59db6f9cca
26 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
22af24aacf
|
Migrate motion blur, TAA, SSAO, and SSR to required components (#15572)
# Objective Again, a step forward in the migration to required components: a bunch of camera rendering cormponents! Note that this does not include the camera components themselves yet, because the naming and API for `Camera` hasn't been fully decided yet. ## Solution As per the [selected proposals](https://hackmd.io/@bevy/required_components/%2FpiqD9GOdSFKZZGzzh3C7Uw): - Deprecate `MotionBlurBundle` in favor of the `MotionBlur` component - Deprecate `TemporalAntiAliasBundle` in favor of the `TemporalAntiAliasing` component - Deprecate `ScreenSpaceAmbientOcclusionBundle` in favor of the `ScreenSpaceAmbientOcclusion` component - Deprecate `ScreenSpaceReflectionsBundle` in favor of the `ScreenSpaceReflections` component --- ## Migration Guide `MotionBlurBundle`, `TemporalAntiAliasBundle`, `ScreenSpaceAmbientOcclusionBundle`, and `ScreenSpaceReflectionsBundle` have been deprecated in favor of the `MotionBlur`, `TemporalAntiAliasing`, `ScreenSpaceAmbientOcclusion`, and `ScreenSpaceReflections` components instead. Inserting them will now also insert the other components required by them automatically. |
||
![]() |
54006b107b
|
Migrate meshes and materials to required components (#15524)
# Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material:   Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
de888a373d
|
Migrate lights to required components (#15554)
# Objective Another step in the migration to required components: lights! Note that this does not include `EnvironmentMapLight` or reflection probes yet, because their API hasn't been fully chosen yet. ## Solution As per the [selected proposals](https://hackmd.io/@bevy/required_components/%2FLLnzwz9XTxiD7i2jiUXkJg): - Deprecate `PointLightBundle` in favor of the `PointLight` component - Deprecate `SpotLightBundle` in favor of the `PointLight` component - Deprecate `DirectionalLightBundle` in favor of the `DirectionalLight` component ## Testing I ran some examples with lights. --- ## Migration Guide `PointLightBundle`, `SpotLightBundle`, and `DirectionalLightBundle` have been deprecated. Use the `PointLight`, `SpotLight`, and `DirectionalLight` components instead. Adding them will now insert the other components required by them automatically. |
||
![]() |
29508f065f
|
Fix floating point math (#15239)
# Objective - Fixes #15236 ## Solution - Use bevy_math::ops instead of std floating point operations. ## Testing - Did you test these changes? If so, how? Unit tests and `cargo run -p ci -- test` - How can other people (reviewers) test your changes? Is there anything specific they need to know? Execute `cargo run -p ci -- test` on Windows. - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? Windows ## Migration Guide - Not a breaking change - Projects should use bevy math where applicable --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: IQuick 143 <IQuick143cz@gmail.com> Co-authored-by: Joona Aalto <jondolf.dev@gmail.com> |
||
![]() |
afbbbd7335
|
Rename rendering components for improved consistency and clarity (#15035)
# Objective The names of numerous rendering components in Bevy are inconsistent and a bit confusing. Relevant names include: - `AutoExposureSettings` - `AutoExposureSettingsUniform` - `BloomSettings` - `BloomUniform` (no `Settings`) - `BloomPrefilterSettings` - `ChromaticAberration` (no `Settings`) - `ContrastAdaptiveSharpeningSettings` - `DepthOfFieldSettings` - `DepthOfFieldUniform` (no `Settings`) - `FogSettings` - `SmaaSettings`, `Fxaa`, `TemporalAntiAliasSettings` (really inconsistent??) - `ScreenSpaceAmbientOcclusionSettings` - `ScreenSpaceReflectionsSettings` - `VolumetricFogSettings` Firstly, there's a lot of inconsistency between `Foo`/`FooSettings` and `FooUniform`/`FooSettingsUniform` and whether names are abbreviated or not. Secondly, the `Settings` post-fix seems unnecessary and a bit confusing semantically, since it makes it seem like the component is mostly just auxiliary configuration instead of the core *thing* that actually enables the feature. This will be an even bigger problem once bundles like `TemporalAntiAliasBundle` are deprecated in favor of required components, as users will expect a component named `TemporalAntiAlias` (or similar), not `TemporalAntiAliasSettings`. ## Solution Drop the `Settings` post-fix from the component names, and change some names to be more consistent. - `AutoExposure` - `AutoExposureUniform` - `Bloom` - `BloomUniform` - `BloomPrefilter` - `ChromaticAberration` - `ContrastAdaptiveSharpening` - `DepthOfField` - `DepthOfFieldUniform` - `DistanceFog` - `Smaa`, `Fxaa`, `TemporalAntiAliasing` (note: we might want to change to `Taa`, see "Discussion") - `ScreenSpaceAmbientOcclusion` - `ScreenSpaceReflections` - `VolumetricFog` I kept the old names as deprecated type aliases to make migration a bit less painful for users. We should remove them after the next release. (And let me know if I should just... not add them at all) I also added some very basic docs for a few types where they were missing, like on `Fxaa` and `DepthOfField`. ## Discussion - `TemporalAntiAliasing` is still inconsistent with `Smaa` and `Fxaa`. Consensus [on Discord](https://discord.com/channels/691052431525675048/743663924229963868/1280601167209955431) seemed to be that renaming to `Taa` would probably be fine, but I think it's a bit more controversial, and it would've required renaming a lot of related types like `TemporalAntiAliasNode`, `TemporalAntiAliasBundle`, and `TemporalAntiAliasPlugin`, so I think it's better to leave to a follow-up. - I think `Fog` should probably have a more specific name like `DistanceFog` considering it seems to be distinct from `VolumetricFog`. ~~This should probably be done in a follow-up though, so I just removed the `Settings` post-fix for now.~~ (done) --- ## Migration Guide Many rendering components have been renamed for improved consistency and clarity. - `AutoExposureSettings` → `AutoExposure` - `BloomSettings` → `Bloom` - `BloomPrefilterSettings` → `BloomPrefilter` - `ContrastAdaptiveSharpeningSettings` → `ContrastAdaptiveSharpening` - `DepthOfFieldSettings` → `DepthOfField` - `FogSettings` → `DistanceFog` - `SmaaSettings` → `Smaa` - `TemporalAntiAliasSettings` → `TemporalAntiAliasing` - `ScreenSpaceAmbientOcclusionSettings` → `ScreenSpaceAmbientOcclusion` - `ScreenSpaceReflectionsSettings` → `ScreenSpaceReflections` - `VolumetricFogSettings` → `VolumetricFog` --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
03fd1b46ef
|
Move Msaa to component (#14273)
Switches `Msaa` from being a globally configured resource to a per camera view component. Closes #7194 # Objective Allow individual views to describe their own MSAA settings. For example, when rendering to different windows or to different parts of the same view. ## Solution Make `Msaa` a component that is required on all camera bundles. ## Testing Ran a variety of examples to ensure that nothing broke. TODO: - [ ] Make sure android still works per previous comment in `extract_windows`. --- ## Migration Guide `Msaa` is no longer configured as a global resource, and should be specified on each spawned camera if a non-default setting is desired. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: François Mockers <francois.mockers@vleue.com> |
||
![]() |
9da18cce2a
|
Add support for environment map transformation (#14290)
# Objective - Fixes: https://github.com/bevyengine/bevy/issues/14036 ## Solution - Add a world space transformation for the environment sample direction. ## Testing - I have tested the newly added `transform` field using the newly added `rotate_environment_map` example. https://github.com/user-attachments/assets/2de77c65-14bc-48ee-b76a-fb4e9782dbdb ## Migration Guide - Since we have added a new filed to the `EnvironmentMapLight` struct, users will need to include `..default()` or some rotation value in their initialization code. |
||
![]() |
f237cf2441
|
Updates default Text font size to 24px (#13603)
# Objective - The default font size is too small to be useful in examples or for debug text. - Fixes #13587 ## Solution - Updated the default font size value in `TextStyle` from 12px to 24px. - Resorted to Text defaults in examples to use the default font size in most of them. ## Testing - WIP --- ## Migration Guide - The default font size has been increased to 24px from 12px. Make sure you set the font to the appropriate values in places you were using `Default` text style. |
||
![]() |
06f733b16f
|
Use standard instruction text / position in various examples (#13583)
## Objective Use the "standard" text size / placement for the new text in these examples. Continuation of an effort started here: https://github.com/bevyengine/bevy/pull/8478 This is definitely not comprehensive. I did the ones that were easy to find and relatively straightforward updates. I meant to just do `3d_shapes` and `2d_shapes`, but one thing lead to another. ## Solution Use `font_size: 20.0`, the default (built-in) font, `Color::WHITE` (default), and `Val::Px(12.)` from the edges of the screen. There are a few little drive-by cleanups of defaults not being used, etc. ## Testing Ran the changed examples, verified that they still look reasonable. |
||
![]() |
44c0325ecd
|
Emissive is now LinearRgba on StandardMaterial (#13352)
StandardMaterial stores a LinearRgba instead of a Color for emissive Fixes #13212 |
||
![]() |
1fcf6a444f
|
Add emissive_exposure_weight to the StandardMaterial (#13350)
# Objective
- The emissive color gets multiplied by the camera exposure value. But
this cancels out almost any emissive effect.
- Fixes #13133
- Closes PR #13337
## Solution
- Add emissive_exposure_weight to the StandardMaterial
- In the shader this value is stored in the alpha channel of the
emissive color.
- This value defines how much the exposure influences the emissive
color.
- It's equal to Google's Filament:
https://google.github.io/filament/Materials.html#emissive
|
||
![]() |
961b24deaf
|
Implement filmic color grading. (#13121)
This commit expands Bevy's existing tonemapping feature to a complete set of filmic color grading tools, matching those of engines like Unity, Unreal, and Godot. The following features are supported: * White point adjustment. This is inspired by Unity's implementation of the feature, but simplified and optimized. *Temperature* and *tint* control the adjustments to the *x* and *y* chromaticity values of [CIE 1931]. Following Unity, the adjustments are made relative to the [D65 standard illuminant] in the [LMS color space]. * Hue rotation. This simply converts the RGB value to [HSV], alters the hue, and converts back. * Color correction. This allows the *gamma*, *gain*, and *lift* values to be adjusted according to the standard [ASC CDL combined function]. * Separate color correction for shadows, midtones, and highlights. Blender's source code was used as a reference for the implementation of this. The midtone ranges can be adjusted by the user. To avoid abrupt color changes, a small crossfade is used between the different sections of the image, again following Blender's formulas. A new example, `color_grading`, has been added, offering a GUI to change all the color grading settings. It uses the same test scene as the existing `tonemapping` example, which has been factored out into a shared glTF scene. [CIE 1931]: https://en.wikipedia.org/wiki/CIE_1931_color_space [D65 standard illuminant]: https://en.wikipedia.org/wiki/Standard_illuminant#Illuminant_series_D [LMS color space]: https://en.wikipedia.org/wiki/LMS_color_space [HSV]: https://en.wikipedia.org/wiki/HSL_and_HSV [ASC CDL combined function]: https://en.wikipedia.org/wiki/ASC_CDL#Combined_Function ## Changelog ### Added * Many new filmic color grading options have been added to the `ColorGrading` component. ## Migration Guide * `ColorGrading::gamma` and `ColorGrading::pre_saturation` are now set separately for the `shadows`, `midtones`, and `highlights` sections. You can migrate code with the `ColorGrading::all_sections` and `ColorGrading::all_sections_mut` functions, which access and/or update all sections at once. * `ColorGrading::post_saturation` and `ColorGrading::exposure` are now fields of `ColorGrading::global`. ## Screenshots   |
||
![]() |
0746b8eb4c
|
Fix green colors becoming darker in various examples (#12328)
# Objective Fixes #12225 Prior to the `bevy_color` port, `GREEN` used to mean "full green." But it is now a much darker color matching the css1 spec. ## Solution Change usages of `basic::GREEN` or `css::GREEN` to `LIME` to restore the examples to their former colors. This also removes the duplicate definition of `GREEN` from `css`. (it was already re-exported from `basic`) ## Note A lot of these examples could use nicer colors. I'm not trying to do that here. "Dark Grey" will be tackled separately and has its own tracking issue. |
||
![]() |
599e5e4e76
|
Migrate from LegacyColor to bevy_color::Color (#12163)
# Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au> |
||
![]() |
de004da8d5
|
Rename bevy_render::Color to LegacyColor (#12069)
# Objective The migration process for `bevy_color` (#12013) will be fairly involved: there will be hundreds of affected files, and a large number of APIs. ## Solution To allow us to proceed granularly, we're going to keep both `bevy_color::Color` (new) and `bevy_render::Color` (old) around until the migration is complete. However, simply doing this directly is confusing! They're both called `Color`, making it very hard to tell when a portion of the code has been ported. As discussed in #12056, by renaming the old `Color` type, we can make it easier to gradually migrate over, one API at a time. ## Migration Guide THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK. This change should not be shipped to end users: delete this section in the final migration guide! --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> |
||
![]() |
dd619a1087
|
New Exposure and Lighting Defaults (and calibrate examples) (#11868)
# Objective After adding configurable exposure, we set the default ev100 value to `7` (indoor). This brought us out of sync with Blender's configuration and defaults. This PR changes the default to `9.7` (bright indoor or very overcast outdoors), as I calibrated in #11577. This feels like a very reasonable default. The other changes generally center around tweaking Bevy's lighting defaults and examples to play nicely with this number, alongside a few other tweaks and improvements. Note that for artistic reasons I have reverted some examples, which changed to directional lights in #11581, back to point lights. Fixes #11577 --- ## Changelog - Changed `Exposure::ev100` from `7` to `9.7` to better match Blender - Renamed `ExposureSettings` to `Exposure` - `Camera3dBundle` now includes `Exposure` for discoverability - Bumped `FULL_DAYLIGHT ` and `DIRECT_SUNLIGHT` to represent the middle-to-top of those ranges instead of near the bottom - Added new `AMBIENT_DAYLIGHT` constant and set that as the new `DirectionalLight` default illuminance. - `PointLight` and `SpotLight` now have a default `intensity` of 1,000,000 lumens. This makes them actually useful in the context of the new "semi-outdoor" exposure and puts them in the "cinema lighting" category instead of the "common household light" category. They are also reasonably close to the Blender default. - `AmbientLight` default has been bumped from `20` to `80`. ## Migration Guide - The increased `Exposure::ev100` means that all existing 3D lighting will need to be adjusted to match (DirectionalLights, PointLights, SpotLights, EnvironmentMapLights, etc). Or alternatively, you can adjust the `Exposure::ev100` on your cameras to work nicely with your current lighting values. If you are currently relying on default intensity values, you might need to change the intensity to achieve the same effect. Note that in Bevy 0.12, point/spot lights had a different hard coded ev100 value than directional lights. In Bevy 0.13, they use the same ev100, so if you have both in your scene, the _scale_ between these light types has changed and you will likely need to adjust one or both of them. |
||
![]() |
dc9b486650
|
Change light defaults & fix light examples (#11581)
# Objective Fix https://github.com/bevyengine/bevy/issues/11577. ## Solution Fix the examples, add a few constants to make setting light values easier, and change the default lighting settings to be more realistic. (Now designed for an overcast day instead of an indoor environment) --- I did not include any example-related changes in here. ## Changelogs (not including breaking changes) ### bevy_pbr - Added `light_consts` module (included in prelude), which contains common lux and lumen values for lights. - Added `AmbientLight::NONE` constant, which is an ambient light with a brightness of 0. - Added non-EV100 variants for `ExposureSettings`'s EV100 constants, which allow easier construction of an `ExposureSettings` from a EV100 constant. ## Breaking changes ### bevy_pbr The several default lighting values were changed: - `PointLight`'s default `intensity` is now `2000.0` - `SpotLight`'s default `intensity` is now `2000.0` - `DirectionalLight`'s default `illuminance` is now `light_consts::lux::OVERCAST_DAY` (`1000.`) - `AmbientLight`'s default `brightness` is now `20.0` |
||
![]() |
0166db33f7
|
Deprecate shapes in bevy_render::mesh::shape (#11773)
# Objective #11431 and #11688 implemented meshing support for Bevy's new geometric primitives. The next step is to deprecate the shapes in `bevy_render::mesh::shape` and to later remove them completely for 0.14. ## Solution Deprecate the shapes and reduce code duplication by utilizing the primitive meshing API for the old shapes where possible. Note that some shapes have behavior that can't be exactly reproduced with the new primitives yet: - `Box` is more of an AABB with min/max extents - `Plane` supports a subdivision count - `Quad` has a `flipped` property These types have not been changed to utilize the new primitives yet. --- ## Changelog - Deprecated all shapes in `bevy_render::mesh::shape` - Changed all examples to use new primitives for meshing ## Migration Guide Bevy has previously used rendering-specific types like `UVSphere` and `Quad` for primitive mesh shapes. These have now been deprecated to use the geometric primitives newly introduced in version 0.13. Some examples: ```rust let before = meshes.add(shape::Box::new(5.0, 0.15, 5.0)); let after = meshes.add(Cuboid::new(5.0, 0.15, 5.0)); let before = meshes.add(shape::Quad::default()); let after = meshes.add(Rectangle::default()); let before = meshes.add(shape::Plane::from_size(5.0)); // The surface normal can now also be specified when using `new` let after = meshes.add(Plane3d::default().mesh().size(5.0, 5.0)); let before = meshes.add( Mesh::try_from(shape::Icosphere { radius: 0.5, subdivisions: 5, }) .unwrap(), ); let after = meshes.add(Sphere::new(0.5).mesh().ico(5).unwrap()); ``` |
||
![]() |
fcd7c0fc3d
|
Exposure settings (adopted) (#11347)
Rebased and finished version of https://github.com/bevyengine/bevy/pull/8407. Huge thanks to @GitGhillie for adjusting all the examples, and the many other people who helped write this PR (@superdump , @coreh , among others) :) Fixes https://github.com/bevyengine/bevy/issues/8369 --- ## Changelog - Added a `brightness` control to `Skybox`. - Added an `intensity` control to `EnvironmentMapLight`. - Added `ExposureSettings` and `PhysicalCameraParameters` for controlling exposure of 3D cameras. - Removed the baked-in `DirectionalLight` exposure Bevy previously hardcoded internally. ## Migration Guide - If using a `Skybox` or `EnvironmentMapLight`, use the new `brightness` and `intensity` controls to adjust their strength. - All 3D scene will now have different apparent brightnesses due to Bevy implementing proper exposure controls. You will have to adjust the intensity of your lights and/or your camera exposure via the new `ExposureSettings` component to compensate. --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> Co-authored-by: GitGhillie <jillisnoordhoek@gmail.com> Co-authored-by: Marco Buono <thecoreh@gmail.com> Co-authored-by: vero <email@atlasdostal.com> Co-authored-by: atlas dostal <rodol@rivalrebels.com> |
||
![]() |
9c972f037e
|
Fix missed explicit conversions in examples (#11261)
# Objective A few of these were missed in #10878 ## Solution Fix em |
||
![]() |
a795de30b4
|
Use impl Into<A> for Assets::add (#10878)
# Motivation When spawning entities into a scene, it is very common to create assets like meshes and materials and to add them via asset handles. A common setup might look like this: ```rust fn setup( mut commands: Commands, mut meshes: ResMut<Assets<Mesh>>, mut materials: ResMut<Assets<StandardMaterial>>, ) { commands.spawn(PbrBundle { mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })), material: materials.add(StandardMaterial::from(Color::RED)), ..default() }); } ``` Let's take a closer look at the part that adds the assets using `add`. ```rust mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })), material: materials.add(StandardMaterial::from(Color::RED)), ``` Here, "mesh" and "material" are both repeated three times. It's very explicit, but I find it to be a bit verbose. In addition to being more code to read and write, the extra characters can sometimes also lead to the code being formatted to span multiple lines even though the core task, adding e.g. a primitive mesh, is extremely simple. A way to address this is by using `.into()`: ```rust mesh: meshes.add(shape::Cube { size: 1.0 }.into()), material: materials.add(Color::RED.into()), ``` This is fine, but from the names and the type of `meshes`, we already know what the type should be. It's very clear that `Cube` should be turned into a `Mesh` because of the context it's used in. `.into()` is just seven characters, but it's so common that it quickly adds up and gets annoying. It would be nice if you could skip all of the conversion and let Bevy handle it for you: ```rust mesh: meshes.add(shape::Cube { size: 1.0 }), material: materials.add(Color::RED), ``` # Objective Make adding assets more ergonomic by making `Assets::add` take an `impl Into<A>` instead of `A`. ## Solution `Assets::add` now takes an `impl Into<A>` instead of `A`, so e.g. this works: ```rust commands.spawn(PbrBundle { mesh: meshes.add(shape::Cube { size: 1.0 }), material: materials.add(Color::RED), ..default() }); ``` I also changed all examples to use this API, which increases consistency as well because `Mesh::from` and `into` were being used arbitrarily even in the same file. This also gets rid of some lines of code because formatting is nicer. --- ## Changelog - `Assets::add` now takes an `impl Into<A>` instead of `A` - Examples don't use `T::from(K)` or `K.into()` when adding assets ## Migration Guide Some `into` calls that worked previously might now be broken because of the new trait bounds. You need to either remove `into` or perform the conversion explicitly with `from`: ```rust // Doesn't compile let mesh_handle = meshes.add(shape::Cube { size: 1.0 }.into()), // These compile let mesh_handle = meshes.add(shape::Cube { size: 1.0 }), let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 })), ``` ## Concerns I believe the primary concerns might be: 1. Is this too implicit? 2. Does this increase codegen bloat? Previously, the two APIs were using `into` or `from`, and now it's "nothing" or `from`. You could argue that `into` is slightly more explicit than "nothing" in cases like the earlier examples where a `Color` gets converted to e.g. a `StandardMaterial`, but I personally don't think `into` adds much value even in this case, and you could still see the actual type from the asset type. As for codegen bloat, I doubt it adds that much, but I'm not very familiar with the details of codegen. I personally value the user-facing code reduction and ergonomics improvements that these changes would provide, but it might be worth checking the other effects in more detail. Another slight concern is migration pain; apps might have a ton of `into` calls that would need to be removed, and it did take me a while to do so for Bevy itself (maybe around 20-40 minutes). However, I think the fact that there *are* so many `into` calls just highlights that the API could be made nicer, and I'd gladly migrate my own projects for it. |
||
![]() |
786abbf3f5
|
Fix ci xvfb (#11143)
# Objective Fix ci hang, so we can merge pr's again. ## Solution - switch ppa action to use mesa stable versions https://launchpad.net/~kisak/+archive/ubuntu/turtle - use commit from #11123 --------- Co-authored-by: Stepan Koltsov <stepan.koltsov@gmail.com> |
||
![]() |
ced216f59a
|
Update winit dependency to 0.29 (#10702)
# Objective - Update winit dependency to 0.29 ## Changelog ### KeyCode changes - Removed `ScanCode`, as it was [replaced by KeyCode](https://github.com/rust-windowing/winit/blob/master/CHANGELOG.md#0292). - `ReceivedCharacter.char` is now a `SmolStr`, [relevant doc](https://docs.rs/winit/latest/winit/event/struct.KeyEvent.html#structfield.text). - Changed most `KeyCode` values, and added more. KeyCode has changed meaning. With this PR, it refers to physical position on keyboard rather than the printed letter on keyboard keys. In practice this means: - On QWERTY keyboard layouts, nothing changes - On any other keyboard layout, `KeyCode` no longer reflects the label on key. - This is "good". In bevy 0.12, when you used WASD for movement, users with non-QWERTY keyboards couldn't play your game! This was especially bad for non-latin keyboards. Now, WASD represents the physical keys. A French player will press the ZQSD keys, which are near each other, Kyrgyz players will use "Цфыв". - This is "bad" as well. You can't know in advance what the label of the key for input is. Your UI says "press WASD to move", even if in reality, they should be pressing "ZQSD" or "Цфыв". You also no longer can use `KeyCode` for text inputs. In any case, it was a pretty bad API for text input. You should use `ReceivedCharacter` now instead. ### Other changes - Use `web-time` rather than `instant` crate. (https://github.com/rust-windowing/winit/pull/2836) - winit did split `run_return` in `run_onDemand` and `pump_events`, I did the same change in bevy_winit and used `pump_events`. - Removed `return_from_run` from `WinitSettings` as `winit::run` now returns on supported platforms. - I left the example "return_after_run" as I think it's still useful. - This winit change is done partly to allow to create a new window after quitting all windows: https://github.com/emilk/egui/issues/1918 ; this PR doesn't address. - added `width` and `height` properties in the `canvas` from wasm example (https://github.com/bevyengine/bevy/pull/10702#discussion_r1420567168) ## Known regressions (important follow ups?) - Provide an API for reacting when a specific key from current layout was released. - possible solutions: use winit::Key from winit::KeyEvent ; mapping between KeyCode and Key ; or . - We don't receive characters through alt+numpad (e.g. alt + 151 = "ù") anymore ; reproduced on winit example "ime". maybe related to https://github.com/rust-windowing/winit/issues/2945 - (windows) Window content doesn't refresh at all when resizing. By reading https://github.com/rust-windowing/winit/issues/2900 ; I suspect we should just fire a `window.request_redraw();` from `AboutToWait`, and handle actual redrawing within `RedrawRequested`. I'm not sure how to move all that code so I'd appreciate it to be a follow up. - (windows) unreleased winit fix for using set_control_flow in AboutToWait https://github.com/rust-windowing/winit/issues/3215 ; ⚠️ I'm not sure what the implications are, but that feels bad 🤔 ## Follow up I'd like to avoid bloating this PR, here are a few follow up tasks worthy of a separate PR, or new issue to track them once this PR is closed, as they would either complicate reviews, or at risk of being controversial: - remove CanvasParentResizePlugin (https://github.com/bevyengine/bevy/pull/10702#discussion_r1417068856) - avoid mentionning explicitly winit in docs from bevy_window ? - NamedKey integration on bevy_input: https://github.com/rust-windowing/winit/pull/3143 introduced a new NamedKey variant. I implemented it only on the converters but we'd benefit making the same changes to bevy_input. - Add more info in KeyboardInput https://github.com/bevyengine/bevy/pull/10702#pullrequestreview-1748336313 - https://github.com/bevyengine/bevy/pull/9905 added a workaround on a bug allegedly fixed by winit 0.29. We should check if it's still necessary. - update to raw_window_handle 0.6 - blocked by wgpu - Rename `KeyCode` to `PhysicalKeyCode` https://github.com/bevyengine/bevy/pull/10702#discussion_r1404595015 - remove `instant` dependency, [replaced by](https://github.com/rust-windowing/winit/pull/2836) `web_time`), we'd need to update to : - fastrand >= 2.0 - [`async-executor`](https://github.com/smol-rs/async-executor) >= 1.7 - [`futures-lite`](https://github.com/smol-rs/futures-lite) >= 2.0 - Verify license, see [discussion](https://github.com/bevyengine/bevy/pull/8745#discussion_r1402439800) - we might be missing a short notice or description of changes made - Consider using https://github.com/rust-windowing/cursor-icon directly rather than vendoring it in bevy. - investigate [this unwrap](https://github.com/bevyengine/bevy/pull/8745#discussion_r1387044986) (`winit_window.canvas().unwrap();`) - Use more good things about winit's update - https://github.com/bevyengine/bevy/pull/10689#issuecomment-1823560428 ## Migration Guide This PR should have one. |
||
![]() |
1f97717a3d
|
Rename Input to ButtonInput (#10859)
# Objective - Resolves #10853 ## Solution - ~~Changed the name of `Input` struct to `PressableInput`.~~ - Changed the name of `Input` struct to `ButtonInput`. ## Migration Guide - Breaking Change: Users need to rename `Input` to `ButtonInput` in their projects. |
||
![]() |
951c9bb1a2
|
Add [lints] table, fix adding #![allow(clippy::type_complexity)] everywhere (#10011)
# Objective - Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796 ## Solution - Use the new [lints] table that will land in 1.74 (https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints) - inherit lint to the workspace, crates and examples. ``` [lints] workspace = true ``` ## Changelog - Bump rust version to 1.74 - Enable lints table for the workspace ```toml [workspace.lints.clippy] type_complexity = "allow" ``` - Allow type complexity for all crates and examples ```toml [lints] workspace = true ``` --------- Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com> |
||
![]() |
44928e0df4
|
StandardMaterial Light Transmission (#8015)
# Objective
<img width="1920" alt="Screenshot 2023-04-26 at 01 07 34"
src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png">
This PR adds both diffuse and specular light transmission capabilities
to the `StandardMaterial`, with support for screen space refractions.
This enables realistically representing a wide range of real-world
materials, such as:
- Glass; (Including frosted glass)
- Transparent and translucent plastics;
- Various liquids and gels;
- Gemstones;
- Marble;
- Wax;
- Paper;
- Leaves;
- Porcelain.
Unlike existing support for transparency, light transmission does not
rely on fixed function alpha blending, and therefore works with both
`AlphaMode::Opaque` and `AlphaMode::Mask` materials.
## Solution
- Introduces a number of transmission related fields in the
`StandardMaterial`;
- For specular transmission:
- Adds logic to take a view main texture snapshot after the opaque
phase; (in order to perform screen space refractions)
- Introduces a new `Transmissive3d` phase to the renderer, to which all
meshes with `transmission > 0.0` materials are sent.
- Calculates a light exit point (of the approximate mesh volume) using
`ior` and `thickness` properties
- Samples the snapshot texture with an adaptive number of taps across a
`roughness`-controlled radius enabling “blurry” refractions
- For diffuse transmission:
- Approximates transmitted diffuse light by using a second, flipped +
displaced, diffuse-only Lambertian lobe for each light source.
## To Do
- [x] Figure out where `fresnel_mix()` is taking place, if at all, and
where `dielectric_specular` is being calculated, if at all, and update
them to use the `ior` value (Not a blocker, just a nice-to-have for more
correct BSDF)
- To the _best of my knowledge, this is now taking place, after
|