocks.

I suspect that at least some of these will be objectionable! If there's
a desired Bevy style for this then I'll update the PR. If not then we
can just close it - it's the work of a single find and replace.
2025-06-22 23:07:02 +00:00
JoshValjosh
ddee5cca85
Improve Bevy's double-precision story for third-party crates (#19194)
# Objective

Certain classes of games, usually those with enormous worlds, require
some amount of support for double-precision. Libraries like `big_space`
exist to allow for large worlds while integrating cleanly with Bevy's
primarily single-precision ecosystem, but even then, games will often
still work directly in double-precision throughout the part of the
pipeline that feeds into the Bevy interface.

Currently, working with double-precision types in Bevy is a pain. `glam`
provides types like `DVec3`, but Bevy doesn't provide double-precision
analogs for `glam` wrappers like `Dir3`. This is mostly because doing so
involves one of:

- code duplication
- generics
- templates (like `glam` uses)
- macros

Each of these has issues that are enough to be deal-breakers as far as
maintainability, usability or readability. To work around this, I'm
putting together `bevy_dmath`, a crate that duplicates `bevy_math` types
and functionality to allow downstream users to enjoy the ergonomics and
power of `bevy_math` in double-precision. For the most part, it's a
smooth process, but in order to fully integrate, there are some
necessary changes that can only be made in `bevy_math`.

## Solution

This PR addresses the first and easiest issue with downstream
double-precision math support: `VectorSpace` currently can only
represent vector spaces over `f32`. This automatically closes the door
to double-precision curves, among other things. This restriction can be
easily lifted by allowing vector spaces to specify the underlying scalar
field. This PR adds a new trait `ScalarField` that satisfies the
properties of a scalar field (the ones that can be upheld statically)
and adds a new associated type `type Scalar: ScalarField` to
`VectorSpace`. It's mostly an unintrusive change. The biggest annoyances
are:

- it touches a lot of curve code
- `bevy_math::ops` doesn't support `f64`, so there are some annoying
workarounds

As far as curves code, I wanted to make this change unintrusive and
bite-sized, so I'm trying to touch as little code as possible. To prove
to myself it can be done, I went ahead and (*not* in this PR) migrated
most of the curves API to support different `ScalarField`s and it went
really smoothly! The ugliest thing was adding `P::Scalar: From<usize>`
in several places. There's an argument to be made here that we should be
using `num-traits`, but that's not immediately relevant. The point is
that for now, the smallest change I could make was to go into every
curve impl and make them generic over `VectorSpace<Scalar = f32>`.
Curves work exactly like before and don't change the user API at all.

# Follow-up

- **Extend `bevy_math::ops` to work with `f64`.** `bevy_math::ops` is
used all over, and if curves are ever going to support different
`ScalarField` types, we'll need to be able to use the correct `std` or
`libm` ops for `f64` types as well. Adding an `ops64` mod turned out to
be really ugly, but I'll point out the maintenance burden is low because
we're not going to be adding new floating-point ops anytime soon.
Another solution is to build a floating-point trait that calls the right
op variant and impl it for `f32` and `f64`. This reduces maintenance
burden because on the off chance we ever *do* want to go modify it, it's
all tied together: you can't change the interface on one without
changing the trait, which forces you to update the other. A third option
is to use `num-traits`, which is basically option 2 but someone else did
the work for us. They already support `no_std` using `libm`, so it would
be more or less a drop-in replacement. They're missing a couple
floating-point ops like `floor` and `ceil`, but we could make our own
floating-point traits for those (there's even the potential for
upstreaming them into `num-traits`).
- **Tweak curves to accept vector spaces over any `ScalarField`.**
Curves are ready to support custom scalar types as soon as the bullet
above is addressed. I will admit that the code is not as fun to look at:
`P::Scalar` instead of `f32` everywhere. We could consider an alternate
design where we use `f32` even to interpolate something like a `DVec3`,
but personally I think that's a worse solution than parameterizing
curves over the vector space's scalar type. At the end of the day, it's
not really bad to deal with in my opinion... `ScalarType` supports
enough operations that working with them is almost like working with raw
float types, and it unlocks a whole ecosystem for games that want to use
double-precision.
2025-06-08 02:02:47 +00:00
SpecificProtagonist
a266e7e642
More uninlined_format_args fixes (#19396)
# Objective

There are several uninlined format args (seems to be in more formatting
macros and in more crates) that are not detected on stable, but are on
nightly.

## Solution

Fix them.
2025-05-28 02:35:18 +00:00
Gino Valente
9b32e09551
bevy_reflect: Add clone registrations project-wide (#18307)
# Objective

Now that #13432 has been merged, it's important we update our reflected
types to properly opt into this feature. If we do not, then this could
cause issues for users downstream who want to make use of
reflection-based cloning.

## Solution

This PR is broken into 4 commits:

1. Add `#[reflect(Clone)]` on all types marked `#[reflect(opaque)]` that
are also `Clone`. This is mandatory as these types would otherwise cause
the cloning operation to fail for any type that contains it at any
depth.
2. Update the reflection example to suggest adding `#[reflect(Clone)]`
on opaque types.
3. Add `#[reflect(clone)]` attributes on all fields marked
`#[reflect(ignore)]` that are also `Clone`. This prevents the ignored
field from causing the cloning operation to fail.
   
Note that some of the types that contain these fields are also `Clone`,
and thus can be marked `#[reflect(Clone)]`. This makes the
`#[reflect(clone)]` attribute redundant. However, I think it's safer to
keep it marked in the case that the `Clone` impl/derive is ever removed.
I'm open to removing them, though, if people disagree.
4. Finally, I added `#[reflect(Clone)]` on all types that are also
`Clone`. While not strictly necessary, it enables us to reduce the
generated output since we can just call `Clone::clone` directly instead
of calling `PartialReflect::reflect_clone` on each variant/field. It
also means we benefit from any optimizations or customizations made in
the `Clone` impl, including directly dereferencing `Copy` values and
increasing reference counters.

Along with that change I also took the liberty of adding any missing
registrations that I saw could be applied to the type as well, such as
`Default`, `PartialEq`, and `Hash`. There were hundreds of these to
edit, though, so it's possible I missed quite a few.

That last commit is **_massive_**. There were nearly 700 types to
update. So it's recommended to review the first three before moving onto
that last one.

Additionally, I can break the last commit off into its own PR or into
smaller PRs, but I figured this would be the easiest way of doing it
(and in a timely manner since I unfortunately don't have as much time as
I used to for code contributions).

## Testing

You can test locally with a `cargo check`:

```
cargo check --workspace --all-features
```
2025-03-17 18:32:35 +00:00
Ruslan Baynazarov
c7531074bc
Improve cubic segment bezier functionality (#17645)
# Objective

- Fixes #17642

## Solution

- Implemented method `new_bezier(points: [P; 4]) -> Self` for
`CubicSegment<P>`
- Old implementation of `new_bezier` is now `new_bezier_easing(p1: impl
Into<Vec2>, p2: impl Into<Vec2>) -> Self` (**breaking change**)
- ~~added method `new_bezier_with_anchor`, which can make a bezier curve
between two points with one control anchor~~
- added methods `iter_positions`, `iter_velocities`,
`iter_accelerations`, the same as in `CubicCurve` (**copied code,
potentially can be reduced)**
- bezier creation logic is moved from `CubicCurve` to `CubicSegment`,
removing the unneeded allocation

## Testing

- Did you test these changes? If so, how?
  - Run tests inside `crates/bevy_math/`
  - Tested the functionality in my project
- Are there any parts that need more testing?
  - Did not run `cargo test` on the whole bevy directory because of OOM
- Performance improvements are expected when creating `CubicCurve` with
`new_bezier` and `new_bezier_easing`, but not tested
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
  - Use in any code that works created `CubicCurve::new_bezier`
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
  - I don't think relevant

---

## Showcase

```rust
// Imagine a car goes towards a local target

// Create a simple `CubicSegment`, without using heap
let planned_path = CubicSegment::new_bezier([
    car_pos,
    car_pos + car_dir * turn_radius,
    target_point - target_dir * turn_radius,
    target_point,
]);

// Check if the planned path itersect other entities
for pos in planned_path.iter_positions(8) {
   // do some collision checks
}
```

## Migration Guide

> This section is optional. If there are no breaking changes, you can
delete this section.

- Replace `CubicCurve::new_bezier` with `CubicCurve::new_bezier_easing`
2025-02-26 20:36:54 +00:00
Zachary Harrold
5241e09671
Upgrade to Rust Edition 2024 (#17967)
# Objective

- Fixes #17960

## Solution

- Followed the [edition upgrade
guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html)

## Testing

- CI

---

## Summary of Changes

### Documentation Indentation

When using lists in documentation, proper indentation is now linted for.
This means subsequent lines within the same list item must start at the
same indentation level as the item.

```rust
/* Valid */
/// - Item 1
///   Run-on sentence.
/// - Item 2
struct Foo;

/* Invalid */
/// - Item 1
///     Run-on sentence.
/// - Item 2
struct Foo;
```

### Implicit `!` to `()` Conversion

`!` (the never return type, returned by `panic!`, etc.) no longer
implicitly converts to `()`. This is particularly painful for systems
with `todo!` or `panic!` statements, as they will no longer be functions
returning `()` (or `Result<()>`), making them invalid systems for
functions like `add_systems`. The ideal fix would be to accept functions
returning `!` (or rather, _not_ returning), but this is blocked on the
[stabilisation of the `!` type
itself](https://doc.rust-lang.org/std/primitive.never.html), which is
not done.

The "simple" fix would be to add an explicit `-> ()` to system
signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`).
However, this is _also_ banned, as there is an existing lint which (IMO,
incorrectly) marks this as an unnecessary annotation.

So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ...
}` closuers into variables and give the variable an explicit type (e.g.,
`fn()`).

```rust
// Valid
let system: fn() = || todo!("Not implemented yet!");
app.add_systems(..., system);

// Invalid
app.add_systems(..., || todo!("Not implemented yet!"));
```

### Temporary Variable Lifetimes

The order in which temporary variables are dropped has changed. The
simple fix here is _usually_ to just assign temporaries to a named
variable before use.

### `gen` is a keyword

We can no longer use the name `gen` as it is reserved for a future
generator syntax. This involved replacing uses of the name `gen` with
`r#gen` (the raw-identifier syntax).

### Formatting has changed

Use statements have had the order of imports changed, causing a
substantial +/-3,000 diff when applied. For now, I have opted-out of
this change by amending `rustfmt.toml`

```toml
style_edition = "2021"
```

This preserves the original formatting for now, reducing the size of
this PR. It would be a simple followup to update this to 2024 and run
`cargo fmt`.

### New `use<>` Opt-Out Syntax

Lifetimes are now implicitly included in RPIT types. There was a handful
of instances where it needed to be added to satisfy the borrow checker,
but there may be more cases where it _should_ be added to avoid
breakages in user code.

### `MyUnitStruct { .. }` is an invalid pattern

Previously, you could match against unit structs (and unit enum
variants) with a `{ .. }` destructuring. This is no longer valid.

### Pretty much every use of `ref` and `mut` are gone

Pattern binding has changed to the point where these terms are largely
unused now. They still serve a purpose, but it is far more niche now.

### `iter::repeat(...).take(...)` is bad

New lint recommends using the more explicit `iter::repeat_n(..., ...)`
instead.

## Migration Guide

The lifetimes of functions using return-position impl-trait (RPIT) are
likely _more_ conservative than they had been previously. If you
encounter lifetime issues with such a function, please create an issue
to investigate the addition of `+ use<...>`.

## Notes

- Check the individual commits for a clearer breakdown for what
_actually_ changed.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2025-02-24 03:54:47 +00:00
Zachary Harrold
0403948aa2
Remove Implicit std Prelude from no_std Crates (#17086)
# Background

In `no_std` compatible crates, there is often an `std` feature which
will allow access to the standard library. Currently, with the `std`
feature _enabled_, the
[`std::prelude`](https://doc.rust-lang.org/std/prelude/index.html) is
implicitly imported in all modules. With the feature _disabled_, instead
the [`core::prelude`](https://doc.rust-lang.org/core/prelude/index.html)
is implicitly imported. This creates a subtle and pervasive issue where
`alloc` items _may_ be implicitly included (if `std` is enabled), or
must be explicitly included (if `std` is not enabled).

# Objective

- Make the implicit imports for `no_std` crates consistent regardless of
what features are/not enabled.

## Solution

- Replace the `cfg_attr` "double negative" `no_std` attribute with
conditional compilation to _include_ `std` as an external crate.
```rust
// Before
#![cfg_attr(not(feature = "std"), no_std)]

// After
#![no_std]

#[cfg(feature = "std")]
extern crate std;
```
- Fix imports that are currently broken but are only now visible with
the above fix.

## Testing

- CI

## Notes

I had previously used the "double negative" version of `no_std` based on
general consensus that it was "cleaner" within the Rust embedded
community. However, this implicit prelude issue likely was considered
when forming this consensus. I believe the reason why is the items most
affected by this issue are provided by the `alloc` crate, which is
rarely used within embedded but extensively used within Bevy.
2025-01-03 01:58:43 +00:00
MichiRecRoom
e2248afb3e
bevy_math: Apply #[deny(clippy::allow_attributes, clippy::allow_attributes_without_reason)] (#17091)
# Objective
We want to deny the following lints:
* `clippy::allow_attributes` - Because there's no reason to
`#[allow(...)]` an attribute if it wouldn't lint against anything; you
should always use `#[expect(...)]`
* `clippy::allow_attributes_without_reason` - Because documenting the
reason for allowing/expecting a lint is always good

## Solution
Set the `clippy::allow_attributes` and
`clippy::allow_attributes_without_reason` lints to `deny`, and bring
`bevy_math` in line with the new restrictions.

No code changes have been made - except if a lint that was previously
`allow(...)`'d could be removed via small code changes. For example,
`unused_variables` can be handled by adding a `_` to the beginning of a
field's name.

## Testing
I ran `cargo clippy`, and received no errors.

---------

Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
2025-01-02 18:47:36 +00:00
Matty Weatherley
c60dcea231
Derivative access patterns for curves (#16503)
# Objective

- For curves that also include derivatives, make accessing derivative
information via the `Curve` API ergonomic: that is, provide access to a
curve that also samples derivative information.
- Implement this functionality for cubic spline curves provided by
`bevy_math`.

Ultimately, this is to serve the purpose of doing more geometric
operations on curves, like reparametrization by arclength and the
construction of moving frames.

## Solution

This has several parts, some of which may seem redundant. However, care
has been put into this to satisfy the following constraints:
- Accessing a `Curve` that samples derivative information should be not
just possible but easy and non-error-prone. For example, given a
differentiable `Curve<Vec2>`, one should be able to access something
like a `Curve<(Vec2, Vec2)>` ergonomically, and not just sample the
derivatives piecemeal from point to point.
- Derivative access should not step on the toes of ordinary curve usage.
In particular, in the above scenario, we want to avoid simply making the
same curve both a `Curve<Vec2>` and a `Curve<(Vec2, Vec2)>` because this
requires manual disambiguation when the API is used.
- Derivative access must work gracefully in both owned and borrowed
contexts.

### `HasTangent`

We introduce a trait `HasTangent` that provides an associated `Tangent`
type for types that have tangent spaces:
```rust
pub trait HasTangent {
    /// The tangent type.
    type Tangent: VectorSpace;
}
```

(Mathematically speaking, it would be more precise to say that these are
types that represent spaces which are canonically
[parallelized](https://en.wikipedia.org/wiki/Parallelizable_manifold). )

The idea here is that a point moving through a `HasTangent` type may
have a derivative valued in the associated `Tangent` type at each time
in its journey. We reify this with a `WithDerivative<T>` type that uses
`HasTangent` to include derivative information:
```rust
pub struct WithDerivative<T>
where
    T: HasTangent,
{
    /// The underlying value.
    pub value: T,

    /// The derivative at `value`.
    pub derivative: T::Tangent,
}
```

And we can play the same game with second derivatives as well, since
every `VectorSpace` type is `HasTangent` where `Tangent` is itself (we
may want to be more restrictive with this in practice, but this holds
mathematically).
```rust
pub struct WithTwoDerivatives<T>
where
    T: HasTangent,
{
    /// The underlying value.
    pub value: T,

    /// The derivative at `value`.
    pub derivative: T::Tangent,

    /// The second derivative at `value`.
    pub second_derivative: <T::Tangent as HasTangent>::Tangent,
}
```

In this PR, `HasTangent` is only implemented for `VectorSpace` types,
but it would be valuable to have this implementation for types like
`Rot2` and `Quat` as well. We could also do it for the isometry types
and, potentially, transforms as well. (This is in decreasing order of
value in my opinion.)

### `CurveWithDerivative`

This is a trait for a `Curve<T>` which allows the construction of a
`Curve<WithDerivative<T>>` when derivative information is known
intrinsically. It looks like this:
```rust
/// Trait for curves that have a well-defined notion of derivative, allowing for
/// derivatives to be extracted along with values.
pub trait CurveWithDerivative<T>
where
    T: HasTangent,
{
    /// This curve, but with its first derivative included in sampling.
    fn with_derivative(self) -> impl Curve<WithDerivative<T>>;
}
```

The idea here is to provide patterns like this:
```rust
let value_and_derivative = my_curve.with_derivative().sample_clamped(t);
```

One of the main points here is that `Curve<WithDerivative<T>>` is useful
as an output because it can be used durably. For example, in a dynamic
context, something that needs curves with derivatives can store
something like a `Box<dyn Curve<WithDerivative<T>>>`. Note that
`CurveWithDerivative` is not dyn-compatible.

### `SampleDerivative`

Many curves "know" how to sample their derivatives instrinsically, but
implementing `CurveWithDerivative` as given would be onerous or require
an annoying amount of boilerplate. There are also hurdles to overcome
that involve references to curves: for the `Curve` API, the expectation
is that curve transformations like `with_derivative` take things by
value, with the contract that they can still be used by reference
through deref-magic by including `by_ref` in a method chain.

These problems are solved simultaneously by a trait `SampleDerivative`
which, when implemented, automatically derives `CurveWithDerivative` for
a type and all types that dereference to it. It just looks like this:
```rust
pub trait SampleDerivative<T>: Curve<T>
where
    T: HasTangent,
{
    fn sample_with_derivative_unchecked(&self, t: f32) -> WithDerivative<T>;
    // ... other sampling variants as default methods
}
```

The point is that the output of `with_derivative` is a
`Curve<WithDerivative<T>>` that uses the `SampleDerivative`
implementation. On a `SampleDerivative` type, you can also just call
`my_curve.sample_with_derivative(t)` instead of something like
`my_curve.by_ref().with_derivative().sample(t)`, which is more verbose
and less accessible.

In practice, `CurveWithDerivative<T>` is actually a "sealed" extension
trait of `SampleDerivative<T>`.

## Adaptors

`SampleDerivative` has automatic implementations on all curve adaptors
except for `FunctionCurve`, `MapCurve`, and `ReparamCurve` (because we
do not have a notion of differentiable Rust functions).

For example, `CurveReparamCurve` (the reparametrization of a curve by
another curve) can compute derivatives using the chain rule in the case
both its constituents have them.

## Testing

Tests for derivatives on the curve adaptors are included.

---

## Showcase

This development allows derivative information to be included with and
extracted from curves using the `Curve` API.
```rust
let points = [
    vec2(-1.0, -20.0),
    vec2(3.0, 2.0),
    vec2(5.0, 3.0),
    vec2(9.0, 8.0),
];

// A cubic spline curve that goes through `points`.
let curve = CubicCardinalSpline::new(0.3, points).to_curve().unwrap();

// Calling `with_derivative` causes derivative output to be included in the output of the curve API.
let curve_with_derivative = curve.with_derivative();

// A `Curve<f32>` that outputs the speed of the original.
let speed_curve = curve_with_derivative.map(|x| x.derivative.norm());
```

---

## Questions

- ~~Maybe we should seal `WithDerivative` or make it require
`SampleDerivative` (i.e. make it unimplementable except through
`SampleDerivative`).~~ I decided this is a good idea.
- ~~Unclear whether `VectorSpace: HasTangent` blanket implementation is
really appropriate. For colors, for example, I'm not sure that the
derivative values can really be interpreted as a color. In any case, it
should still remain the case that `VectorSpace` types are `HasTangent`
and that `HasTangent::Tangent: HasTangent`.~~ I think this is fine.
- Infinity bikeshed on names of traits and things.

## Future

- Faster implementations of `SampleDerivative` for cubic spline curves.
- Improve ergonomics for accessing only derivatives (and other kinds of
transformations on derivative curves).
- Implement `HasTangent` for:
  - `Rot2`/`Quat`
  - `Isometry` types
  - `Transform`, maybe
- Implement derivatives for easing curves.
- Marker traits for continuous/differentiable curves. (It's actually
unclear to me how much value this has in practice, but we have discussed
it in the past.)

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-12-10 20:27:37 +00:00