Commit Graph

14 Commits

Author SHA1 Message Date
Vic
f57c7a43c4
reexport entity set collections in entity module (#18413)
# Objective

Unlike for their helper typers, the import paths for
`unique_array::UniqueEntityArray`, `unique_slice::UniqueEntitySlice`,
`unique_vec::UniqueEntityVec`, `hash_set::EntityHashSet`,
`hash_map::EntityHashMap`, `index_set::EntityIndexSet`,
`index_map::EntityIndexMap` are quite redundant.

When looking at the structure of `hashbrown`, we can also see that while
both `HashSet` and `HashMap` have their own modules, the main types
themselves are re-exported to the crate level.

## Solution

Re-export the types in their shared `entity` parent module, and simplify
the imports where they're used.
2025-03-30 03:51:14 +00:00
Zachary Harrold
5241e09671
Upgrade to Rust Edition 2024 (#17967)
# Objective

- Fixes #17960

## Solution

- Followed the [edition upgrade
guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html)

## Testing

- CI

---

## Summary of Changes

### Documentation Indentation

When using lists in documentation, proper indentation is now linted for.
This means subsequent lines within the same list item must start at the
same indentation level as the item.

```rust
/* Valid */
/// - Item 1
///   Run-on sentence.
/// - Item 2
struct Foo;

/* Invalid */
/// - Item 1
///     Run-on sentence.
/// - Item 2
struct Foo;
```

### Implicit `!` to `()` Conversion

`!` (the never return type, returned by `panic!`, etc.) no longer
implicitly converts to `()`. This is particularly painful for systems
with `todo!` or `panic!` statements, as they will no longer be functions
returning `()` (or `Result<()>`), making them invalid systems for
functions like `add_systems`. The ideal fix would be to accept functions
returning `!` (or rather, _not_ returning), but this is blocked on the
[stabilisation of the `!` type
itself](https://doc.rust-lang.org/std/primitive.never.html), which is
not done.

The "simple" fix would be to add an explicit `-> ()` to system
signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`).
However, this is _also_ banned, as there is an existing lint which (IMO,
incorrectly) marks this as an unnecessary annotation.

So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ...
}` closuers into variables and give the variable an explicit type (e.g.,
`fn()`).

```rust
// Valid
let system: fn() = || todo!("Not implemented yet!");
app.add_systems(..., system);

// Invalid
app.add_systems(..., || todo!("Not implemented yet!"));
```

### Temporary Variable Lifetimes

The order in which temporary variables are dropped has changed. The
simple fix here is _usually_ to just assign temporaries to a named
variable before use.

### `gen` is a keyword

We can no longer use the name `gen` as it is reserved for a future
generator syntax. This involved replacing uses of the name `gen` with
`r#gen` (the raw-identifier syntax).

### Formatting has changed

Use statements have had the order of imports changed, causing a
substantial +/-3,000 diff when applied. For now, I have opted-out of
this change by amending `rustfmt.toml`

```toml
style_edition = "2021"
```

This preserves the original formatting for now, reducing the size of
this PR. It would be a simple followup to update this to 2024 and run
`cargo fmt`.

### New `use<>` Opt-Out Syntax

Lifetimes are now implicitly included in RPIT types. There was a handful
of instances where it needed to be added to satisfy the borrow checker,
but there may be more cases where it _should_ be added to avoid
breakages in user code.

### `MyUnitStruct { .. }` is an invalid pattern

Previously, you could match against unit structs (and unit enum
variants) with a `{ .. }` destructuring. This is no longer valid.

### Pretty much every use of `ref` and `mut` are gone

Pattern binding has changed to the point where these terms are largely
unused now. They still serve a purpose, but it is far more niche now.

### `iter::repeat(...).take(...)` is bad

New lint recommends using the more explicit `iter::repeat_n(..., ...)`
instead.

## Migration Guide

The lifetimes of functions using return-position impl-trait (RPIT) are
likely _more_ conservative than they had been previously. If you
encounter lifetime issues with such a function, please create an issue
to investigate the addition of `+ use<...>`.

## Notes

- Check the individual commits for a clearer breakdown for what
_actually_ changed.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2025-02-24 03:54:47 +00:00
JMS55
2fd4cc4937
Meshlet texture atomics (#17765)
* Use texture atomics rather than buffer atomics for the visbuffer
(haven't tested perf on a raster-heavy scene yet)
* Unfortunately to clear the visbuffer we now need a compute pass to
clear it. Using wgpu's clear_texture function internally uses a buffer
-> image copy that's insanely expensive. Ideally it should be using
vkCmdClearColorImage, which I've opened an issue for
https://github.com/gfx-rs/wgpu/issues/7090. For now we'll have to stick
with a custom compute pass and all the extra code that brings.
* Faster resolve depth pass by discarding 0 depth pixels instead of
redundantly writing zero (2x faster for big depth textures like shadow
views)
2025-02-12 18:15:43 +00:00
Patrick Walton
dda97880c4
Implement experimental GPU two-phase occlusion culling for the standard 3D mesh pipeline. (#17413)
*Occlusion culling* allows the GPU to skip the vertex and fragment
shading overhead for objects that can be quickly proved to be invisible
because they're behind other geometry. A depth prepass already
eliminates most fragment shading overhead for occluded objects, but the
vertex shading overhead, as well as the cost of testing and rejecting
fragments against the Z-buffer, is presently unavoidable for standard
meshes. We currently perform occlusion culling only for meshlets. But
other meshes, such as skinned meshes, can benefit from occlusion culling
too in order to avoid the transform and skinning overhead for unseen
meshes.

This commit adapts the same [*two-phase occlusion culling*] technique
that meshlets use to Bevy's standard 3D mesh pipeline when the new
`OcclusionCulling` component, as well as the `DepthPrepass` component,
are present on the camera. It has these steps:

1. *Early depth prepass*: We use the hierarchical Z-buffer from the
previous frame to cull meshes for the initial depth prepass, effectively
rendering only the meshes that were visible in the last frame.

2. *Early depth downsample*: We downsample the depth buffer to create
another hierarchical Z-buffer, this time with the current view
transform.

3. *Late depth prepass*: We use the new hierarchical Z-buffer to test
all meshes that weren't rendered in the early depth prepass. Any meshes
that pass this check are rendered.

4. *Late depth downsample*: Again, we downsample the depth buffer to
create a hierarchical Z-buffer in preparation for the early depth
prepass of the next frame. This step is done after all the rendering, in
order to account for custom phase items that might write to the depth
buffer.

Note that this patch has no effect on the per-mesh CPU overhead for
occluded objects, which remains high for a GPU-driven renderer due to
the lack of `cold-specialization` and retained bins. If
`cold-specialization` and retained bins weren't on the horizon, then a
more traditional approach like potentially visible sets (PVS) or low-res
CPU rendering would probably be more efficient than the GPU-driven
approach that this patch implements for most scenes. However, at this
point the amount of effort required to implement a PVS baking tool or a
low-res CPU renderer would probably be greater than landing
`cold-specialization` and retained bins, and the GPU driven approach is
the more modern one anyway. It does mean that the performance
improvements from occlusion culling as implemented in this patch *today*
are likely to be limited, because of the high CPU overhead for occluded
meshes.

Note also that this patch currently doesn't implement occlusion culling
for 2D objects or shadow maps. Those can be addressed in a follow-up.
Additionally, note that the techniques in this patch require compute
shaders, which excludes support for WebGL 2.

This PR is marked experimental because of known precision issues with
the downsampling approach when applied to non-power-of-two framebuffer
sizes (i.e. most of them). These precision issues can, in rare cases,
cause objects to be judged occluded that in fact are not. (I've never
seen this in practice, but I know it's possible; it tends to be likelier
to happen with small meshes.) As a follow-up to this patch, we desire to
switch to the [SPD-based hi-Z buffer shader from the Granite engine],
which doesn't suffer from these problems, at which point we should be
able to graduate this feature from experimental status. I opted not to
include that rewrite in this patch for two reasons: (1) @JMS55 is
planning on doing the rewrite to coincide with the new availability of
image atomic operations in Naga; (2) to reduce the scope of this patch.

A new example, `occlusion_culling`, has been added. It demonstrates
objects becoming quickly occluded and disoccluded by dynamic geometry
and shows the number of objects that are actually being rendered. Also,
a new `--occlusion-culling` switch has been added to `scene_viewer`, in
order to make it easy to test this patch with large scenes like Bistro.

[*two-phase occlusion culling*]:
https://medium.com/@mil_kru/two-pass-occlusion-culling-4100edcad501

[Aaltonen SIGGRAPH 2015]:

https://www.advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf

[Some literature]:

https://gist.github.com/reduz/c5769d0e705d8ab7ac187d63be0099b5?permalink_comment_id=5040452#gistcomment-5040452

[SPD-based hi-Z buffer shader from the Granite engine]:
https://github.com/Themaister/Granite/blob/master/assets/shaders/post/hiz.comp

## Migration guide

* When enqueuing a custom mesh pipeline, work item buffers are now
created with
`bevy::render::batching::gpu_preprocessing::get_or_create_work_item_buffer`,
not `PreprocessWorkItemBuffers::new`. See the
`specialized_mesh_pipeline` example.

## Showcase

Occlusion culling example:
![Screenshot 2025-01-15
175051](https://github.com/user-attachments/assets/1544f301-68a3-45f8-84a6-7af3ad431258)

Bistro zoomed out, before occlusion culling:
![Screenshot 2025-01-16
185425](https://github.com/user-attachments/assets/5114bbdf-5dec-4de9-b17e-7aa77e7b61ed)

Bistro zoomed out, after occlusion culling:
![Screenshot 2025-01-16
184949](https://github.com/user-attachments/assets/9dd67713-656c-4276-9768-6d261ca94300)

In this scene, occlusion culling reduces the number of meshes Bevy has
to render from 1591 to 585.
2025-01-27 05:02:46 +00:00
Alice Cecile
44ad3bf62b
Move Resource trait to its own file (#17469)
# Objective

`bevy_ecs`'s `system` module is something of a grab bag, and *very*
large. This is particularly true for the `system_param` module, which is
more than 2k lines long!

While it could be defensible to put `Res` and `ResMut` there (lol no
they're in change_detection.rs, obviously), it doesn't make any sense to
put the `Resource` trait there. This is confusing to navigate (and
painful to work on and review).

## Solution

- Create a root level `bevy_ecs/resource.rs` module to mirror
`bevy_ecs/component.rs`
- move the `Resource` trait to that module
- move the `Resource` derive macro to that module as well (Rust really
likes when you pun on the names of the derive macro and trait and put
them in the same path)
- fix all of the imports

## Notes to reviewers

- We could probably move more stuff into here, but I wanted to keep this
PR as small as possible given the absurd level of import changes.
- This PR is ground work for my upcoming attempts to store resource data
on components (resources-as-entities). Splitting this code out will make
the work and review a bit easier, and is the sort of overdue refactor
that's good to do as part of more meaningful work.

## Testing

cargo build works!

## Migration Guide

`bevy_ecs::system::Resource` has been moved to
`bevy_ecs::resource::Resource`.
2025-01-21 19:47:08 +00:00
Alice Cecile
5a9bc28502
Support non-Vec data structures in relations (#17447)
# Objective

The existing `RelationshipSourceCollection` uses `Vec` as the only
possible backing for our relationships. While a reasonable choice,
benchmarking use cases might reveal that a different data type is better
or faster.

For example:

- Not all relationships require a stable ordering between the
relationship sources (i.e. children). In cases where we a) have many
such relations and b) don't care about the ordering between them, a hash
set is likely a better datastructure than a `Vec`.
- The number of children-like entities may be small on average, and a
`smallvec` may be faster

## Solution

- Implement `RelationshipSourceCollection` for `EntityHashSet`, our
custom entity-optimized `HashSet`.
-~~Implement `DoubleEndedIterator` for `EntityHashSet` to make things
compile.~~
   -  This implementation was cursed and very surprising.
- Instead, by moving the iterator type on `RelationshipSourceCollection`
from an erased RPTIT to an explicit associated type we can add a trait
bound on the offending methods!
- Implement `RelationshipSourceCollection` for `SmallVec`

## Testing

I've added a pair of new tests to make sure this pattern compiles
successfully in practice!

## Migration Guide

`EntityHashSet` and `EntityHashMap` are no longer re-exported in
`bevy_ecs::entity` directly. If you were not using `bevy_ecs` / `bevy`'s
`prelude`, you can access them through their now-public modules,
`hash_set` and `hash_map` instead.

## Notes to reviewers

The `EntityHashSet::Iter` type needs to be public for this impl to be
allowed. I initially renamed it to something that wasn't ambiguous and
re-exported it, but as @Victoronz pointed out, that was somewhat
unidiomatic.

In
1a8564898f,
I instead made the `entity_hash_set` public (and its `entity_hash_set`)
sister public, and removed the re-export. I prefer this design (give me
module docs please), but it leads to a lot of churn in this PR.

Let me know which you'd prefer, and if you'd like me to split that
change out into its own micro PR.
2025-01-20 21:26:08 +00:00
MichiRecRoom
3742e621ef
Allow clippy::too_many_arguments to lint without warnings (#17249)
# Objective
Many instances of `clippy::too_many_arguments` linting happen to be on
systems - functions which we don't call manually, and thus there's not
much reason to worry about the argument count.

## Solution
Allow `clippy::too_many_arguments` globally, and remove all lint
attributes related to it.
2025-01-09 07:26:15 +00:00
JMS55
3fb6cefb2f
Meshlet fill cluster buffers rewritten (#15955)
# Objective
- Make the meshlet fill cluster buffers pass slightly faster
- Address https://github.com/bevyengine/bevy/issues/15920 for meshlets
- Added PreviousGlobalTransform as a required meshlet component to avoid
extra archetype moves, slightly alleviating
https://github.com/bevyengine/bevy/issues/14681 for meshlets
- Enforce that MeshletPlugin::cluster_buffer_slots is not greater than
2^25 (glitches will occur otherwise). Technically this field controls
post-lod/culling cluster count, and the issue is on pre-lod/culling
cluster count, but it's still valid now, and in the future this will be
more true.

Needs to be merged after https://github.com/bevyengine/bevy/pull/15846
and https://github.com/bevyengine/bevy/pull/15886

## Solution

- Old pass dispatched a thread per cluster, and did a binary search over
the instances to find which instance the cluster belongs to, and what
meshlet index within the instance it is.
- New pass dispatches a workgroup per instance, and has the workgroup
loop over all meshlets in the instance in order to write out the cluster
data.
- Use a push constant instead of arrayLength to fix the linked bug
- Remap 1d->2d dispatch for software raster only if actually needed to
save on spawning excess workgroups

## Testing

- Did you test these changes? If so, how?
- Ran the meshlet example, and an example with 1041 instances of 32217
meshlets per instance. Profiled the second scene with nsight, went from
0.55ms -> 0.40ms. Small savings. We're pretty much VRAM bandwidth bound
at this point.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
  - Run the meshlet example

## Changelog (non-meshlets)
- PreviousGlobalTransform now implements the Default trait
2024-10-23 19:18:49 +00:00
JMS55
9d54fe0370
Meshlet new error projection (#15846)
* New error projection code taken from @zeux's meshoptimizer nanite.cpp
demo for determining LOD (thanks zeux!)
* Builder: `compute_lod_group_data()`
* Runtime: `lod_error_is_imperceptible()`
2024-10-22 20:14:30 +00:00
JMS55
aa626e4f0b
Per-meshlet compressed vertex data (#15643)
# Objective
- Prepare for streaming by storing vertex data per-meshlet, rather than
per-mesh (this means duplicating vertices per-meshlet)
- Compress vertex data to reduce the cost of this

## Solution
The important parts are in from_mesh.rs, the changes to the Meshlet type
in asset.rs, and the changes in meshlet_bindings.wgsl. Everything else
is pretty secondary/boilerplate/straightforward changes.

- Positions are quantized in centimeters with a user-provided power of 2
factor (ideally auto-determined, but that's a TODO for the future),
encoded as an offset relative to the minimum value within the meshlet,
and then stored as a packed list of bits using the minimum number of
bits needed for each vertex position channel for that meshlet
- E.g. quantize positions (lossly, throws away precision that's not
needed leading to using less bits in the bitstream encoding)
- Get the min/max quantized value of each X/Y/Z channel of the quantized
positions within a meshlet
- Encode values relative to the min value of the meshlet. E.g. convert
from [min, max] to [0, max - min]
- The new max value in the meshlet is (max - min), which only takes N
bits, so we only need N bits to store each channel within the meshlet
(lossless)
- We can store the min value and that it takes N bits per channel in the
meshlet metadata, and reconstruct the position from the bitstream
- Normals are octahedral encoded and than snorm2x16 packed and stored as
a single u32.
- Would be better to implement the precise variant of octhedral encoding
for extra precision (no extra decode cost), but decided to keep it
simple for now and leave that as a followup
- Tried doing a quantizing and bitstream encoding scheme like I did for
positions, but struggled to get it smaller. Decided to go with this for
simplicity for now
- UVs are uncompressed and take a full 64bits per vertex which is
expensive
  - In the future this should be improved
- Tangents, as of the previous PR, are not explicitly stored and are
instead derived from screen space gradients
- While I'm here, split up MeshletMeshSaverLoader into two separate
types

Other future changes include implementing a smaller encoding of triangle
data (3 u8 indices = 24 bits per triangle currently), and more
disk-oriented compression schemes.

References:
* "A Deep Dive into UE5's Nanite Virtualized Geometry"
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf#page=128
(also available on youtube)
* "Towards Practical Meshlet Compression"
https://arxiv.org/pdf/2404.06359
* "Vertex quantization in Omniforce Game Engine"
https://daniilvinn.github.io/2024/05/04/omniforce-vertex-quantization.html

## Testing

- Did you test these changes? If so, how?
- Converted the stanford bunny, and rendered it with a debug material
showing normals, and confirmed that it's identical to what's on main.
EDIT: See additional testing in the comments below.
- Are there any parts that need more testing?
- Could use some more size comparisons on various meshes, and testing
different quantization factors. Not sure if 4 is a good default. EDIT:
See additional testing in the comments below.
- Also did not test runtime performance of the shaders. EDIT: See
additional testing in the comments below.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- Use my unholy script, replacing the meshlet example
https://paste.rs/7xQHk.rs (must make MeshletMesh fields pub instead of
pub crate, must add lz4_flex as a dev-dependency) (must compile with
meshlet and meshlet_processor features, mesh must have only positions,
normals, and UVs, no vertex colors or tangents)

---

## Migration Guide
- TBD by JMS55 at the end of the release
2024-10-08 18:42:55 +00:00
Zachary Harrold
d70595b667
Add core and alloc over std Lints (#15281)
# Objective

- Fixes #6370
- Closes #6581

## Solution

- Added the following lints to the workspace:
  - `std_instead_of_core`
  - `std_instead_of_alloc`
  - `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.

## Testing

- Ran CI locally

## Migration Guide

The MSRV is now 1.81. Please update to this version or higher.

## Notes

- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
Benjamin Brienen
1b8c1c1242
simplify std::mem references (#15315)
# Objective
- Fixes #15314

## Solution

- Remove unnecessary usings and simplify references to those functions.

## Testing

CI
2024-09-19 21:28:16 +00:00
JMS55
a0faf9cd01
More triangles/vertices per meshlet (#15023)
### Builder changes
- Increased meshlet max vertices/triangles from 64v/64t to 255v/128t
(meshoptimizer won't allow 256v sadly). This gives us a much greater
percentage of meshlets with max triangle count (128). Still not perfect,
we still end up with some tiny <=10 triangle meshlets that never really
get simplified, but it's progress.
- Removed the error target limit. Now we allow meshoptimizer to simplify
as much as possible. No reason to cap this out, as the cluster culling
code will choose a good LOD level anyways. Again leads to higher quality
LOD trees.
- After some discussion and consulting the Nanite slides again, changed
meshlet group error from _adding_ the max child's error to the group
error, to doing `group_error = max(group_error, max_child_error)`. Error
is already cumulative between LODs as the edges we're collapsing during
simplification get longer each time.
- Bumped the 65% simplification threshold to allow up to 95% of the
original geometry (e.g. accept simplification as valid even if we only
simplified 5% of the triangles). This gives us closer to
log2(initial_meshlet_count) LOD levels, and fewer meshlet roots in the
DAG.

Still more work to be done in the future here. Maybe trying METIS for
meshlet building instead of meshoptimizer.

Using ~8 clusters per group instead of ~4 might also make a big
difference. The Nanite slides say that they have 8-32 meshlets per
group, suggesting some kind of heuristic. Unfortunately meshopt's
compute_cluster_bounds won't work with large groups atm
(https://github.com/zeux/meshoptimizer/discussions/750#discussioncomment-10562641)
so hard to test.

Based on discussion from
https://github.com/bevyengine/bevy/discussions/14998,
https://github.com/zeux/meshoptimizer/discussions/750, and discord.

### Runtime changes
- cluster:triangle packed IDs are now stored 25:7 instead of 26:6 bits,
as max triangles per cluster are now 128 instead of 64
- Hardware raster now spawns 128 * 3 vertices instead of 64 * 3 vertices
to account for the new max triangles limit
- Hardware raster now outputs NaN triangles (0 / 0) instead of
zero-positioned triangles for extra vertex invocations over the cluster
triangle count. Shouldn't really be a difference idt, but I did it
anyways.
- Software raster now does 128 threads per workgroup instead of 64
threads. Each thread now loads, projects, and caches a vertex (vertices
0-127), and then if needed does so again (vertices 128-254). Each thread
then rasterizes one of 128 triangles.
- Fixed a bug with `needs_dispatch_remap`. I had the condition backwards
in my last PR, I probably committed it by accident after testing the
non-default code path on my GPU.
2024-09-08 17:55:57 +00:00
JMS55
6cc96f4c1f
Meshlet software raster + start of cleanup (#14623)
# Objective
- Faster meshlet rasterization path for small triangles
- Avoid having to allocate and write out a triangle buffer
- Refactor gpu_scene.rs

## Solution
- Replace the 32bit visbuffer texture with a 64bit visbuffer buffer,
where the left 32 bits encode depth, and the right 32 bits encode the
existing cluster + triangle IDs. Can't use 64bit textures, wgpu/naga
doesn't support atomic ops on textures yet.
- Instead of writing out a buffer of packed cluster + triangle IDs (per
triangle) to raster, the culling pass now writes out a buffer of just
cluster IDs (per cluster, so less memory allocated, cheaper to write
out).
  - Clusters for software raster are allocated from the left side
- Clusters for hardware raster are allocated in the same buffer, from
the right side
- The buffer size is fixed at MeshletPlugin build time, and should be
set to a reasonable value for your scene (no warning on overflow, and no
good way to determine what value you need outside of renderdoc - I plan
to fix this in a future PR adding a meshlet stats overlay)
- Currently I don't have a heuristic for software vs hardware raster
selection for each cluster. The existing code is just a placeholder. I
need to profile on a release scene and come up with a heuristic,
probably in a future PR.
- The culling shader is getting pretty hard to follow at this point, but
I don't want to spend time improving it as the entire shader/pass is
getting rewritten/replaced in the near future.
- Software raster is a compute workgroup per-cluster. Each workgroup
loads and transforms the <=64 vertices of the cluster, and then
rasterizes the <=64 triangles of the cluster.
- Two variants are implemented: Scanline for clusters with any larger
triangles (still smaller than hardware is good at), and brute-force for
very very tiny triangles
- Once the shader determines that a pixel should be filled in, it does
an atomicMax() on the visbuffer to store the results, copying how Nanite
works
- On devices with a low max workgroups per dispatch limit, an extra
compute pass is inserted before software raster to convert from a 1d to
2d dispatch (I don't think 3d would ever be necessary).
- I haven't implemented the top-left rule or subpixel precision yet, I'm
leaving that for a future PR since I get usable results without it for
now
- Resources used:
https://kristoffer-dyrkorn.github.io/triangle-rasterizer and chapters
6-8 of
https://fgiesen.wordpress.com/2013/02/17/optimizing-sw-occlusion-culling-index
- Hardware raster now spawns 64*3 vertex invocations per meshlet,
instead of the actual meshlet vertex count. Extra invocations just
early-exit.
- While this is slower than the existing system, hardware draws should
be rare now that software raster is usable, and it saves a ton of memory
using the unified cluster ID buffer. This would be fixed if wgpu had
support for mesh shaders.
- Instead of writing to a color+depth attachment, the hardware raster
pass also does the same atomic visbuffer writes that software raster
uses.
- We have to bind a dummy render target anyways, as wgpu doesn't
currently support render passes without any attachments
- Material IDs are no longer written out during the main rasterization
passes.
- If we had async compute queues, we could overlap the software and
hardware raster passes.
- New material and depth resolve passes run at the end of the visbuffer
node, and write out view depth and material ID depth textures

### Misc changes
- Fixed cluster culling importing, but never actually using the previous
view uniforms when doing occlusion culling
- Fixed incorrectly adding the LOD error twice when building the meshlet
mesh
- Splitup gpu_scene module into meshlet_mesh_manager, instance_manager,
and resource_manager
- resource_manager is still too complex and inefficient (extract and
prepare are way too expensive). I plan on improving this in a future PR,
but for now ResourceManager is mostly a 1:1 port of the leftover
MeshletGpuScene bits.
- Material draw passes have been renamed to the more accurate material
shade pass, as well as some other misc renaming (in the future, these
will be compute shaders even, and not actual draw calls)

---

## Migration Guide
- TBD (ask me at the end of the release for meshlet changes as a whole)

---------

Co-authored-by: vero <email@atlasdostal.com>
2024-08-26 17:54:34 +00:00