Commit Graph

55 Commits

Author SHA1 Message Date
Mantas
5af2f022d8
Rename WorldQueryData & WorldQueryFilter to QueryData & QueryFilter (#10779)
# Rename `WorldQueryData` & `WorldQueryFilter` to `QueryData` &
`QueryFilter`

Fixes #10776 

## Solution

Traits `WorldQueryData` & `WorldQueryFilter` were renamed to `QueryData`
and `QueryFilter`, respectively. Related Trait types were also renamed.

---

## Changelog

- Trait `WorldQueryData` has been renamed to `QueryData`. Derive macro's
`QueryData` attribute `world_query_data` has been renamed to
`query_data`.
- Trait `WorldQueryFilter` has been renamed to `QueryFilter`. Derive
macro's `QueryFilter` attribute `world_query_filter` has been renamed to
`query_filter`.
- Trait's `ExtractComponent` type `Query` has been renamed to `Data`.
- Trait's `GetBatchData` types `Query` & `QueryFilter` has been renamed
to `Data` & `Filter`, respectively.
- Trait's `ExtractInstance` type `Query` has been renamed to `Data`.
- Trait's `ViewNode` type `ViewQuery` has been renamed to `ViewData`.
- Trait's `RenderCommand` types `ViewWorldQuery` & `ItemWorldQuery` has
been renamed to `ViewData` & `ItemData`, respectively.

## Migration Guide

Note: if merged before 0.13 is released, this should instead modify the
migration guide of #10776 with the updated names.

- Rename `WorldQueryData` & `WorldQueryFilter` trait usages to
`QueryData` & `QueryFilter` and their respective derive macro attributes
`world_query_data` & `world_query_filter` to `query_data` &
`query_filter`.
- Rename the following trait type usages:
  - Trait's `ExtractComponent` type `Query` to `Data`.
  - Trait's `GetBatchData` type `Query` to `Data`.
  - Trait's `ExtractInstance` type `Query` to `Data`.
  - Trait's `ViewNode` type `ViewQuery` to `ViewData`'
- Trait's `RenderCommand` types `ViewWolrdQuery` & `ItemWorldQuery` to
`ViewData` & `ItemData`, respectively.

```rust
// Before
#[derive(WorldQueryData)]
#[world_query_data(derive(Debug))]
struct EmptyQuery {
    empty: (),
}

// After
#[derive(QueryData)]
#[query_data(derive(Debug))]
struct EmptyQuery {
    empty: (),
}

// Before
#[derive(WorldQueryFilter)]
struct CustomQueryFilter<T: Component, P: Component> {
    _c: With<ComponentC>,
    _d: With<ComponentD>,
    _or: Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>,
    _generic_tuple: (With<T>, With<P>),
}

// After
#[derive(QueryFilter)]
struct CustomQueryFilter<T: Component, P: Component> {
    _c: With<ComponentC>,
    _d: With<ComponentD>,
    _or: Or<(Added<ComponentC>, Changed<ComponentD>, Without<ComponentZ>)>,
    _generic_tuple: (With<T>, With<P>),
}

// Before
impl ExtractComponent for ContrastAdaptiveSharpeningSettings {
    type Query = &'static Self;
    type Filter = With<Camera>;
    type Out = (DenoiseCAS, CASUniform);

    fn extract_component(item: QueryItem<Self::Query>) -> Option<Self::Out> {
        //...
    }
}

// After
impl ExtractComponent for ContrastAdaptiveSharpeningSettings {
    type Data = &'static Self;
    type Filter = With<Camera>;
    type Out = (DenoiseCAS, CASUniform);

    fn extract_component(item: QueryItem<Self::Data>) -> Option<Self::Out> {
        //...
    }
}

// Before
impl GetBatchData for MeshPipeline {
    type Param = SRes<RenderMeshInstances>;
    type Query = Entity;
    type QueryFilter = With<Mesh3d>;
    type CompareData = (MaterialBindGroupId, AssetId<Mesh>);
    type BufferData = MeshUniform;

    fn get_batch_data(
        mesh_instances: &SystemParamItem<Self::Param>,
        entity: &QueryItem<Self::Query>,
    ) -> (Self::BufferData, Option<Self::CompareData>) {
        // ....
    }
}

// After
impl GetBatchData for MeshPipeline {
    type Param = SRes<RenderMeshInstances>;
    type Data = Entity;
    type Filter = With<Mesh3d>;
    type CompareData = (MaterialBindGroupId, AssetId<Mesh>);
    type BufferData = MeshUniform;

    fn get_batch_data(
        mesh_instances: &SystemParamItem<Self::Param>,
        entity: &QueryItem<Self::Data>,
    ) -> (Self::BufferData, Option<Self::CompareData>) {
        // ....
    }
}

// Before
impl<A> ExtractInstance for AssetId<A>
where
    A: Asset,
{
    type Query = Read<Handle<A>>;
    type Filter = ();

    fn extract(item: QueryItem<'_, Self::Query>) -> Option<Self> {
        Some(item.id())
    }
}

// After
impl<A> ExtractInstance for AssetId<A>
where
    A: Asset,
{
    type Data = Read<Handle<A>>;
    type Filter = ();

    fn extract(item: QueryItem<'_, Self::Data>) -> Option<Self> {
        Some(item.id())
    }
}

// Before
impl ViewNode for PostProcessNode {
    type ViewQuery = (
        &'static ViewTarget,
        &'static PostProcessSettings,
    );

    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewQuery>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // ...
    }
}

// After
impl ViewNode for PostProcessNode {
    type ViewData = (
        &'static ViewTarget,
        &'static PostProcessSettings,
    );

    fn run(
        &self,
        _graph: &mut RenderGraphContext,
        render_context: &mut RenderContext,
        (view_target, _post_process_settings): QueryItem<Self::ViewData>,
        world: &World,
    ) -> Result<(), NodeRunError> {
        // ...
    }
}

// Before
impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline {
    type Param = SRes<PipelineCache>;
    type ViewWorldQuery = ();
    type ItemWorldQuery = ();
    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _entity: (),
        pipeline_cache: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        // ...
    }
}

// After
impl<P: CachedRenderPipelinePhaseItem> RenderCommand<P> for SetItemPipeline {
    type Param = SRes<PipelineCache>;
    type ViewData = ();
    type ItemData = ();
    #[inline]
    fn render<'w>(
        item: &P,
        _view: (),
        _entity: (),
        pipeline_cache: SystemParamItem<'w, '_, Self::Param>,
        pass: &mut TrackedRenderPass<'w>,
    ) -> RenderCommandResult {
        // ...
    }
}
```
2023-12-12 19:45:50 +00:00
Zachary Harrold
72adf2ae2a
Reduced TableRow as Casting (#10811)
# Objective

- Fixes #10806

## Solution

Replaced `new` and `index` methods for both `TableRow` and `TableId`
with `from_*` and `as_*` methods. These remove the need to perform
casting at call sites, reducing the total number of casts in the Bevy
codebase. Within these methods, an appropriate `debug_assertion` ensures
the cast will behave in an expected manner (no wrapping, etc.). I am
using a `debug_assertion` instead of an `assert` to reduce any possible
runtime overhead, however minimal. This choice is something I am open to
changing (or leaving up to another PR) if anyone has any strong
arguments for it.

---

## Changelog

- `ComponentSparseSet::sparse` stores a `TableRow` instead of a `u32`
(private change)
- Replaced `TableRow::new` and `TableRow::index` methods with
`TableRow::from_*` and `TableRow::as_*`, with `debug_assertions`
protecting any internal casting.
- Replaced `TableId::new` and `TableId::index` methods with
`TableId::from_*` and `TableId::as_*`, with `debug_assertions`
protecting any internal casting.
- All `TableId` methods are now `const`

## Migration Guide

- `TableRow::new` -> `TableRow::from_usize`
- `TableRow::index` -> `TableRow::as_usize`
- `TableId::new` -> `TableId::from_usize`
- `TableId::index` -> `TableId::as_usize`

---

## Notes

I have chosen to remove the `index` and `new` methods for the following
chain of reasoning:

- Across the codebase, `new` was called with a mixture of `u32` and
`usize` values. Likewise for `index`.
- Choosing `new` to either be `usize` or `u32` would break half of these
call-sites, requiring `as` casting at the site.
- Adding a second method `new_u32` or `new_usize` avoids the above, bu
looks visually inconsistent.
- Therefore, they should be replaced with `from_*` and `as_*` methods
instead.

Worth noting is that by updating `ComponentSparseSet`, there are now
zero instances of interacting with the inner value of `TableRow` as a
`u32`, it is exclusively used as a `usize` value (due to interactions
with methods like `len` and slice indexing). I have left the `as_u32`
and `from_u32` methods as the "proper" constructors/getters.
2023-12-05 02:44:33 +00:00
AxiomaticSemantics
b4c33da149
Fix typos in safety comment (#10827)
# Objective

- Minor fix for typos in safety comment

- Fix the typos.

Co-authored-by: ebola <dev@axiomatic>
2023-12-01 18:07:16 +00:00
James Liu
2148518758
Override QueryIter::fold to port Query::for_each perf gains to select Iterator combinators (#6773)
# Objective
After #6547, `Query::for_each` has been capable of automatic
vectorization on certain queries, which is seeing a notable (>50% CPU
time improvements) for iteration. However, `Query::for_each` isn't
idiomatic Rust, and lacks the flexibility of iterator combinators.

Ideally, `Query::iter` and friends should be able to achieve the same
results. However, this does seem to blocked upstream
(rust-lang/rust#104914) by Rust's loop optimizations.

## Solution
This is an intermediate solution and refactor. This moves the
`Query::for_each` implementation onto the `Iterator::fold`
implementation for `QueryIter` instead. This should result in the same
automatic vectorization optimization on all `Iterator` functions that
internally use fold, including `Iterator::for_each`, `Iterator::count`,
etc.

With this, it should close the gap between the two completely.
Internally, this PR changes `Query::for_each` to use
`query.iter().for_each(..)` instead of the duplicated implementation.

Separately, the duplicate implementations of internal iteration (i.e.
`Query::par_for_each`) now use portions of the current `Query::for_each`
implementation factored out into their own functions.

This also massively cleans up our internal fragmentation of internal
iteration options, deduplicating the iteration code used in `for_each`
and `par_iter().for_each()`.

---

## Changelog
Changed: `Query::for_each`, `Query::for_each_mut`, `Query::for_each`,
and `Query::for_each_mut` have been moved to `QueryIter`'s
`Iterator::for_each` implementation, and still retains their performance
improvements over normal iteration. These APIs are deprecated in 0.13
and will be removed in 0.14.

---------

Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-12-01 09:09:55 +00:00
Kanabenki
0e9f6e92ea
Add clippy::manual_let_else at warn level to lints (#10684)
# Objective

Related to #10612.

Enable the
[`clippy::manual_let_else`](https://rust-lang.github.io/rust-clippy/master/#manual_let_else)
lint as a warning. The `let else` form seems more idiomatic to me than a
`match`/`if else` that either match a pattern or diverge, and from the
clippy doc, the lint doesn't seem to have any possible false positive.

## Solution

Add the lint as warning in `Cargo.toml`, refactor places where the lint
triggers.
2023-11-28 04:15:27 +00:00
Mark Wainwright
f0a8994f55
Split WorldQuery into WorldQueryData and WorldQueryFilter (#9918)
# Objective

- Fixes #7680
- This is an updated for https://github.com/bevyengine/bevy/pull/8899
which had the same objective but fell a long way behind the latest
changes


## Solution

The traits `WorldQueryData : WorldQuery` and `WorldQueryFilter :
WorldQuery` have been added and some of the types and functions from
`WorldQuery` has been moved into them.

`ReadOnlyWorldQuery` has been replaced with `ReadOnlyWorldQueryData`. 

`WorldQueryFilter` is safe (as long as `WorldQuery` is implemented
safely).

`WorldQueryData` is unsafe - safely implementing it requires that
`Self::ReadOnly` is a readonly version of `Self` (this used to be a
safety requirement of `WorldQuery`)

The type parameters `Q` and `F` of `Query` must now implement
`WorldQueryData` and `WorldQueryFilter` respectively.

This makes it impossible to accidentally use a filter in the data
position or vice versa which was something that could lead to bugs.
~~Compile failure tests have been added to check this.~~

It was previously sometimes useful to use `Option<With<T>>` in the data
position. Use `Has<T>` instead in these cases.

The `WorldQuery` derive macro has been split into separate derive macros
for `WorldQueryData` and `WorldQueryFilter`.

Previously it was possible to derive both `WorldQuery` for a struct that
had a mixture of data and filter items. This would not work correctly in
some cases but could be a useful pattern in others. *This is no longer
possible.*

---

## Notes

- The changes outside of `bevy_ecs` are all changing type parameters to
the new types, updating the macro use, or replacing `Option<With<T>>`
with `Has<T>`.

- All `WorldQueryData` types always returned `true` for `IS_ARCHETYPAL`
so I moved it to `WorldQueryFilter` and
replaced all calls to it with `true`. That should be the only logic
change outside of the macro generation code.

- `Changed<T>` and `Added<T>` were being generated by a macro that I
have expanded. Happy to revert that if desired.

- The two derive macros share some functions for implementing
`WorldQuery` but the tidiest way I could find to implement them was to
give them a ton of arguments and ask clippy to ignore that.

## Changelog

### Changed
- Split `WorldQuery` into `WorldQueryData` and `WorldQueryFilter` which
now have separate derive macros. It is not possible to derive both for
the same type.
- `Query` now requires that the first type argument implements
`WorldQueryData` and the second implements `WorldQueryFilter`

## Migration Guide

- Update derives

```rust
// old
#[derive(WorldQuery)]
#[world_query(mutable, derive(Debug))]
struct CustomQuery {
    entity: Entity,
    a: &'static mut ComponentA
}

#[derive(WorldQuery)]
struct QueryFilter {
    _c: With<ComponentC>
}

// new 
#[derive(WorldQueryData)]
#[world_query_data(mutable, derive(Debug))]
struct CustomQuery {
    entity: Entity,
    a: &'static mut ComponentA,
}

#[derive(WorldQueryFilter)]
struct QueryFilter {
    _c: With<ComponentC>
}
```
- Replace `Option<With<T>>` with `Has<T>`

```rust
/// old
fn my_system(query: Query<(Entity, Option<With<ComponentA>>)>)
{
  for (entity, has_a_option) in query.iter(){
    let has_a:bool = has_a_option.is_some();
    //todo!()
  }
}

/// new
fn my_system(query: Query<(Entity, Has<ComponentA>)>)
{
  for (entity, has_a) in query.iter(){
    //todo!()
  }
}
```

- Fix queries which had filters in the data position or vice versa.

```rust
// old
fn my_system(query: Query<(Entity, With<ComponentA>)>)
{
  for (entity, _) in query.iter(){
  //todo!()
  }
}

// new
fn my_system(query: Query<Entity, With<ComponentA>>)
{
  for entity in query.iter(){
  //todo!()
  }
}

// old
fn my_system(query: Query<AnyOf<(&ComponentA, With<ComponentB>)>>)
{
  for (entity, _) in query.iter(){
  //todo!()
  }
}

// new
fn my_system(query: Query<Option<&ComponentA>, Or<(With<ComponentA>, With<ComponentB>)>>)
{
  for entity in query.iter(){
  //todo!()
  }
}

```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-11-28 03:56:07 +00:00
Joseph
02688a99b8
Fix safety invariants for WorldQuery::fetch and simplify cloning (#8246)
# Objective

Cloning a `WorldQuery` type's "fetch" struct was made unsafe in #5593,
by adding the `unsafe fn clone_fetch` to `WorldQuery`. However, as that
method's documentation explains, it is not the right place to put the
safety invariant:

> While calling this method on its own cannot cause UB it is marked
`unsafe` as the caller must ensure that the returned value is not used
in any way that would cause two `QueryItem<Self>` for the same
`archetype_index` or `table_row` to be alive at the same time.

You can clone a fetch struct all you want and it will never cause
undefined behavior -- in order for something to go wrong, you need to
improperly call `WorldQuery::fetch` with it (which is marked unsafe).
Additionally, making it unsafe to clone a fetch struct does not even
prevent undefined behavior, since there are other ways to incorrectly
use a fetch struct. For example, you could just call fetch more than
once for the same entity, which is not currently forbidden by any
documented invariants.

## Solution

Document a safety invariant on `WorldQuery::fetch` that requires the
caller to not create aliased `WorldQueryItem`s for mutable types. Remove
the `clone_fetch` function, and add the bound `Fetch: Clone` instead.

---

## Changelog

- Removed the associated function `WorldQuery::clone_fetch`, and added a
`Clone` bound to `WorldQuery::Fetch`.

## Migration Guide

### `fetch` invariants

The function `WorldQuery::fetch` has had the following safety invariant
added:

> If this type does not implement `ReadOnlyWorldQuery`, then the caller
must ensure that it is impossible for more than one `Self::Item` to
exist for the same entity at any given time.

This invariant was always required for soundness, but was previously
undocumented. If you called this function manually anywhere, you should
check to make sure that this invariant is not violated.

### Removed `clone_fetch`

The function `WorldQuery::clone_fetch` has been removed. The associated
type `WorldQuery::Fetch` now has the bound `Clone`.

Before:

```rust
struct MyFetch<'w> { ... }

unsafe impl WorldQuery for MyQuery {
    ...
    type Fetch<'w> = MyFetch<'w>
    unsafe fn clone_fetch<'w>(fetch: &Self::Fetch<'w>) -> Self::Fetch<'w> {
        MyFetch {
            field1: fetch.field1,
            field2: fetch.field2.clone(),
            ...
        }
    }
}
```

After:

```rust
#[derive(Clone)]
struct MyFetch<'w> { ... }

unsafe impl WorldQuery for MyQuery {
    ...
    type Fetch<'w> = MyFetch<'w>;
}
```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2023-07-25 21:16:22 +00:00
JoJoJet
de1dcb986a
Provide access to world storages via UnsafeWorldCell (#8987)
# Objective

Title. This is necessary in order to update
[`bevy-trait-query`](https://crates.io/crates/bevy-trait-query) to Bevy
0.11.

---

## Changelog

Added the unsafe function `UnsafeWorldCell::storages`, which provides
unchecked access to the internal data stores of a `World`.
2023-06-29 01:29:34 +00:00
JoJoJet
db8d3651e0
Migrate the rest of the engine to UnsafeWorldCell (#8833)
# Objective

Follow-up to #6404 and #8292.

Mutating the world through a shared reference is surprising, and it
makes the meaning of `&World` unclear: sometimes it gives read-only
access to the entire world, and sometimes it gives interior mutable
access to only part of it.

This is an up-to-date version of #6972.

## Solution

Use `UnsafeWorldCell` for all interior mutability. Now, `&World`
*always* gives you read-only access to the entire world.

---

## Changelog

TODO - do we still care about changelogs?

## Migration Guide

Mutating any world data using `&World` is now considered unsound -- the
type `UnsafeWorldCell` must be used to achieve interior mutability. The
following methods now accept `UnsafeWorldCell` instead of `&World`:

- `QueryState`: `get_unchecked`, `iter_unchecked`,
`iter_combinations_unchecked`, `for_each_unchecked`,
`get_single_unchecked`, `get_single_unchecked_manual`.
- `SystemState`: `get_unchecked_manual`

```rust
let mut world = World::new();
let mut query = world.query::<&mut T>();

// Before:
let t1 = query.get_unchecked(&world, entity_1);
let t2 = query.get_unchecked(&world, entity_2);

// After:
let world_cell = world.as_unsafe_world_cell();
let t1 = query.get_unchecked(world_cell, entity_1);
let t2 = query.get_unchecked(world_cell, entity_2);
```

The methods `QueryState::validate_world` and
`SystemState::matches_world` now take a `WorldId` instead of `&World`:

```rust
// Before:
query_state.validate_world(&world);

// After:
query_state.validate_world(world.id());
```

The methods `QueryState::update_archetypes` and
`SystemState::update_archetypes` now take `UnsafeWorldCell` instead of
`&World`:

```rust
// Before:
query_state.update_archetypes(&world);

// After:
query_state.update_archetypes(world.as_unsafe_world_cell_readonly());
```
2023-06-15 01:31:56 +00:00
JoJoJet
2e7b915ba4
Increase type safety and clarity for change detection (#7905) 2023-03-09 17:17:02 +00:00
shuo
002c9d8b7f fix whitespaces in comment (#7853)
fix double whitespaces in comments. (I know it's dumb commit, while reading code, double spaces hurts a little... :P)
2023-03-01 10:20:56 +00:00
James Liu
a5b1c46d5b Extend EntityLocation with TableId and TableRow (#6681)
# Objective
`Query::get` and other random access methods require looking up `EntityLocation` for every provided entity, then always looking up the `Archetype` to get the table ID and table row. This requires 4 total random fetches from memory: the `Entities` lookup, the `Archetype` lookup, the table row lookup, and the final fetch from table/sparse sets. If `EntityLocation` contains the table ID and table row, only the `Entities` lookup and the final storage fetch are required.

## Solution
Add `TableId` and table row to `EntityLocation`. Ensure it's updated whenever entities are moved around. To ensure `EntityMeta` does not grow bigger, both `TableId` and `ArchetypeId` have been shrunk to u32, and the archetype index and table row are stored as u32s instead of as usizes. This should shrink `EntityMeta` by 4 bytes, from 24 to 20 bytes, as there is no padding anymore due to the change in alignment.

This idea was partially concocted by @BoxyUwU. 

## Performance
This should restore the `Query::get` "gains" lost to #6625 that were introduced in #4800 without being unsound, and also incorporates some of the memory usage reductions seen in #3678.

This also removes the same lookups during add/remove/spawn commands, so there may be a bit of a speedup in commands and `Entity{Ref,Mut}`.

---

## Changelog
Added: `EntityLocation::table_id`
Added: `EntityLocation::table_row`.
Changed: `World`s can now only hold a maximum of 2<sup>32</sup>- 1 archetypes.
Changed: `World`s can now only hold a maximum of 2<sup>32</sup> - 1 tables.

## Migration Guide

A `World` can only hold a maximum of 2<sup>32</sup> - 1 archetypes and tables now. If your use case requires more than this, please file an issue explaining your use case.
2023-01-02 21:25:04 +00:00
James Liu
530be10e72 Newtype ArchetypeRow and TableRow (#4878)
# Objective
Prevent future unsoundness that was seen in #6623.

## Solution
Newtype both indexes in `Archetype` and `Table` as `ArchetypeRow` and `TableRow`. This avoids weird numerical manipulation on the indices, and can be stored and treated opaquely. Also enforces the source and destination of where these indices at a type level.

---

## Changelog
Changed: `Archetype` indices and `Table` rows have been newtyped as `ArchetypeRow` and `TableRow`.
2022-12-06 01:38:21 +00:00
James Liu
d79888bdae Document and lock down types in bevy_ecs::archetype (#6742)
# Objective
Document `bevy_ecs::archetype` and and declutter the public documentation for the module by making types non-`pub`.

Addresses #3362 for `bevy_ecs::archetype`.

## Solution
 - Add module level documentation.
 - Add type and API level documentation for all public facing types.
 - Make `ArchetypeId`, `ArchetypeGeneration`, and `ArchetypeComponentId` truly opaque IDs that are not publicly constructable. 
 - Make `AddBundle` non-pub, make `Edges::get_add_bundle` return a `Option<ArchetypeId>` and fork the existing function into `Edges::get_add_bundle_internal`.
 - Remove `pub(crate)` on fields that have a corresponding pub accessor function.
 - Removed the `Archetypes: Default` impl, opting for a `pub(crate) fn new` alternative instead.

---

## Changelog
Added: `ArchetypeGeneration` now implements `Ord` and `PartialOrd`.
Removed: `Archetypes`'s `Default` implementation.
Removed: `Archetype::new` and `Archetype::is_empty`.
Removed: `ArchetypeId::new` and `ArchetypeId::value`.
Removed: `ArchetypeGeneration::value`
Removed: `ArchetypeIdentity`.
Removed: `ArchetypeComponentId::new` and `ArchetypeComponentId::value`.
Removed: `AddBundle`. `Edges::get_add_bundle` now returns `Option<ArchetypeId>`
2022-11-28 13:54:12 +00:00
Nicola Papale
15ea93a348 Fix size_hint for partially consumed QueryIter and QueryCombinationIter (#5214)
# Objective

Fix #5149

## Solution

Instead of returning the **total count** of elements in the `QueryIter` in
`size_hint`, we return the **count of remaining elements**. This
Fixes #5149 even when #5148 gets merged.

- https://github.com/bevyengine/bevy/issues/5149
- https://github.com/bevyengine/bevy/pull/5148

---

## Changelog

- Fix partially consumed `QueryIter` and `QueryCombinationIter` having invalid `size_hint`


Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com>
2022-11-21 12:37:31 +00:00
James Liu
ec8c8fbc8a Remove unnecesary branches/panics from Query accesses (#6461)
# Objective
Supercedes #6452. Upon inspection of the [generated assembly](https://gist.github.com/james7132/c2740c6941b80d7912f1e8888e223cbb#file-original-s) of a [simple Bevy binary](https://gist.github.com/james7132/c2740c6941b80d7912f1e8888e223cbb#file-source-rs) compiled with `cargo rustc --release -- --emit asm`, it's apparent that there are multiple unnecessary branches in the generated assembly:

```assembly
.LBB5_5:
	cmpq	%r10, %r11
	je	.LBB5_15
	movq	(%r11), %rcx
	movq	328(%r15), %rdx
	cmpq	%rdx, %rcx
	jae	.LBB5_14
	movq	312(%r15), %rdi
	leaq	(%rcx,%rcx,2), %rcx
	shlq	$5, %rcx
	movq	336(%r12), %rdx
	movq	64(%rdi,%rcx), %rax
	cmpq	%rdx, %rax
	jbe	.LBB5_4
	leaq	(%rdi,%rcx), %rsi
	movq	48(%rsi), %rbp
	shlq	$4, %rdx
	cmpq	$0, (%rbp,%rdx)
	je	.LBB5_4
	movq	344(%r12), %rbx
	cmpq	%rbx, %rax
	jbe	.LBB5_4
	shlq	$4, %rbx
	cmpq	$0, (%rbp,%rbx)
	je	.LBB5_4
	addq	$8, %r11
	movq	88(%rdi,%rcx), %rcx
	testq	%rcx, %rcx
	je	.LBB5_5
	movq	(%rsi), %rax
	movq	8(%rbp,%rdx), %rdx
	leaq	(%rdx,%rdx,4), %rdi
	shlq	$4, %rdi
	movq	32(%rax,%rdi), %rdx
	movq	56(%rax,%rdi), %r8
	movq	8(%rbp,%rbx), %rbp
	leaq	(%rbp,%rbp,4), %rbp
	shlq	$4, %rbp
	movq	32(%rax,%rbp), %r9
	xorl	%ebp, %ebp
	jmp	.LBB5_13
	.p2align	4, 0x90
```

Almost every one of the instructions starting with `j` is a potential branch, which can significantly slow down accesses. Of these, two labels are both common and never used:

```asm
.LBB5_14:
	leaq	__unnamed_2(%rip), %r8
	callq	_ZN4core9panicking18panic_bounds_check17h70367088e72af65aE
	ud2
.LBB5_4:
	callq	_ZN8bevy_ecs5query25debug_checked_unreachable17h0855ff520ceaea77E
	ud2
	.seh_endproc
```

These correpsond to subprocedure calls to panicking due to out of bounds from indexing `Tables` and `debug_checked_unreadable`. Both of which should be inlined and optimized out, but are not.

## Solution
Make `debug_checked_unreachable` a macro to forcibly inline either `unreachable!()` in debug builds, and `std::hint::unreachable_unchecked()` in release mode. Replace the `Tables` and `Archetype` index access with `get(id).unwrap_or_else(|| debug_checked_unreachable!())` to assume that the table or archetype provided exists.

This has no external breaking change of any kind.

The equivalent section of code with these changes removes most of the conditional jump instructions:

```asm
.LBB5_5:
	movss	(%rbx,%rbp,4), %xmm0
	movl	%r14d, 4(%r8,%rbp,8)
	addss	(%rdi,%rbp,4), %xmm0
	movss	%xmm0, (%rdi,%rbp,4)
	incq	%rbp
.LBB5_1:
	cmpq	%rdx, %rbp
	jne	.LBB5_5
	.p2align	4, 0x90
.LBB5_2:
	cmpq	%rcx, %rax
	je	.LBB5_6
	movq	(%rax), %rdx
	addq	$8, %rax
	movq	312(%rsi), %rbp
	leaq	(%rdx,%rdx,2), %rbx
	shlq	$5, %rbx
	movq	88(%rbp,%rbx), %rdx
	testq	%rdx, %rdx
	je	.LBB5_2
	leaq	(%rbx,%rbp), %r8
	movq	336(%r15), %rdi
	movq	344(%r15), %r9
	movq	48(%rbp,%rbx), %r10
	shlq	$4, %rdi
	movq	(%r8), %rbx
	movq	8(%r10,%rdi), %rdi
	leaq	(%rdi,%rdi,4), %rbp
	shlq	$4, %rbp
	movq	32(%rbx,%rbp), %rdi
	movq	56(%rbx,%rbp), %r8
	shlq	$4, %r9
	movq	8(%r10,%r9), %rbp
	leaq	(%rbp,%rbp,4), %rbp
	shlq	$4, %rbp
	movq	32(%rbx,%rbp), %rbx
	xorl	%ebp, %ebp
	jmp	.LBB5_5
.LBB5_6:
	addq	$40, %rsp
	popq	%rbx
	popq	%rbp
	popq	%rdi
	popq	%rsi
	popq	%r14
	popq	%r15
	retq
	.seh_endproc

```

## Performance

Microbenchmarks results:

<details>

```
group                                                    main                                     no-panic-query
-----                                                    ----                                     --------------
busy_systems/01x_entities_03_systems                     1.20     42.4±2.66µs        ? ?/sec      1.00     35.3±1.68µs        ? ?/sec
busy_systems/01x_entities_06_systems                     1.32     83.8±3.50µs        ? ?/sec      1.00     63.6±1.72µs        ? ?/sec
busy_systems/01x_entities_09_systems                     1.15    113.3±8.90µs        ? ?/sec      1.00     98.2±6.15µs        ? ?/sec
busy_systems/01x_entities_12_systems                     1.27   160.8±32.44µs        ? ?/sec      1.00    126.6±4.70µs        ? ?/sec
busy_systems/01x_entities_15_systems                     1.12    179.6±3.71µs        ? ?/sec      1.00   160.3±11.03µs        ? ?/sec
busy_systems/02x_entities_03_systems                     1.18     76.8±3.14µs        ? ?/sec      1.00     65.2±3.17µs        ? ?/sec
busy_systems/02x_entities_06_systems                     1.16    144.6±6.10µs        ? ?/sec      1.00    124.5±5.14µs        ? ?/sec
busy_systems/02x_entities_09_systems                     1.19    215.3±9.18µs        ? ?/sec      1.00    181.5±5.67µs        ? ?/sec
busy_systems/02x_entities_12_systems                     1.20    266.7±8.33µs        ? ?/sec      1.00    222.0±9.53µs        ? ?/sec
busy_systems/02x_entities_15_systems                     1.23   338.8±10.53µs        ? ?/sec      1.00    276.3±6.94µs        ? ?/sec
busy_systems/03x_entities_03_systems                     1.43    113.5±5.06µs        ? ?/sec      1.00     79.6±1.49µs        ? ?/sec
busy_systems/03x_entities_06_systems                     1.38   217.3±12.67µs        ? ?/sec      1.00    157.5±3.07µs        ? ?/sec
busy_systems/03x_entities_09_systems                     1.23   308.8±24.75µs        ? ?/sec      1.00    251.6±8.93µs        ? ?/sec
busy_systems/03x_entities_12_systems                     1.05   347.7±12.43µs        ? ?/sec      1.00   330.6±11.43µs        ? ?/sec
busy_systems/03x_entities_15_systems                     1.13   455.5±13.88µs        ? ?/sec      1.00   401.7±17.29µs        ? ?/sec
busy_systems/04x_entities_03_systems                     1.24    144.7±5.89µs        ? ?/sec      1.00    116.9±6.29µs        ? ?/sec
busy_systems/04x_entities_06_systems                     1.24   282.8±21.40µs        ? ?/sec      1.00   228.6±21.31µs        ? ?/sec
busy_systems/04x_entities_09_systems                     1.35   431.8±14.10µs        ? ?/sec      1.00    319.6±9.83µs        ? ?/sec
busy_systems/04x_entities_12_systems                     1.16   493.8±22.87µs        ? ?/sec      1.00   424.9±15.24µs        ? ?/sec
busy_systems/04x_entities_15_systems                     1.10   587.5±23.25µs        ? ?/sec      1.00   531.7±16.32µs        ? ?/sec
busy_systems/05x_entities_03_systems                     1.14    148.2±9.61µs        ? ?/sec      1.00    129.5±4.32µs        ? ?/sec
busy_systems/05x_entities_06_systems                     1.31   359.7±17.46µs        ? ?/sec      1.00   273.6±10.55µs        ? ?/sec
busy_systems/05x_entities_09_systems                     1.22   473.5±23.11µs        ? ?/sec      1.00   389.3±13.62µs        ? ?/sec
busy_systems/05x_entities_12_systems                     1.05   562.9±20.76µs        ? ?/sec      1.00   536.5±24.35µs        ? ?/sec
busy_systems/05x_entities_15_systems                     1.23   818.5±28.70µs        ? ?/sec      1.00   666.6±45.87µs        ? ?/sec
contrived/01x_entities_03_systems                        1.27     27.5±0.49µs        ? ?/sec      1.00     21.6±1.71µs        ? ?/sec
contrived/01x_entities_06_systems                        1.22     49.9±1.18µs        ? ?/sec      1.00     40.7±2.62µs        ? ?/sec
contrived/01x_entities_09_systems                        1.30     72.3±2.39µs        ? ?/sec      1.00     55.4±2.60µs        ? ?/sec
contrived/01x_entities_12_systems                        1.28     94.3±9.44µs        ? ?/sec      1.00     73.7±3.62µs        ? ?/sec
contrived/01x_entities_15_systems                        1.25    118.0±2.43µs        ? ?/sec      1.00     94.1±3.99µs        ? ?/sec
contrived/02x_entities_03_systems                        1.23     41.6±1.71µs        ? ?/sec      1.00     33.7±2.30µs        ? ?/sec
contrived/02x_entities_06_systems                        1.19     78.6±2.63µs        ? ?/sec      1.00     65.9±2.35µs        ? ?/sec
contrived/02x_entities_09_systems                        1.28    113.6±3.60µs        ? ?/sec      1.00     88.6±3.60µs        ? ?/sec
contrived/02x_entities_12_systems                        1.20    146.4±5.75µs        ? ?/sec      1.00    121.7±3.35µs        ? ?/sec
contrived/02x_entities_15_systems                        1.23    178.5±4.86µs        ? ?/sec      1.00    145.7±4.00µs        ? ?/sec
contrived/03x_entities_03_systems                        1.42     58.3±2.77µs        ? ?/sec      1.00     41.1±1.54µs        ? ?/sec
contrived/03x_entities_06_systems                        1.32    108.5±7.30µs        ? ?/sec      1.00     82.4±4.86µs        ? ?/sec
contrived/03x_entities_09_systems                        1.23    153.7±4.61µs        ? ?/sec      1.00    125.0±4.76µs        ? ?/sec
contrived/03x_entities_12_systems                        1.18    197.5±5.12µs        ? ?/sec      1.00    166.8±8.14µs        ? ?/sec
contrived/03x_entities_15_systems                        1.23    238.8±6.38µs        ? ?/sec      1.00    194.6±4.55µs        ? ?/sec
contrived/04x_entities_03_systems                        1.34     66.4±3.42µs        ? ?/sec      1.00     49.5±1.98µs        ? ?/sec
contrived/04x_entities_06_systems                        1.27    134.3±4.86µs        ? ?/sec      1.00    105.8±3.58µs        ? ?/sec
contrived/04x_entities_09_systems                        1.26    193.2±3.83µs        ? ?/sec      1.00    153.0±5.60µs        ? ?/sec
contrived/04x_entities_12_systems                        1.16    237.1±5.78µs        ? ?/sec      1.00   204.9±18.77µs        ? ?/sec
contrived/04x_entities_15_systems                        1.17    289.2±4.76µs        ? ?/sec      1.00    246.3±8.57µs        ? ?/sec
contrived/05x_entities_03_systems                        1.26     80.4±2.90µs        ? ?/sec      1.00     63.7±3.07µs        ? ?/sec
contrived/05x_entities_06_systems                        1.27   161.6±13.47µs        ? ?/sec      1.00    127.2±5.59µs        ? ?/sec
contrived/05x_entities_09_systems                        1.22    228.0±7.76µs        ? ?/sec      1.00    186.2±7.68µs        ? ?/sec
contrived/05x_entities_12_systems                        1.20    289.5±6.21µs        ? ?/sec      1.00    241.8±7.52µs        ? ?/sec
contrived/05x_entities_15_systems                        1.18   357.3±11.24µs        ? ?/sec      1.00    302.7±7.21µs        ? ?/sec
heavy_compute/base                                       1.01    302.4±3.52µs        ? ?/sec      1.00    300.2±3.40µs        ? ?/sec
iter_fragmented/base                                     1.00    348.1±7.51ns        ? ?/sec      1.01    351.9±8.32ns        ? ?/sec
iter_fragmented/foreach                                  1.03   239.8±23.78ns        ? ?/sec      1.00   233.8±18.12ns        ? ?/sec
iter_fragmented/foreach_wide                             1.00      3.9±0.13µs        ? ?/sec      1.02      4.0±0.22µs        ? ?/sec
iter_fragmented/wide                                     1.18      4.6±0.15µs        ? ?/sec      1.00      3.9±0.10µs        ? ?/sec
iter_fragmented_sparse/base                              1.02      8.1±0.15ns        ? ?/sec      1.00      7.9±0.56ns        ? ?/sec
iter_fragmented_sparse/foreach                           1.00      7.8±0.22ns        ? ?/sec      1.01      7.9±0.62ns        ? ?/sec
iter_fragmented_sparse/foreach_wide                      1.00     37.2±1.17ns        ? ?/sec      1.10     40.9±0.95ns        ? ?/sec
iter_fragmented_sparse/wide                              1.09     48.4±2.13ns        ? ?/sec      1.00    44.5±18.34ns        ? ?/sec
iter_simple/base                                         1.02      8.4±0.10µs        ? ?/sec      1.00      8.2±0.14µs        ? ?/sec
iter_simple/foreach                                      1.01      8.3±0.07µs        ? ?/sec      1.00      8.2±0.09µs        ? ?/sec
iter_simple/foreach_sparse_set                           1.00     25.3±0.32µs        ? ?/sec      1.02     25.7±0.42µs        ? ?/sec
iter_simple/foreach_wide                                 1.03     41.1±0.94µs        ? ?/sec      1.00     39.9±0.41µs        ? ?/sec
iter_simple/foreach_wide_sparse_set                      1.05    123.6±2.05µs        ? ?/sec      1.00    118.1±2.78µs        ? ?/sec
iter_simple/sparse_set                                   1.14     30.5±1.40µs        ? ?/sec      1.00     26.9±0.64µs        ? ?/sec
iter_simple/system                                       1.01      8.4±0.25µs        ? ?/sec      1.00      8.4±0.11µs        ? ?/sec
iter_simple/wide                                         1.18     48.2±0.62µs        ? ?/sec      1.00     40.7±0.38µs        ? ?/sec
iter_simple/wide_sparse_set                              1.12   140.8±21.56µs        ? ?/sec      1.00    126.0±2.30µs        ? ?/sec
query_get/50000_entities_sparse                          1.17    378.6±7.60µs        ? ?/sec      1.00   324.1±23.17µs        ? ?/sec
query_get/50000_entities_table                           1.08   330.9±10.90µs        ? ?/sec      1.00    306.8±4.98µs        ? ?/sec
query_get_component/50000_entities_sparse                1.00   976.7±19.55µs        ? ?/sec      1.00   979.8±35.87µs        ? ?/sec
query_get_component/50000_entities_table                 1.00  1029.0±15.11µs        ? ?/sec      1.05  1080.0±59.18µs        ? ?/sec
query_get_component_simple/system                        1.13   839.7±14.18µs        ? ?/sec      1.00   742.8±10.72µs        ? ?/sec
query_get_component_simple/unchecked                     1.01   909.0±15.17µs        ? ?/sec      1.00   898.0±13.56µs        ? ?/sec
query_get_many_10/50000_calls_sparse                     1.04      5.5±0.54ms        ? ?/sec      1.00      5.3±0.67ms        ? ?/sec
query_get_many_10/50000_calls_table                      1.01      4.9±0.49ms        ? ?/sec      1.00      4.8±0.45ms        ? ?/sec
query_get_many_2/50000_calls_sparse                      1.28  848.4±210.89µs        ? ?/sec      1.00   664.8±47.69µs        ? ?/sec
query_get_many_2/50000_calls_table                       1.05   779.0±73.85µs        ? ?/sec      1.00   739.2±83.02µs        ? ?/sec
query_get_many_5/50000_calls_sparse                      1.05      2.4±0.37ms        ? ?/sec      1.00      2.3±0.33ms        ? ?/sec
query_get_many_5/50000_calls_table                       1.00  1939.9±75.22µs        ? ?/sec      1.04      2.0±0.19ms        ? ?/sec
run_criteria/yes_using_query/001_systems                 1.00      3.7±0.38µs        ? ?/sec      1.30      4.9±0.14µs        ? ?/sec
run_criteria/yes_using_query/006_systems                 1.00      8.9±0.40µs        ? ?/sec      1.17     10.3±0.57µs        ? ?/sec
run_criteria/yes_using_query/011_systems                 1.00     13.9±0.49µs        ? ?/sec      1.08     15.0±0.89µs        ? ?/sec
run_criteria/yes_using_query/016_systems                 1.00     18.8±0.74µs        ? ?/sec      1.00     18.8±1.43µs        ? ?/sec
run_criteria/yes_using_query/021_systems                 1.07     24.1±0.87µs        ? ?/sec      1.00     22.6±1.58µs        ? ?/sec
run_criteria/yes_using_query/026_systems                 1.04     27.9±0.62µs        ? ?/sec      1.00     26.8±1.71µs        ? ?/sec
run_criteria/yes_using_query/031_systems                 1.09     33.3±1.03µs        ? ?/sec      1.00     30.5±2.18µs        ? ?/sec
run_criteria/yes_using_query/036_systems                 1.14     38.7±0.80µs        ? ?/sec      1.00     33.9±1.75µs        ? ?/sec
run_criteria/yes_using_query/041_systems                 1.18     43.7±1.07µs        ? ?/sec      1.00     37.0±2.39µs        ? ?/sec
run_criteria/yes_using_query/046_systems                 1.14     47.6±1.16µs        ? ?/sec      1.00     41.9±2.09µs        ? ?/sec
run_criteria/yes_using_query/051_systems                 1.17     52.9±2.04µs        ? ?/sec      1.00     45.3±1.75µs        ? ?/sec
run_criteria/yes_using_query/056_systems                 1.25     59.2±2.38µs        ? ?/sec      1.00     47.2±2.01µs        ? ?/sec
run_criteria/yes_using_query/061_systems                 1.28    66.1±15.84µs        ? ?/sec      1.00     51.5±2.47µs        ? ?/sec
run_criteria/yes_using_query/066_systems                 1.28     70.2±2.57µs        ? ?/sec      1.00     54.7±2.58µs        ? ?/sec
run_criteria/yes_using_query/071_systems                 1.30     75.5±2.27µs        ? ?/sec      1.00     58.2±3.31µs        ? ?/sec
run_criteria/yes_using_query/076_systems                 1.26     81.5±2.66µs        ? ?/sec      1.00     64.5±3.13µs        ? ?/sec
run_criteria/yes_using_query/081_systems                 1.29     89.7±2.58µs        ? ?/sec      1.00     69.3±3.47µs        ? ?/sec
run_criteria/yes_using_query/086_systems                 1.33     95.6±3.39µs        ? ?/sec      1.00     71.8±3.48µs        ? ?/sec
run_criteria/yes_using_query/091_systems                 1.25    102.0±3.67µs        ? ?/sec      1.00     81.4±4.82µs        ? ?/sec
run_criteria/yes_using_query/096_systems                 1.33    111.7±3.29µs        ? ?/sec      1.00     83.8±4.15µs        ? ?/sec
run_criteria/yes_using_query/101_systems                 1.29   113.2±12.04µs        ? ?/sec      1.00     87.7±5.15µs        ? ?/sec
world_query_for_each/50000_entities_sparse               1.00     47.4±0.51µs        ? ?/sec      1.00     47.3±0.33µs        ? ?/sec
world_query_for_each/50000_entities_table                1.00     27.2±0.50µs        ? ?/sec      1.00     27.2±0.17µs        ? ?/sec
world_query_get/50000_entities_sparse_wide               1.09    210.5±1.78µs        ? ?/sec      1.00    192.5±2.61µs        ? ?/sec
world_query_get/50000_entities_table                     1.00    127.7±2.09µs        ? ?/sec      1.07    136.2±5.95µs        ? ?/sec
world_query_get/50000_entities_table_wide                1.00    209.8±2.37µs        ? ?/sec      1.15    240.6±2.04µs        ? ?/sec
world_query_iter/50000_entities_sparse                   1.00     54.2±0.36µs        ? ?/sec      1.01     54.7±0.61µs        ? ?/sec
world_query_iter/50000_entities_table                    1.00     27.2±0.31µs        ? ?/sec      1.00     27.3±0.64µs        ? ?/sec
```
</details>

NOTE: This PR includes a change to enable LTO on our benchmarks to get a "fully optimized" baseline for our benchmarks. Both the main and the current PR's results were with LTO enabled.
2022-11-04 06:04:55 +00:00
Boxy
30e35764a1 Replace WorldQueryGats trait with actual gats (#6319)
# Objective

Replace `WorldQueryGats` trait with actual gats

## Solution

Replace `WorldQueryGats` trait with actual gats

---

## Changelog

- Replaced `WorldQueryGats` trait with actual gats

## Migration Guide

- Replace usage of `WorldQueryGats` assoc types with the actual gats on `WorldQuery` trait
2022-11-03 16:33:05 +00:00
James Liu
fe7ebd4326 Clean up Fetch code (#4800)
# Objective
Clean up code surrounding fetch by pulling out the common parts into the iteration code.

## Solution
Merge `Fetch::table_fetch` and `Fetch::archetype_fetch` into a single API: `Fetch::fetch(&mut self, entity: &Entity, table_row: &usize)`. This provides everything any fetch requires to internally decide which storage to read from and get the underlying data. All of these functions are marked as `#[inline(always)]` and the arguments are passed as references to attempt to optimize out the argument that isn't being used.

External to `Fetch`, Query iteration has been changed to keep track of the table row and entity outside of fetch, which moves a lot of the expensive bookkeeping `Fetch` structs had previously done internally into the outer loop.

~~TODO: Benchmark, docs~~ Done.

---

## Changelog
Changed: `Fetch::table_fetch` and `Fetch::archetype_fetch` have been merged into a single `Fetch::fetch` function.

## Migration Guide
TODO

Co-authored-by: Brian Merchant <bhmerchang@gmail.com>
Co-authored-by: Saverio Miroddi <saverio.pub2@gmail.com>
2022-10-28 09:25:50 +00:00
Boxy
54cf45c5b3 Avoid making Fetchs Clone (#5593)
# Objective

- Do not implement `Copy` or `Clone` for `Fetch` types as this is kind of sus soundness wise (it feels like cloning an `IterMut` in safe code to me). Cloning a fetch seems important to think about soundness wise when doing it so I prefer this over adding a `Clone` bound to the assoc type definition (i.e. `type Fetch: Clone`) even though that would also solve the other listed things here.
- Remove a bunch of `QueryFetch<'w, Q>: Clone` bounds from our API as now all fetches can be "cloned" for use in `iter_combinations`. This should also help avoid the type inference regression ptrification introduced where `for<'a> QueryFetch<'a, Q>: Trait` bounds misbehave since we no longer need any of those kind of higher ranked bounds (although in practice we had none anyway).
- Stop being able to "forget" to implement clone for fetches, we've had a lot of issues where either `derive(Clone)` was used instead of a manual impl (so we ended up with too tight bounds on the impl) or flat out forgot to implement Clone at all. With this change all fetches are able to be cloned for `iter_combinations` so this will no longer be possible to mess up.

On an unrelated note, while making this PR I realised we probably want safety invariants on `archetype/table_fetch` that nothing aliases the table_row/archetype_index according to the access we set.

---

## Changelog

`Clone` and `Copy` were removed from all `Fetch` types.

## Migration Guide

- Call `WorldQuery::clone_fetch` instead of `fetch.clone()`. Make sure to add safety comments :)
2022-10-26 13:16:25 +00:00
Carter Weinberg
c6f27eb054 Add More Description to the Iter Combinations Documentation (#6260)
# Objective

I was trying to implement a collision system for my game, and believed that the iter_combinations method might be what I need. But I couldn't find a simple explanation of what a combination was in Bevy and thought it could use some more explanation. 

## Solution

I added some description to the documentation that can hopefully further elaborate on what a combination is. 

I also changed up the docs for the method because a combination is a different thing than a permutation but the Bevy docs seemed to use them interchangeably.
2022-10-25 00:19:23 +00:00
Theo Ottah
45e5eb1db3 Remove ExactSizeIterator from QueryCombinationIter (#5895)
# Objective

- `QueryCombinationIter` can have sizes greater than `usize::MAX`.
- Fixes #5846 

## Solution

- Only the implementation of `ExactSizeIterator` has been removed. Instead of using `query_combination.len()`, you can use `query_combination.size_hint().0` to get the same value as before.

---

## Migration Guide

- Switch to using other methods of getting the length.
2022-10-24 23:03:15 +00:00
ira
e4af823b45 Clarify the behaviour of iter_many in the docs (#5973)
Add the following message:
```
Items are returned in the order of the list of entities.
Entities that don't match the query are skipped.
```

Additionally, the docs in `iter.rs` and `state.rs` were updated to match those in `query.rs`.

Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-10-24 13:46:38 +00:00
JoJoJet
89c4b77bdd Add a method for accessing the width of a Table (#6249)
# Objective

There is currently no good way of getting the width (# of components) of a table outside of `bevy_ecs`.

# Solution

Added the methods `Table::{component_count, component_capacity}`
For consistency and clarity, renamed `Table::{len, capacity}` to `entity_count` and `entity_capacity`.

## Changelog

- Added the methods `Table::component_count` and `Table::component_capacity`
- Renamed `Table::len` and `Table::capacity` to `entity_count` and `entity_capacity`

## Migration Guide

Any use of `Table::len` should now be `Table::entity_count`. Any use of `Table::capacity` should now be `Table::entity_capacity`.
2022-10-17 13:47:02 +00:00
targrub
d0e294c86b Query filter types must be ReadOnlyWorldQuery (#6008)
# Objective

Fixes Issue #6005.

## Solution

Replaced WorldQuery with ReadOnlyWorldQuery on F generic in Query filters and QueryState to restrict its trait bound.

## Migration Guide

Query filter (`F`) generics are now bound by `ReadOnlyWorldQuery`, rather than `WorldQuery`. If for some reason you were requesting `Query<&A, &mut B>`, please use `Query<&A, With<B>>` instead.
2022-09-18 23:52:01 +00:00
Federico Rinaldi
5597fc54d2 Add documentation to QueryCombinationIter (#5739)
# Objective

- Document `QueryCombinationIter`

## Solution

- Describe the item, add usage and examples
- Copy notes about the number of query items generated from the corresponding query methods (they will be removed in #5742 ([motivation]))

## Additional notes

- Derived from #4989 

[motivation]: https://github.com/bevyengine/bevy/pull/4989#issuecomment-1208421496
2022-08-30 00:39:17 +00:00
Boxy
eabcd27d93 make WorldQuery very flat (#5205)
# Objective

Simplify the worldquery trait hierarchy as much as possible by putting it all in one trait. If/when gats are stabilised this can be trivially migrated over to use them, although that's not why I made this PR, those reasons are:
- Moves all of the conceptually related unsafe code for a worldquery next to eachother
- Removes now unnecessary traits simplifying the "type system magic" in bevy_ecs

---

## Changelog

All methods/functions/types/consts on `FetchState` and `Fetch` traits have been moved to the `WorldQuery` trait and the other traits removed. `WorldQueryGats` now only contains an `Item` and `Fetch` assoc type.

## Migration Guide
Implementors should move items in impls to the `WorldQuery/Gats` traits and remove any `Fetch`/`FetchState` impls
Any use sites of items in the `Fetch`/`FetchState` traits should be updated to use the `WorldQuery` trait items instead


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-04 21:51:02 +00:00
ira
83a9e16158 Replace many_for_each_mut with iter_many_mut. (#5402)
# Objective
Replace `many_for_each_mut` with `iter_many_mut` using the same tricks to avoid aliased mutability that `iter_combinations_mut` uses.

<sub>I tried rebasing the draft PR I made for this before and it died. F</sub>
## Why
`many_for_each_mut` is worse for a few reasons:
1. The closure prevents the use of `continue`, `break`, and `return` behaves like a limited `continue`.
2. rustfmt will crumple it and double the indentation when the line gets too long.
    ```rust
    query.many_for_each_mut(
        &entity_list,
        |(mut transform, velocity, mut component_c)| {
            // Double trouble.
        },
    );
    ```
3. It is more surprising to have `many_for_each_mut` as a mutable counterpart to `iter_many` than `iter_many_mut`.
4. It required a separate unsafe fn; more unsafe code to maintain.
5. The `iter_many_mut` API matches the existing `iter_combinations_mut` API.

Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-07-30 01:38:13 +00:00
Boxy
be19c696bd Add missing ReadOnly = Self bound (#5462)
# Objective
`ReadOnlyWorldQuery` should have required `Self::ReadOnly = Self` so that calling `.iter()` on a readonly query is equivelent to calling `iter_mut()`.

## Solution

add `ReadOnly = Self` to the definition of `ReadOnlyWorldQuery`

---

## Changelog

ReadOnlyWorldQuery's `ReadOnly` assoc type is now always equal to `Self`

## Migration Guide

Make `Self::ReadOnly = Self` hold
2022-07-27 06:49:36 +00:00
Boxy
1ac8a476cf remove QF generics from all Query/State methods and types (#5170)
# Objective

remove `QF` generics from a bunch of types and methods on query related items. this has a few benefits:
- simplifies type signatures `fn iter(&self) -> QueryIter<'_, 's, Q::ReadOnly, F::ReadOnly>` is (imo) conceptually simpler than `fn iter(&self) -> QueryIter<'_, 's, Q, ROQueryFetch<'_, Q>, F>`
- `Fetch` is mostly an implementation detail but previously we had to expose it on every `iter` `get` etc method
- Allows us to potentially in the future simplify the `WorldQuery` trait hierarchy by removing the `Fetch` trait

## Solution

remove the `QF` generic and add a way to (unsafely) turn `&QueryState<Q1, F1>` into `&QueryState<Q2, F2>`

---

## Changelog/Migration Guide

The `QF` generic was removed from various `Query` iterator types and some methods, you should update your code to use the type of the corresponding worldquery of the fetch type that was being used, or call `as_readonly`/`as_nop` to convert a querystate to the appropriate type. For example:
`.get_single_unchecked_manual::<ROQueryFetch<Q>>(..)` -> `.as_readonly().get_single_unchecked_manual(..)`
`my_field: QueryIter<'w, 's, Q, ROQueryFetch<'w, Q>, F>` -> `my_field: QueryIter<'w, 's, Q::ReadOnly, F::ReadOnly>`
2022-07-19 00:45:00 +00:00
Nicola Papale
6c06fc5b7c Add ExactSizeIterator implementation for QueryCombinatonIter (#5148)
Following https://github.com/bevyengine/bevy/pull/5124 I decided to add the `ExactSizeIterator` impl for `QueryCombinationIter`.

Also:
- Clean up the tests for `size_hint` and `len` for both the normal `QueryIter` and `QueryCombinationIter`.
- Add tests to `QueryCombinationIter` when it shouldn't be `ExactSizeIterator`

---

## Changelog

- Added `ExactSizeIterator` implementation for `QueryCombinatonIter`
2022-07-13 16:08:48 +00:00
Jakob Hellermann
d38a8dfdd7 add more SAFETY comments and lint for missing ones in bevy_ecs (#4835)
# Objective

`SAFETY` comments are meant to be placed before `unsafe` blocks and should contain the reasoning of why in this case the usage of unsafe is okay. This is useful when reading the code because it makes it clear which assumptions are required for safety, and makes it easier to spot possible unsoundness holes. It also forces the code writer to think of something to write and maybe look at the safety contracts of any called unsafe methods again to double-check their correct usage.

There's a clippy lint called `undocumented_unsafe_blocks` which warns when using a block without such a comment. 

## Solution

- since clippy expects `SAFETY` instead of `SAFE`, rename those
- add `SAFETY` comments in more places
- for the last remaining 3 places, add an `#[allow()]` and `// TODO` since I wasn't comfortable enough with the code to justify their safety
- add ` #![warn(clippy::undocumented_unsafe_blocks)]` to `bevy_ecs`


### Note for reviewers

The first commit only renames `SAFETY` to `SAFE` so it doesn't need a thorough review.
cb042a416e..55cef2d6fa is the diff for all other changes.

### Safety comments where I'm not too familiar with the code

774012ece5/crates/bevy_ecs/src/entity/mod.rs (L540-L546)

774012ece5/crates/bevy_ecs/src/world/entity_ref.rs (L249-L252)

### Locations left undocumented with a `TODO` comment

5dde944a30/crates/bevy_ecs/src/schedule/executor_parallel.rs (L196-L199)

5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L287-L289)

5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L413-L415)

Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
2022-07-04 14:44:24 +00:00
Carter Anderson
96f0ebb9af Fix rust 1.62 changes (#5154)
# Objective

CI is now failing with some changes that landed in 1.62.

## Solution

* Fix an unused lifetime by using it (we double-used the `w` lifetime).
* Update compile_fail error messages
* temporarily disable check-unused-dependencies
2022-06-30 19:24:28 +00:00
harudagondi
6e50b249a4 Update ExactSizeIterator impl to support archetypal filters (With, Without) (#5124)
# Objective

- Fixes #3142

## Solution

- Done according to #3142
- Created new marker trait `ArchetypeFilter`
- Implement said trait to:
  - `With<T>`
  - `Without<T>`
  - tuples containing only types that implement `ArchetypeFilter`, from 0 to 15 elements
  - `Or<T>` where T is a tuple as described previously
- Changed `ExactSizeIterator` impl to include a new generic that must implement `WorldQuery` and `ArchetypeFilter`
- Added new tests

---

## Changelog

### Added
- `Query`s with archetypal filters can now use `.iter().len()` to get the exact size of the iterator.
2022-06-29 02:15:28 +00:00
Boxy
407c080e59 Replace ReadOnlyFetch with ReadOnlyWorldQuery (#4626)
# Objective

- Fix a type inference regression introduced by #3001
- Make read only bounds on world queries more user friendly

ptrification required you to write `Q::Fetch: ReadOnlyFetch` as `for<'w> QueryFetch<'w, Q>: ReadOnlyFetch` which has the same type inference problem as `for<'w> QueryFetch<'w, Q>: FilterFetch<'w>` had, i.e. the following code would error:
```rust
#[derive(Component)]
struct Foo;

fn bar(a: Query<(&Foo, Without<Foo>)>) {
    foo(a);
}

fn foo<Q: WorldQuery>(a: Query<Q, ()>)
where
    for<'w> QueryFetch<'w, Q>: ReadOnlyFetch,
{
}
```
`for<..>` bounds are also rather user unfriendly..

## Solution

Remove the `ReadOnlyFetch` trait in favour of a `ReadOnlyWorldQuery` trait, and remove `WorldQueryGats::ReadOnlyFetch` in favor of `WorldQuery::ReadOnly` allowing the previous code snippet to be written as:
```rust
#[derive(Component)]
struct Foo;

fn bar(a: Query<(&Foo, Without<Foo>)>) {
    foo(a);
}

fn foo<Q: ReadOnlyWorldQuery>(a: Query<Q, ()>) {}
``` 
This avoids the `for<...>` bound which makes the code simpler and also fixes the type inference issue.

The reason for moving the two functions out of `FetchState` and into `WorldQuery` is to allow the world query `&mut T` to share a `State` with the `&T` world query so that it can have `type ReadOnly = &T`. Presumably it would be possible to instead have a `ReadOnlyRefMut<T>` world query and then do `type ReadOnly = ReadOnlyRefMut<T>` much like how (before this PR) we had a `ReadOnlyWriteFetch<T>`. A side benefit of the current solution in this PR is that it will likely make it easier in the future to support an API such as `Query<&mut T> -> Query<&T>`. The primary benefit IMO is just that `ReadOnlyRefMut<T>` and its associated fetch would have to reimplement all of the logic that the `&T` world query impl does but this solution avoids that :)

---

## Changelog/Migration Guide

The trait `ReadOnlyFetch` has been replaced with `ReadOnlyWorldQuery` along with the `WorldQueryGats::ReadOnlyFetch` assoc type which has been replaced with `<WorldQuery::ReadOnly as WorldQueryGats>::Fetch`
- Any where clauses such as `QueryFetch<Q>: ReadOnlyFetch` should be replaced with `Q: ReadOnlyWorldQuery`.
- Any custom world query impls should implement `ReadOnlyWorldQuery` insead of `ReadOnlyFetch`

Functions `update_component_access` and `update_archetype_component_access` have been moved from the `FetchState` trait to `WorldQuery`
- Any callers should now call `Q::update_component_access(state` instead of `state.update_component_access` (and `update_archetype_component_access` respectively)
- Any custom world query impls should move the functions from the `FetchState` impl to `WorldQuery` impl

`WorldQuery` has been made an `unsafe trait`, `FetchState` has been made a safe `trait`. (I think this is how it should have always been, but regardless this is _definitely_ necessary now that the two functions have been moved to `WorldQuery`)
- If you have a custom `FetchState` impl make it a normal `impl` instead of `unsafe impl`
- If you have a custom `WorldQuery` impl make it an `unsafe impl`, if your code was sound before it is going to still be sound
2022-06-13 23:35:54 +00:00
James Liu
f2b545049c Implement FusedIterator for eligible Iterator types (#4942)
# Objective
Most of our `Iterator` impls satisfy the requirements of `std::iter::FusedIterator`, which has internal specialization that optimizes `Interator::fuse`. The std lib iterator combinators do have a few that rely on `fuse`, so this could optimize those use cases. I don't think we're using any of them in the engine itself, but beyond a light increase in compile time, it doesn't hurt to implement the trait.

## Solution
Implement the trait for all eligible iterators in first party crates. Also add a missing `ExactSizeIterator` on an iterator that could use it.
2022-06-09 03:19:31 +00:00
ira
92ddfe8ad4 Add methods for querying lists of entities. (#4879)
# Objective
Improve querying ergonomics around collections and iterators of entities.

Example how queries over Children might be done currently. 
```rust
fn system(foo_query: Query<(&Foo, &Children)>, bar_query: Query<(&Bar, &Children)>) {
    for (foo, children) in &foo_query {
        for child in children.iter() {
            if let Ok((bar, children)) = bar_query.get(*child) {
                for child in children.iter() {
                    if let Ok((foo, children)) = foo_query.get(*child) {
                        // D:
                    }
                }
            }
        }
    }
}
```
Answers #4868
Partially addresses #4864
Fixes #1470
## Solution
Based on the great work by @deontologician in #2563 

Added `iter_many` and `many_for_each_mut` to `Query`.
These take a list of entities (Anything that implements `IntoIterator<Item: Borrow<Entity>>`).

`iter_many` returns a `QueryManyIter` iterator over immutable results of a query (mutable data will be cast to an immutable form).

`many_for_each_mut` calls a closure for every result of the query, ensuring not aliased mutability. 
This iterator goes over the list of entities in order and returns the result from the query for it. Skipping over any entities that don't match the query.

Also added `unsafe fn iter_many_unsafe`.

### Examples
```rust
#[derive(Component)]
struct Counter {
    value: i32
}

#[derive(Component)]
struct Friends {
    list: Vec<Entity>,
}

fn system(
    friends_query: Query<&Friends>,
    mut counter_query: Query<&mut Counter>,
) {
    for friends in &friends_query {
        for counter in counter_query.iter_many(&friends.list) {
            println!("Friend's counter: {:?}", counter.value);
        }
        
        counter_query.many_for_each_mut(&friends.list, |mut counter| {
            counter.value += 1;
            println!("Friend's counter: {:?}", counter.value);
        });
    }
}

```

Here's how example in the Objective section can be written with this PR.
```rust
fn system(foo_query: Query<(&Foo, &Children)>, bar_query: Query<(&Bar, &Children)>) {
    for (foo, children) in &foo_query {
        for (bar, children) in bar_query.iter_many(children) {
            for (foo, children) in foo_query.iter_many(children) {
                // :D
            }
        }
    }
}
```
## Additional changes
Implemented `IntoIterator` for `&Children` because why not.
## Todo
- Bikeshed!

Co-authored-by: deontologician <deontologician@gmail.com>

Co-authored-by: devil-ira <justthecooldude@gmail.com>
2022-06-06 16:09:16 +00:00
Félix Lescaudey de Maneville
f000c2b951 Clippy improvements (#4665)
# Objective

Follow up to my previous MR #3718 to add new clippy warnings to bevy:

- [x] [~~option_if_let_else~~](https://rust-lang.github.io/rust-clippy/master/#option_if_let_else) (reverted)
- [x] [redundant_else](https://rust-lang.github.io/rust-clippy/master/#redundant_else)
- [x] [match_same_arms](https://rust-lang.github.io/rust-clippy/master/#match_same_arms)
- [x] [semicolon_if_nothing_returned](https://rust-lang.github.io/rust-clippy/master/#semicolon_if_nothing_returned)
- [x] [explicit_iter_loop](https://rust-lang.github.io/rust-clippy/master/#explicit_iter_loop)
- [x] [map_flatten](https://rust-lang.github.io/rust-clippy/master/#map_flatten)

There is one commit per clippy warning, and the matching flags are added to the CI execution.

To test the CI execution you may run `cargo run -p ci -- clippy` at the root.

I choose the add the flags in the `ci` tool crate to avoid having them in every `lib.rs` but I guess it could become an issue with suprise warnings coming up after a commit/push


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-05-31 01:38:07 +00:00
Hennadii Chernyshchyk
c02beabe22 Add QueryState::get_single_unchecked_manual and its family (#4841)
# Objective

- Rebase of #3159.
- Fixes https://github.com/bevyengine/bevy/issues/3156
- add #[inline] to single related functions so that they matches with other function defs

## Solution

* added functions to QueryState
  *  get_single_unchecked_manual
  *  get_single_unchecked
  *  get_single
  *  get_single_mut
  *  single
  *  single_mut
* make Query::get_single use QueryState::get_single_unchecked_manual
* added #[inline]

---

## Changelog

### Added

Functions `QueryState::single`, `QueryState::get_single`, `QueryState::single_mut`, `QueryState::get_single_mut`, `QueryState::get_single_unchecked`, `QueryState::get_single_unchecked_manual`.

### Changed

`QuerySingleError` is now in the `state` module.

## Migration Guide

Change `query::QuerySingleError` to `state::QuerySingleError`


Co-authored-by: 2ne1ugly <chattermin@gmail.com>
Co-authored-by: 2ne1ugly <47616772+2ne1ugly@users.noreply.github.com>
2022-05-30 16:41:33 +00:00
James Liu
2c93b5cf73 Reduce code duplication by using QueryIterationCursor in QueryIter (#4733)
# Objective
We have duplicated code between `QueryIter` and `QueryIterationCursor`. Reuse that code.

## Solution
 - Reuse `QueryIterationCursor` inside `QueryIter`.
 - Slim down `QueryIter` by removing the `&'w World`. It was only being used by the `size_hint` and `ExactSizeIterator` impls, which can use the QueryState and &Archetypes in the type already.
 - Benchmark to make sure there is no significant regression.

Relevant benchmark results seem to show that there is no tangible difference between the two. Everything seems to be either identical or within a workable margin of error here.

```
group                                          embed-cursor                            main
-----                                          ------------                            ----
fragmented_iter/base                           1.00   387.4±19.70ns        ? ?/sec     1.07   413.1±27.95ns        ? ?/sec
many_maps_iter                                 1.00     27.3±0.22ms        ? ?/sec     1.00     27.4±0.10ms        ? ?/sec
simple_iter/base                               1.00     13.8±0.07µs        ? ?/sec     1.00     13.7±0.17µs        ? ?/sec
simple_iter/sparse                             1.00     61.9±0.37µs        ? ?/sec     1.00     62.2±0.64µs        ? ?/sec
simple_iter/system                             1.00     13.7±0.34µs        ? ?/sec     1.00     13.7±0.10µs        ? ?/sec
sparse_fragmented_iter/base                    1.00     11.0±0.54ns        ? ?/sec     1.03     11.3±0.48ns        ? ?/sec
world_query_iter/50000_entities_sparse         1.08    105.0±2.68µs        ? ?/sec     1.00     97.5±2.18µs        ? ?/sec
world_query_iter/50000_entities_table          1.00     27.3±0.13µs        ? ?/sec     1.00     27.3±0.37µs        ? ?/sec
```
2022-05-18 18:34:52 +00:00
Boxy
96b4956126 Fix CI (#4675) 2022-05-06 18:27:37 +00:00
TheRawMeatball
73c78c3667 Use lifetimed, type erased pointers in bevy_ecs (#3001)
# Objective

`bevy_ecs` has large amounts of unsafe code which is hard to get right and makes it difficult to audit for soundness.

## Solution

Introduce lifetimed, type-erased pointers: `Ptr<'a>` `PtrMut<'a>` `OwningPtr<'a>'` and `ThinSlicePtr<'a, T>` which are newtypes around a raw pointer with a lifetime and conceptually representing strong invariants about the pointee and validity of the pointer.

The process of converting bevy_ecs to use these has already caught multiple cases of unsound behavior.

## Changelog

TL;DR for release notes: `bevy_ecs` now uses lifetimed, type-erased pointers internally, significantly improving safety and legibility without sacrificing performance. This should have approximately no end user impact, unless you were meddling with the (unfortunately public) internals of `bevy_ecs`.

- `Fetch`, `FilterFetch` and `ReadOnlyFetch` trait no longer have a `'state` lifetime
    - this was unneeded
- `ReadOnly/Fetch` associated types on `WorldQuery` are now on a new `WorldQueryGats<'world>` trait
    - was required to work around lack of Generic Associated Types (we wish to express `type Fetch<'a>: Fetch<'a>`)
- `derive(WorldQuery)` no longer requires `'w` lifetime on struct
    - this was unneeded, and improves the end user experience
- `EntityMut::get_unchecked_mut` returns `&'_ mut T` not `&'w mut T`
    - allows easier use of unsafe API with less footguns, and can be worked around via lifetime transmutery as a user
- `Bundle::from_components` now takes a `ctx` parameter to pass to the `FnMut` closure
    - required because closure return types can't borrow from captures
- `Fetch::init` takes `&'world World`, `Fetch::set_archetype` takes `&'world Archetype` and `&'world Tables`, `Fetch::set_table` takes `&'world Table`
    - allows types implementing `Fetch` to store borrows into world
- `WorldQuery` trait now has a `shrink` fn to shorten the lifetime in `Fetch::<'a>::Item`
    - this works around lack of subtyping of assoc types, rust doesnt allow you to turn `<T as Fetch<'static>>::Item'` into `<T as Fetch<'a>>::Item'`
    - `QueryCombinationsIter` requires this
- Most types implementing `Fetch` now have a lifetime `'w`
    - allows the fetches to store borrows of world data instead of using raw pointers

## Migration guide

- `EntityMut::get_unchecked_mut` returns a more restricted lifetime, there is no general way to migrate this as it depends on your code
- `Bundle::from_components` implementations must pass the `ctx` arg to `func`
- `Bundle::from_components` callers have to use a fn arg instead of closure captures for borrowing from world
- Remove lifetime args on `derive(WorldQuery)` structs as it is nonsensical
- `<Q as WorldQuery>::ReadOnly/Fetch` should be changed to either `RO/QueryFetch<'world>` or `<Q as WorldQueryGats<'world>>::ReadOnly/Fetch`
- `<F as Fetch<'w, 's>>` should be changed to `<F as Fetch<'w>>`
- Change the fn sigs of `Fetch::init/set_archetype/set_table` to match respective trait fn sigs
- Implement the required `fn shrink` on any `WorldQuery` implementations
- Move assoc types `Fetch` and `ReadOnlyFetch` on `WorldQuery` impls to `WorldQueryGats` impls
- Pass an appropriate `'world` lifetime to whatever fetch struct you are for some reason using

### Type inference regression

in some cases rustc may give spurrious errors when attempting to infer the `F` parameter on a query/querystate this can be fixed by manually specifying the type, i.e. `QueryState:🆕:<_, ()>(world)`. The error is rather confusing:

```rust=
error[E0271]: type mismatch resolving `<() as Fetch<'_>>::Item == bool`
    --> crates/bevy_pbr/src/render/light.rs:1413:30
     |
1413 |             main_view_query: QueryState::new(world),
     |                              ^^^^^^^^^^^^^^^ expected `bool`, found `()`
     |
     = note: required because of the requirements on the impl of `for<'x> FilterFetch<'x>` for `<() as WorldQueryGats<'x>>::Fetch`
note: required by a bound in `bevy_ecs::query::QueryState::<Q, F>::new`
    --> crates/bevy_ecs/src/query/state.rs:49:32
     |
49   |     for<'x> QueryFetch<'x, F>: FilterFetch<'x>,
     |                                ^^^^^^^^^^^^^^^ required by this bound in `bevy_ecs::query::QueryState::<Q, F>::new`
```

---

Made with help from @BoxyUwU and @alice-i-cecile 

Co-authored-by: Boxy <supbscripter@gmail.com>
2022-04-27 23:44:06 +00:00
Nicola Papale
71a246ce9e Improve QueryIter size_hint hints (#4244)
## Objective

This fixes #1686.

`size_hint` can be useful even if a little niche. For example,
`collect::<Vec<_>>()` uses the `size_hint` of Iterator it collects from
to pre-allocate a memory slice large enough to not require re-allocating
when pushing all the elements of the iterator.

## Solution

To this effect I made the following changes:
* Add a `IS_ARCHETYPAL` associated constant to the `Fetch` trait,
  this constant tells us when it is safe to assume that the `Fetch`
  relies exclusively on archetypes to filter queried entities
* Add `IS_ARCHETYPAL` to all the implementations of `Fetch`
* Use that constant in `QueryIter::size_hint` to provide a more useful

## Migration guide

The new associated constant is an API breaking change. For the user,
if they implemented a custom `Fetch`, it means they have to add this
associated constant to their implementation. Either `true` if it doesn't limit
the number of entities returned in a query beyond that of archetypes, or
`false` for when it does.
2022-04-27 18:02:06 +00:00
KDecay
506642744c docs: Fix private doc links and enable CI test (#3743)
# Objective

Fixes #3566

## Solution

- [x] Fix broken links in private docs.
- [x] Add the `--document-private-items` flag to the CI.

## Note

The following was said by @killercup in #3566:

> I don't have time to confirm this but I assume that linking to private items throws an error/warning when just running cargo doc, and --document-private-item might actually hide that warning. So to test this, you'd have to run it twice.

I tested this and this is thankfully not the case. If you are linking to a private item you will get a warning no matter if you run `cargo doc` or `cargo doc --document-private-items`.

### Example

I added `struct Test;` to `bevy_core/src/name.rs` and linked to it inside of a doc comment using ``[`Test`]``. After that I ran `cargo doc -p bevy_core --document-private-items` using `RUSTDOCFLAGS="-D warnings"` and got the following output (note the last sentence):

```rust
error: public documentation for `Name` links to private item `Test`
  --> crates/bevy_core/src/name.rs:11:82
   |
11 | /// Component used to identify an entity. Stores a hash for faster comparisons [`Test`]
   |                                                                                  ^^^^ this item is private
   |
   = note: `-D rustdoc::private-intra-doc-links` implied by `-D warnings`
   = note: this link resolves only because you passed `--document-private-items`, but will break without
```
2022-02-02 21:47:29 +00:00
Michael Dorst
507441d96f Fix doc_markdown lints in bevy_ecs (#3473)
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.

This PR fixes lints in the `bevy_ecs` crate.
2022-01-06 00:43:37 +00:00
Joshua Chapman
274ace790b Implement iter() for mutable Queries (#2305)
A sample implementation of how to have `iter()` work on mutable queries without breaking aliasing rules.

# Objective

- Fixes #753

## Solution

- Added a ReadOnlyFetch to WorldQuery that is the `&T` version of `&mut T` that is used to specify the return type for read only operations like `iter()`.
- ~~As the comment suggests specifying the bound doesn't work due to restrictions on defining recursive implementations (like `Or`). However bounds on the functions are fine~~ Never mind I misread how `Or` was constructed, bounds now exist.
- Note that the only mutable one has a new `Fetch` for readonly as the `State` has to be the same for any of this to work


Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-12-01 23:28:10 +00:00
Paweł Grabarz
07ed1d053e Implement and require #[derive(Component)] on all component structs (#2254)
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.

In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.

This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.

One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.


Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-10-03 19:23:44 +00:00
Boxy
155068a090 Add 's (state) lifetime to Fetch (#2515)
Allows iterators to return things that borrow data from `QueryState`, needed this in my relations PR figure might be worth landing separately maybe
2021-07-29 21:14:22 +00:00
Boxy
5ffff03b33 Fix some nightly clippy lints (#2522)
on nightly these two clippy lints fail:
- [needless_borrow](https://rust-lang.github.io/rust-clippy/master/#needless_borrow)
- [unused_unit](https://rust-lang.github.io/rust-clippy/master/#unused_unit)
2021-07-29 20:52:15 +00:00
Nathan Ward
19db1e402b [ecs] implement is_empty for queries (#2271)
## Problem
- The `Query` struct does not provide an easy way to check if it is empty. 
- Specifically, users have to use `.iter().peekable()` or `.iter().next().is_none()` which is not very ergonomic. 
- Fixes: #2270 

## Solution
- Implement an `is_empty` function for queries to more easily check if the query is empty.
2021-06-02 20:50:06 +00:00
Paweł Grabarz
a81fb7aa7e Add a method iter_combinations on query to iterate over combinations of query results (#1763)
Related to [discussion on discord](https://discord.com/channels/691052431525675048/742569353878437978/824731187724681289)

With const generics, it is now possible to write generic iterator over multiple entities at once.

This enables patterns of query iterations like

```rust
for [e1, e2, e3] in query.iter_combinations() {
   // do something with relation of all three entities
}
```

The compiler is able to infer the correct iterator for given size of array, so either of those work
```rust
for [e1, e2] in query.iter_combinations()  { ... }
for [e1, e2, e3] in query.iter_combinations()  { ... }
```

This feature can be very useful for systems like collision detection.

When you ask for permutations of size K of N entities:
- if K == N, you get one result of all entities
- if K < N, you get all possible subsets of N with size K, without repetition
- if K > N, the result set is empty (no permutation of size K exist)

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2021-05-17 23:33:47 +00:00