# Objective
- Fixes https://github.com/bevyengine/bevy/issues/16556
- Closes https://github.com/bevyengine/bevy/issues/11807
## Solution
- Simplify custom projections by using a single source of truth -
`Projection`, removing all existing generic systems and types.
- Existing perspective and orthographic structs are no longer components
- I could dissolve these to simplify further, but keeping them around
was the fast way to implement this.
- Instead of generics, introduce a third variant, with a trait object.
- Do an object safety dance with an intermediate trait to allow cloning
boxed camera projections. This is a normal rust polymorphism papercut.
You can do this with a crate but a manual impl is short and sweet.
## Testing
- Added a custom projection example
---
## Showcase
- Custom projections and projection handling has been simplified.
- Projection systems are no longer generic, with the potential for many
different projection components on the same camera.
- Instead `Projection` is now the single source of truth for camera
projections, and is the only projection component.
- Custom projections are still supported, and can be constructed with
`Projection::custom()`.
## Migration Guide
- `PerspectiveProjection` and `OrthographicProjection` are no longer
components. Use `Projection` instead.
- Custom projections should no longer be inserted as a component.
Instead, simply set the custom projection as a value of `Projection`
with `Projection::custom()`.
# Objective
Some sort calls and `Ord` impls are unnecessarily complex.
## Solution
Rewrite the "match on cmp, if equal do another cmp" as either a
comparison on tuples, or `Ordering::then_with`, depending on whether the
compare keys need construction.
`sort_by` -> `sort_by_key` when symmetrical. Do the same for
`min_by`/`max_by`.
Note that `total_cmp` can only work with `sort_by`, and not on tuples.
When sorting collected query results that contain
`Entity`/`MainEntity`/`RenderEntity` in their `QueryData`, with that
`Entity` in the sort key:
stable -> unstable sort (all queried entities are unique)
If key construction is not simple, switch to `sort_by_cached_key` when
possible.
Sorts that are only performed to discover the maximal element are
replaced by `max_by_key`.
Dedicated comparison functions and structs are removed where simple.
Derive `PartialOrd`/`Ord` when useful.
Misc. closure style inconsistencies.
## Testing
- Existing tests.
# Objective
Fixes#17024
## Solution
## Testing
By adding
```
if let Some(mut cmd) = commands.get_entity( *equipment_link_node ){
cmd.insert(Visibility::Inherited); // a hack for now
}
```
in my build after .set_parent() , this fixes the issue. This is why i
think that this change will fix the issue. Unfortunately i was not able
to test the Changed (parent ) , this actual code change, because no
matter how i 'patch', it breaks my project. I got super close but still
had 23 errors due to Reflect being angry.
---
This commit makes the following changes:
* `IndirectParametersBuffer` has been changed from a `BufferVec` to a
`RawBufferVec`. This won about 20us or so on Bistro by avoiding `encase`
overhead.
* The methods on the `GetFullBatchData` trait no longer have the
`entity` parameter, as it was unused.
* `PreprocessWorkItem`, which specifies a transform-and-cull operation,
now supplies the mesh instance uniform output index directly instead of
having the shader look it up from the indirect draw parameters.
Accordingly, the responsibility of writing the output index to the
indirect draw parameters has been moved from the CPU to the GPU. This is
in preparation for retained indirect instance draw commands, where the
mesh instance uniform output index may change from frame to frame, while
the indirect instance draw commands will be cached. We won't want the
CPU to have to upload the same indirect draw parameters again and again
if a batch didn't change from frame to frame.
* `batch_and_prepare_binned_render_phase` and
`batch_and_prepare_sorted_render_phase` now allocate indirect draw
commands for an entire batch set at a time when possible, instead of one
batch at a time. This change will allow us to retain the indirect draw
commands for whole batch sets.
* `GetFullBatchData::get_batch_indirect_parameters_index` has been
replaced with `GetFullBatchData::write_batch_indirect_parameters`, which
takes an offset and writes into it instead of allocating. This is
necessary in order to use the optimization mentioned in the previous
point.
* At the WGSL level, `IndirectParameters` has been factored out into
`mesh_preprocess_types.wgsl`. This is because we'll need a new compute
shader that zeroes out the instance counts in preparation for a new
frame. That shader will need to access `IndirectParameters`, so it was
moved to a separate file.
* Bins are no longer raw vectors but are instances of a separate type,
`RenderBin`. This is so that the bin can eventually contain its retained
batches.
OK, so this is tricky. Every frame, `delete_old_work_item_buffers`
deletes the mesh preprocessing index buffers (a.k.a. work item buffers)
for views that don't have `ViewTarget`s. This was always wrong for
shadow map views, as shadow maps only have `ExtractedView` components,
not `ViewTarget`s. However, before #16836, the problem was masked,
because uploading the mesh preprocessing index buffers for shadow views
had already completed by the time `delete_old_work_item_buffers` ran.
But PR #16836 moved `delete_old_work_item_buffers` from the
`ManageViews` phase to `PrepareResources`, which runs before
`write_batched_instance_buffers` uploads the work item buffers to the
GPU.
This itself isn't wrong, but it exposed the bug, because now it's
possible for work item buffers to get deleted before they're uploaded in
`write_batched_instance_buffers`. This is actually intermittent! It's
possible for the old work item buffers to get deleted, and then
*recreated* in `batch_and_prepare_binned_render_phase`, which runs
during `PrepareResources` as well, and under that system ordering, there
will be no problem other than a little inefficiency arising from
recreating the buffers every frame. But, if
`delete_old_work_item_buffers` runs *after*
`batch_and_prepare_render_phase`, then the work item buffers
corresponding to shadow views will get deleted, and then the shadows
will disappear.
The fact that this is racy is what made it look like #16922 solved the
issue. In fact, it didn't: it just perturbed the ordering on the build
bots enough that the issue stopped appearing. However, on my system, the
shadows still don't appear with #16922.
This commit solves the problem by making `delete_old_work_item_buffers`
look at `ExtractedView`s, not `ViewTarget`s, preventing work item
buffers corresponding to live shadow map views from being deleted.
# Objective
Fix alignment calculations in our rendering code.
Fixes#16992
The `gpu_readback::align_byte_size` function incorrectly rounds aligned
values to the next alignment.
If we assume the alignment to be 256 (because that's what wgpu says it
its) the function would align 0 to 256, 256 to 512, etc...
## Solution
Forward the `gpu_readback::align_byte_size` to
`RenderDevice::align_copy_bytes_per_row` so we don't implement the same
method twice.
Simplify `RenderDevice::align_copy_bytes_per_row`.
## Testing
Ran the code provided in #16992 to see if the issue has been solved +
added a test to check if `align_copy_bytes_per_row` returns the correct
values.
# Objective
Fixes#16683
## Solution
Make all fields ine `RawHandleWrapper` private.
## Testing
- CI
- `cargo clippy`
- The lightmaps example
---
## Migration Guide
The `window_handle` and `dispay_handle` fields on `RawHandleWrapper` are
no longer public. Use the newly added getters and setters to manipulate
them instead.
# Objective
- Related to https://github.com/bevyengine/bevy/issues/11478
## Solution
- Moved `futures.rs`, `ConditionalSend` `ConditionalSendFuture` and
`BoxedFuture` from `bevy_utils` to `bevy_tasks`.
## Testing
- CI checks
## Migration Guide
- Several modules were moved from `bevy_utils` into `bevy_tasks`:
- Replace `bevy_utils::futures` imports with `bevy_tasks::futures`.
- Replace `bevy_utils::ConditionalSend` with
`bevy_tasks::ConditionalSend`.
- Replace `bevy_utils::ConditionalSendFuture` with
`bevy_tasks::ConditionalSendFuture`.
- Replace `bevy_utils::BoxedFuture` with `bevy_tasks::BoxedFuture`.
# Objective
Fixes#16104
## Solution
I removed all instances of `:?` and put them back one by one where it
caused an error.
I removed some bevy_utils helper functions that were only used in 2
places and don't add value. See: #11478
## Testing
CI should catch the mistakes
## Migration Guide
`bevy::utils::{dbg,info,warn,error}` were removed. Use
`bevy::utils::tracing::{debug,info,warn,error}` instead.
---------
Co-authored-by: SpecificProtagonist <vincentjunge@posteo.net>
# Objective
Some types like `RenderEntity` and `MainEntity` are just wrappers around
`Entity`, so they should be able to implement
`EntityBorrow`/`TrustedEntityBorrow`. This allows using them with
`EntitySet` functionality.
The `EntityRef` family are more than direct wrappers around `Entity`,
but can still benefit from being unique in a collection.
## Solution
Implement `EntityBorrow` and `TrustedEntityBorrow` for simple `Entity`
newtypes and `EntityRef` types.
These impls are an explicit decision to have the `EntityRef` types
compare like just `Entity`.
`EntityWorldMut` is omitted from this impl, because it explicitly
contains a `&mut World` as well, and we do not ever use more than one at
a time.
Add `EntityBorrow` to the `bevy_ecs` prelude.
## Migration Guide
`NormalizedWindowRef::entity` has been replaced with an
`EntityBorrow::entity` impl.
This commit fixes the following regressions:
1. Transmission-specific calls to shader lighting functions didn't pass
the `enable_diffuse` parameter, breaking the `transmission` example.
2. The combination of bindless `StandardMaterial` and bindless lightmaps
caused us to blow past the 128 texture limit on M1/M2 chips in some
cases, in particular the `depth_of_field` example.
https://github.com/gfx-rs/wgpu/issues/3334 should fix this, but in the
meantime this patch reduces the number of bindless lightmaps from 16 to
4 in order to stay under the limit.
3. The renderer was crashing on startup on Adreno 610 chips. This PR
simply disables bindless on Adreno 610 and lower.
# Objective
- Fixes#16892
## Solution
- Removed `TypeRegistryPlugin` (`Name` is now automatically registered
with a default `App`)
- Moved `TaskPoolPlugin` to `bevy_app`
- Moved `FrameCountPlugin` to `bevy_diagnostic`
- Deleted now-empty `bevy_core`
## Testing
- CI
## Migration Guide
- `TypeRegistryPlugin` no longer exists. If you can't use a default
`App` but still need `Name` registered, do so manually with
`app.register_type::<Name>()`.
- References to `TaskPoolPlugin` and associated types will need to
import it from `bevy_app` instead of `bevy_core`
- References to `FrameCountPlugin` and associated types will need to
import it from `bevy_diagnostic` instead of `bevy_core`
## Notes
This strategy was agreed upon by Cart and several other members in
[Discord](https://discord.com/channels/691052431525675048/692572690833473578/1319137218312278077).
# Objective
Simplify the code by using `macro_rules` instead of a proc macro where
possible.
## Solution
Replace `impl_param_set` proc macro with a `macro_rules` macro.
# Objective
I have something of a niche use case. I have a camera rendering pixel
art with a scale factor set, and another camera that renders to an
off-screen texture which is supposed to match the main camera exactly.
However, when computing camera target info, Bevy [hardcodes a scale
factor of
1.0](116c2b02fe/crates/bevy_render/src/camera/camera.rs (L828))
for image targets which means that my main camera and my image target
camera get different `OrthographicProjections` calculated.
## Solution
This PR adds an `ImageRenderTarget` struct which allows scale factors to
be specified.
## Testing
I tested the affected examples on macOS and they still work. This is an
additive change and should not break any existing code, apart from what
is trivially fixable by following compiler error messages.
---
## Migration Guide
`RenderTarget::Image` now takes an `ImageRenderTarget` instead of a
`Handle<Image>`. You can call `handle.into()` to construct an
`ImageRenderTarget` using the same settings as before.
# Objective
When preparing `GpuImage`s, we currently discard the
`depth_or_array_layers` of the `Image`'s size by converting it into a
`UVec2`.
Fixes#16715.
## Solution
Change `GpuImage::size` to `Extent3d`, and just pass that through when
creating `GpuImage`s.
Also copy the `aspect_ratio`, and `size` (now `size_2d` for
disambiguation from the field) functions from `Image` to `GpuImage` for
ease of use with 2D textures.
I originally copied all size-related functions (like `width`, and
`height`), but i think they are unnecessary considering how visible the
`size` field on `GpuImage` is compared to `Image`.
## Testing
Tested via `cargo r -p ci` for everything except docs, when generating
docs it keeps spitting out a ton of
```
error[E0554]: `#![feature]` may not be used on the stable release channel
--> crates/bevy_dylib/src/lib.rs:1:21
|
1 | #![cfg_attr(docsrs, feature(doc_auto_cfg))]
|
```
Not sure why this is happening, but it also happens without my changes,
so it's almost certainly some strange issue specific to my machine.
## Migration Guide
- `GpuImage::size` is now an `Extent3d`. To easily get 2D size, use
`size_2d()`.
# Objective
Expand `track_change_detection` feature to also track entity spawns and
despawns. Use this to create better error messages.
# Solution
Adds `Entities::entity_get_spawned_or_despawned_by` as well as `{all
entity reference types}::spawned_by`.
This also removes the deprecated `get_many_entities_mut` & co (and
therefore can't land in 0.15) because we don't yet have no Polonius.
## Testing
Added a test that checks that the locations get updated and these
updates are ordered correctly vs hooks & observers.
---
## Showcase
Access location:
```rust
let mut world = World::new();
let entity = world.spawn_empty().id();
println!("spawned by: {}", world.entity(entity).spawned_by());
```
```
spawned by: src/main.rs:5:24
```
Error message (with `track_change_detection`):
```rust
world.despawn(entity);
world.entity(entity);
```
```
thread 'main' panicked at src/main.rs:11:11:
Entity 0v1#4294967296 was despawned by src/main.rs:10:11
```
and without:
```
thread 'main' panicked at src/main.rs:11:11:
Entity 0v1#4294967296 does not exist (enable `track_change_detection` feature for more details)
```
Similar error messages now also exists for `Query::get`,
`World::entity_mut`, `EntityCommands` creation and everything that
causes `B0003`, e.g.
```
error[B0003]: Could not insert a bundle (of type `MaterialMeshBundle<StandardMaterial>`) for entity Entity { index: 7, generation: 1 }, which was despawned by src/main.rs:10:11. See: https://bevyengine.org/learn/errors/#b0003
```
---------
Co-authored-by: kurk070ff <108901106+kurk070ff@users.noreply.github.com>
Co-authored-by: Freya Pines <freya@MacBookAir.lan>
Co-authored-by: Freya Pines <freya@Freyas-MacBook-Air.local>
Co-authored-by: Matty Weatherley <weatherleymatthew@gmail.com>
Currently, `check_visibility` is parameterized over a query filter that
specifies the type of potentially-visible object. This has the
unfortunate side effect that we need a separate system,
`mark_view_visibility_as_changed_if_necessary`, to trigger view
visibility change detection. That system is quite slow because it must
iterate sequentially over all entities in the scene.
This PR moves the query filter from `check_visibility` to a new
component, `VisibilityClass`. `VisibilityClass` stores a list of type
IDs, each corresponding to one of the query filters we used to use.
Because `check_visibility` is no longer specialized to the query filter
at the type level, Bevy now only needs to invoke it once, leading to
better performance as `check_visibility` can do change detection on the
fly rather than delegating it to a separate system.
This commit also has ergonomic improvements, as there's no need for
applications that want to add their own custom renderable components to
add specializations of the `check_visibility` system to the schedule.
Instead, they only need to ensure that the `ViewVisibility` component is
properly kept up to date. The recommended way to do this, and the way
that's demonstrated in the `custom_phase_item` and
`specialized_mesh_pipeline` examples, is to make `ViewVisibility` a
required component and to add the type ID to it in a component add hook.
This patch does this for `Mesh3d`, `Mesh2d`, `Sprite`, `Light`, and
`Node`, which means that most app code doesn't need to change at all.
Note that, although this patch has a large impact on the performance of
visibility determination, it doesn't actually improve the end-to-end
frame time of `many_cubes`. That's because the render world was already
effectively hiding the latency from
`mark_view_visibility_as_changed_if_necessary`. This patch is, however,
necessary for *further* improvements to `many_cubes` performance.
`many_cubes` trace before:

`many_cubes` trace after:

## Migration Guide
* `check_visibility` no longer takes a `QueryFilter`, and there's no
need to add it manually to your app schedule anymore for custom
rendering items. Instead, entities with custom renderable components
should add the appropriate type IDs to `VisibilityClass`. See
`custom_phase_item` for an example.
# Objective
- Wgpu barrier tracking is expensive. Making buffers read-only makes
ideally lets wgpu skip worrying about barriers, although in wgpu 23 it
apparently won't yet.
## Solution
- Remove COPY_DST usage from AsBindGroup uniform buffers to allow future
wgpu versions to make this cheaper.
- AsBindGroup never updates buffers, so there's no need for COPY_DST. We
always recreate all buffers and the bind group every time data changes,
which yeah is also expensive.
## Testing
- Ran the animated materials example with/without bindless enabled. No
crashes.
This commit allows Bevy to bind 16 lightmaps at a time, if the current
platform supports bindless textures. Naturally, if bindless textures
aren't supported, Bevy falls back to binding only a single lightmap at a
time. As lightmaps are usually heavily atlased, I doubt many scenes will
use more than 16 lightmap textures.
This has little performance impact now, but it's desirable for us to
reap the benefits of multidraw and bindless textures on scenes that use
lightmaps. Otherwise, we might have to break batches in order to switch
those lightmaps.
Additionally, this PR slightly reduces the cost of binning because it
makes the lightmap index in `Opaque3dBinKey` 32 bits instead of an
`AssetId`.
## Migration Guide
* The `Opaque3dBinKey::lightmap_image` field is now
`Opaque3dBinKey::lightmap_slab`, which is a lightweight identifier for
an entire binding array of lightmaps.
# Objective
We were waiting for 1.83 to address most of these, due to a bug with
`missing_docs` and `expect`. Relates to, but does not entirely complete,
#15059.
## Solution
- Upgrade to 1.83
- Switch `allow(missing_docs)` to `expect(missing_docs)`
- Remove a few now-unused `allow`s along the way, or convert to `expect`
# Objective
Fixes#16659
## Solution
- I just added all the `#[reflect(Component)]` attributes where
necessary.
## Testing
I wrote a small program that scans the bevy code for all structs and
enums that derive `Component` and `Reflect`, but don't have the
attribute `#[reflect(Component)]`.
I don't know if this testing program should be part of the testing suite
of bevy. It takes a bit of time to scan the whole codebase. In any case,
I've published it [here](https://github.com/anlumo/bevy-reflect-check).
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
I forgot to set `BINDLESS_SLOT_COUNT` in `ExtendedMaterial`'s
implementation of `AsBindGroup`, so it didn't actually become bindless.
In fact, it would usually crash with a shader/bind group layout
mismatch, because some parts of Bevy's renderer thought that the
resulting material was bindless while other parts didn't. This commit
corrects the situation.
I had to make `BINDLESS_SLOT_COUNT` a function instead of a constant
because the `ExtendedMaterial` version needs some logic. Unfortunately,
trait methods can't be `const fn`s, so it has to be a runtime function.
# Objective
- Minor consistency improvement in proc macro code.
- Remove `get_path_direct` since it was only used once anyways and
doesn't add much.
## Solution
- Possibly a minor performance improvement since the `Cargo.toml` wont
be parsed as often.
## Testing
- I don't think it breaks anything.
- This is my first time working on bevy itself. Is there a script to do
a quick verify of my pr?
## Other PR
Similar to #7536 but has no extra dependencies.
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
- Describe the objective or issue this PR addresses.
- If you're fixing a specific issue, say "Fixes #X".
## Solution
- Describe the solution used to achieve the objective above.
## Testing
- Did you test these changes? If so, how?
- Are there any parts that need more testing?
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
---
## Showcase
> This section is optional. If this PR does not include a visual change
or does not add a new feature, you can delete this section.
- Help others understand the result of this PR by showcasing your
awesome work!
- If this PR adds a new feature or public API, consider adding a brief
pseudo-code snippet of it in action
- If this PR includes a visual change, consider adding a screenshot,
GIF, or video
- If you want, you could even include a before/after comparison!
- If the Migration Guide adequately covers the changes, you can delete
this section
While a showcase should aim to be brief and digestible, you can use a
toggleable section to save space on longer showcases:
<details>
<summary>Click to view showcase</summary>
```rust
println!("My super cool code.");
```
</details>
## Migration Guide
> This section is optional. If there are no breaking changes, you can
delete this section.
- If this PR is a breaking change (relative to the last release of
Bevy), describe how a user might need to migrate their code to support
these changes
- Simply adding new functionality is not a breaking change.
- Fixing behavior that was definitely a bug, rather than a questionable
design choice is not a breaking change.
This patch replaces the undocumented `NoGpuCulling` component with a new
component, `NoIndirectDrawing`, effectively turning indirect drawing on
by default. Indirect mode is needed for the recently-landed multidraw
feature (#16427). Since multidraw is such a win for performance, when
that feature is supported the small performance tax that indirect mode
incurs is virtually always worth paying.
To ensure that custom drawing code such as that in the
`custom_shader_instancing` example continues to function, this commit
additionally makes GPU culling take the `NoFrustumCulling` component
into account.
This PR is an alternative to #16670 that doesn't break the
`custom_shader_instancing` example. **PR #16755 should land first in
order to avoid breaking deferred rendering, as multidraw currently
breaks it**.
## Migration Guide
* Indirect drawing (GPU culling) is now enabled by default, so the
`GpuCulling` component is no longer available. To disable indirect mode,
which may be useful with custom render nodes, add the new
`NoIndirectDrawing` component to your camera.
This commit resolves most of the failures seen in #16670. It contains
two major fixes:
1. The prepass shaders weren't updated for bindless mode, so they were
accessing `material` as a single element instead of as an array. I added
the needed `BINDLESS` check.
2. If the mesh didn't support batch set keys (i.e. `get_batch_set_key()`
returns `None`), and multidraw was enabled, the batching logic would try
to multidraw all the meshes in a bin together instead of disabling
multidraw. This is because we checked whether the `Option<BatchSetKey>`
for the previous batch was equal to the `Option<BatchSetKey>` for the
next batch to determine whether objects could be multidrawn together,
which would return true if batch set keys were absent, causing an entire
bin to be multidrawn together. This patch fixes the logic so that
multidraw is only enabled if the batch set keys match *and are `Some`*.
Additionally, this commit adds batch key support for bins that use
`Opaque3dNoLightmapBinKey`, which in practice means prepasses.
Consequently, this patch enables multidraw for the prepass when GPU
culling is enabled.
When testing this patch, try adding `GpuCulling` to the camera in the
`deferred_rendering` and `ssr` examples. You can see that these examples
break without this patch and work properly with it.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Updating dependencies; adopted version of #15696. (Supercedes #15696.)
Long answer: hashbrown is no longer using ahash by default, meaning that
we can't use the default-hasher methods with ahasher. So, we have to use
the longer-winded versions instead. This takes the opportunity to also
switch our default hasher as well, but without actually enabling the
default-hasher feature for hashbrown, meaning that we'll be able to
change our hasher more easily at the cost of all of these method calls
being obnoxious forever.
One large change from 0.15 is that `insert_unique_unchecked` is now
`unsafe`, and for cases where unsafe code was denied at the crate level,
I replaced it with `insert`.
## Migration Guide
`bevy_utils` has updated its version of `hashbrown` to 0.15 and now
defaults to `foldhash` instead of `ahash`. This means that if you've
hard-coded your hasher to `bevy_utils::AHasher` or separately used the
`ahash` crate in your code, you may need to switch to `foldhash` to
ensure that everything works like it does in Bevy.
This commit makes `StandardMaterial` use bindless textures, as
implemented in PR #16368. Non-bindless mode, as used for example in
Metal and WebGL 2, remains fully supported via a plethora of `#ifdef
BINDLESS` preprocessor definitions.
Unfortunately, this PR introduces quite a bit of unsightliness into the
PBR shaders. This is a result of the fact that WGSL supports neither
passing binding arrays to functions nor passing individual *elements* of
binding arrays to functions, except directly to texture sample
functions. Thus we're unable to use the `sample_texture` abstraction
that helped abstract over the meshlet and non-meshlet paths. I don't
think there's anything we can do to help this other than to suggest
improvements to upstream Naga.
PR #15756 made us create temporary render entities for all visible
objects, even if they had no render world counterpart. This regressed
our `many_cubes` time from about 3.59 ms/frame to 4.66 ms/frame.
This commit changes that behavior to use `Entity::PLACEHOLDER` instead
of creating a temporary render entity. This improves our `many_cubes`
time from 5.66 ms/frame to 3.96 ms/frame, a 43% speedup.
I tested 3D, 2D gizmos, and UI and they seem to work.
See the following graph of `many_cubes` frame time (lower is better). PR
#15756 is the one in October.

This commit removes the logic that attempted to keep the
`MeshInputUniform` buffer contiguous. Not only was it slow and complex,
but it was also incorrect, which caused #16686 and #16690. I changed the
logic to simply maintain a free list of unused slots in the buffer and
preferentially fill them when pushing new mesh input uniforms.
Closes#16686.
Closes#16690.
# Objective
- A `Trigger` has multiple associated `Entity`s - the entity observing
the event, and the entity that was targeted by the event.
- The field `entity: Entity` encodes no semantic information about what
the entity is used for, you can already tell that it's an `Entity` by
the type signature!
## Solution
- Rename `trigger.entity()` to `trigger.target()`
---
## Changelog
- `Trigger`s are associated with multiple entities. `Trigger::entity()`
has been renamed to `Trigger::target()` to reflect the semantics of the
entity being returned.
## Migration Guide
- Rename `Trigger::entity()` to `Trigger::target()`.
- Rename `ObserverTrigger::entity` to `ObserverTrigger::target`
This commit adds support for *multidraw*, which is a feature that allows
multiple meshes to be drawn in a single drawcall. `wgpu` currently
implements multidraw on Vulkan, so this feature is only enabled there.
Multiple meshes can be drawn at once if they're in the same vertex and
index buffers and are otherwise placed in the same bin. (Thus, for
example, at present the materials and textures must be identical, but
see #16368.) Multidraw is a significant performance improvement during
the draw phase because it reduces the number of rebindings, as well as
the number of drawcalls.
This feature is currently only enabled when GPU culling is used: i.e.
when `GpuCulling` is present on a camera. Therefore, if you run for
example `scene_viewer`, you will not see any performance improvements,
because `scene_viewer` doesn't add the `GpuCulling` component to its
camera.
Additionally, the multidraw feature is only implemented for opaque 3D
meshes and not for shadows or 2D meshes. I plan to make GPU culling the
default and to extend the feature to shadows in the future. Also, in the
future I suspect that polyfilling multidraw on APIs that don't support
it will be fruitful, as even without driver-level support use of
multidraw allows us to avoid expensive `wgpu` rebindings.
# Objective
- Remove `derive_more`'s error derivation and replace it with
`thiserror`
## Solution
- Added `derive_more`'s `error` feature to `deny.toml` to prevent it
sneaking back in.
- Reverted to `thiserror` error derivation
## Notes
Merge conflicts were too numerous to revert the individual changes, so
this reversion was done manually. Please scrutinise carefully during
review.
The bindless PR (#16368) broke some examples:
* `specialized_mesh_pipeline` and `custom_shader_instancing` failed
because they expect to be able to render a mesh with no material, by
overriding enough of the render pipeline to be able to do so. This PR
fixes the issue by restoring the old behavior in which we extract meshes
even if they have no material.
* `texture_binding_array` broke because it doesn't implement
`AsBindGroup::unprepared_bind_group`. This was tricky to fix because
there's a very good reason why `texture_binding_array` doesn't implement
that method: there's no sensible way to do so with `wgpu`'s current
bindless API, due to its multiple levels of borrowed references. To fix
the example, I split `MaterialBindGroup` into
`MaterialBindlessBindGroup` and `MaterialNonBindlessBindGroup`, and
allow direct custom implementations of `AsBindGroup::as_bind_group` for
the latter type of bind groups. To opt in to the new behavior, return
the `AsBindGroupError::CreateBindGroupDirectly` error from your
`AsBindGroup::unprepared_bind_group` implementation, and Bevy will call
your custom `AsBindGroup::as_bind_group` method as before.
## Migration Guide
* Bevy will now unconditionally call
`AsBindGroup::unprepared_bind_group` for your materials, so you must no
longer panic in that function. Instead, return the new
`AsBindGroupError::CreateBindGroupDirectly` error, and Bevy will fall
back to calling `AsBindGroup::as_bind_group` as before.
This commit moves the front end of the rendering pipeline to a retained
model when GPU preprocessing is in use (i.e. by default, except in
constrained environments). `RenderMeshInstance` and `MeshUniformData`
are stored from frame to frame and are updated only for the entities
that changed state. This was rather tricky and requires some careful
surgery to keep the data valid in the case of removals.
This patch is built on top of Bevy's change detection. Generally, this
worked, except that `ViewVisibility` isn't currently properly tracked.
Therefore, this commit adds proper change tracking for `ViewVisibility`.
Doing this required adding a new system that runs after all
`check_visibility` invocations, as no single `check_visibility`
invocation has enough global information to detect changes.
On the Bistro exterior scene, with all textures forced to opaque, this
patch improves steady-state `extract_meshes_for_gpu_building` from
93.8us to 34.5us and steady-state `collect_meshes_for_gpu_building` from
195.7us to 4.28us. Altogether this constitutes an improvement from 290us
to 38us, which is a 7.46x speedup.


This patch is only lightly tested and shouldn't land before 0.15 is
released anyway, so I'm releasing it as a draft.
# Objective
- Required by #16622 due to differing implementations of `System` by
`FunctionSystem` and `ExclusiveFunctionSystem`.
- Optimize the memory usage of instances of `apply_deferred` in system
schedules.
## Solution
By changing `apply_deferred` from being an ordinary system that ends up
as an `ExclusiveFunctionSystem`, and instead into a ZST struct that
implements `System` manually, we save ~320 bytes per instance of
`apply_deferred` in any schedule.
## Testing
- All current tests pass.
---
## Migration Guide
- If you were previously calling the special `apply_deferred` system via
`apply_deferred(world)`, don't.
# Objective
- Fixes#16208
## Solution
- Added an associated type to `Component`, `Mutability`, which flags
whether a component is mutable, or immutable. If `Mutability= Mutable`,
the component is mutable. If `Mutability= Immutable`, the component is
immutable.
- Updated `derive_component` to default to mutable unless an
`#[component(immutable)]` attribute is added.
- Updated `ReflectComponent` to check if a component is mutable and, if
not, panic when attempting to mutate.
## Testing
- CI
- `immutable_components` example.
---
## Showcase
Users can now mark a component as `#[component(immutable)]` to prevent
safe mutation of a component while it is attached to an entity:
```rust
#[derive(Component)]
#[component(immutable)]
struct Foo {
// ...
}
```
This prevents creating an exclusive reference to the component while it
is attached to an entity. This is particularly powerful when combined
with component hooks, as you can now fully track a component's value,
ensuring whatever invariants you desire are upheld. Before this would be
done my making a component private, and manually creating a `QueryData`
implementation which only permitted read access.
<details>
<summary>Using immutable components as an index</summary>
```rust
/// This is an example of a component like [`Name`](bevy::prelude::Name), but immutable.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Component)]
#[component(
immutable,
on_insert = on_insert_name,
on_replace = on_replace_name,
)]
pub struct Name(pub &'static str);
/// This index allows for O(1) lookups of an [`Entity`] by its [`Name`].
#[derive(Resource, Default)]
struct NameIndex {
name_to_entity: HashMap<Name, Entity>,
}
impl NameIndex {
fn get_entity(&self, name: &'static str) -> Option<Entity> {
self.name_to_entity.get(&Name(name)).copied()
}
}
fn on_insert_name(mut world: DeferredWorld<'_>, entity: Entity, _component: ComponentId) {
let Some(&name) = world.entity(entity).get::<Name>() else {
unreachable!()
};
let Some(mut index) = world.get_resource_mut::<NameIndex>() else {
return;
};
index.name_to_entity.insert(name, entity);
}
fn on_replace_name(mut world: DeferredWorld<'_>, entity: Entity, _component: ComponentId) {
let Some(&name) = world.entity(entity).get::<Name>() else {
unreachable!()
};
let Some(mut index) = world.get_resource_mut::<NameIndex>() else {
return;
};
index.name_to_entity.remove(&name);
}
// Setup our name index
world.init_resource::<NameIndex>();
// Spawn some entities!
let alyssa = world.spawn(Name("Alyssa")).id();
let javier = world.spawn(Name("Javier")).id();
// Check our index
let index = world.resource::<NameIndex>();
assert_eq!(index.get_entity("Alyssa"), Some(alyssa));
assert_eq!(index.get_entity("Javier"), Some(javier));
// Changing the name of an entity is also fully capture by our index
world.entity_mut(javier).insert(Name("Steven"));
// Javier changed their name to Steven
let steven = javier;
// Check our index
let index = world.resource::<NameIndex>();
assert_eq!(index.get_entity("Javier"), None);
assert_eq!(index.get_entity("Steven"), Some(steven));
```
</details>
Additionally, users can use `Component<Mutability = ...>` in trait
bounds to enforce that a component _is_ mutable or _is_ immutable. When
using `Component` as a trait bound without specifying `Mutability`, any
component is applicable. However, methods which only work on mutable or
immutable components are unavailable, since the compiler must be
pessimistic about the type.
## Migration Guide
- When implementing `Component` manually, you must now provide a type
for `Mutability`. The type `Mutable` provides equivalent behaviour to
earlier versions of `Component`:
```rust
impl Component for Foo {
type Mutability = Mutable;
// ...
}
```
- When working with generic components, you may need to specify that
your generic parameter implements `Component<Mutability = Mutable>`
rather than `Component` if you require mutable access to said component.
- The entity entry API has had to have some changes made to minimise
friction when working with immutable components. Methods which
previously returned a `Mut<T>` will now typically return an
`OccupiedEntry<T>` instead, requiring you to add an `into_mut()` to get
the `Mut<T>` item again.
## Draft Release Notes
Components can now be made immutable while stored within the ECS.
Components are the fundamental unit of data within an ECS, and Bevy
provides a number of ways to work with them that align with Rust's rules
around ownership and borrowing. One part of this is hooks, which allow
for defining custom behavior at key points in a component's lifecycle,
such as addition and removal. However, there is currently no way to
respond to _mutation_ of a component using hooks. The reasons for this
are quite technical, but to summarize, their addition poses a
significant challenge to Bevy's core promises around performance.
Without mutation hooks, it's relatively trivial to modify a component in
such a way that breaks invariants it intends to uphold. For example, you
can use `core::mem::swap` to swap the components of two entities,
bypassing the insertion and removal hooks.
This means the only way to react to this modification is via change
detection in a system, which then begs the question of what happens
_between_ that alteration and the next run of that system?
Alternatively, you could make your component private to prevent
mutation, but now you need to provide commands and a custom `QueryData`
implementation to allow users to interact with your component at all.
Immutable components solve this problem by preventing the creation of an
exclusive reference to the component entirely. Without an exclusive
reference, the only way to modify an immutable component is via removal
or replacement, which is fully captured by component hooks. To make a
component immutable, simply add `#[component(immutable)]`:
```rust
#[derive(Component)]
#[component(immutable)]
struct Foo {
// ...
}
```
When implementing `Component` manually, there is an associated type
`Mutability` which controls this behavior:
```rust
impl Component for Foo {
type Mutability = Mutable;
// ...
}
```
Note that this means when working with generic components, you may need
to specify that a component is mutable to gain access to certain
methods:
```rust
// Before
fn bar<C: Component>() {
// ...
}
// After
fn bar<C: Component<Mutability = Mutable>>() {
// ...
}
```
With this new tool, creating index components, or caching data on an
entity should be more user friendly, allowing libraries to provide APIs
relying on components and hooks to uphold their invariants.
## Notes
- ~~I've done my best to implement this feature, but I'm not happy with
how reflection has turned out. If any reflection SMEs know a way to
improve this situation I'd greatly appreciate it.~~ There is an
outstanding issue around the fallibility of mutable methods on
`ReflectComponent`, but the DX is largely unchanged from `main` now.
- I've attempted to prevent all safe mutable access to a component that
does not implement `Component<Mutability = Mutable>`, but there may
still be some methods I have missed. Please indicate so and I will
address them, as they are bugs.
- Unsafe is an escape hatch I am _not_ attempting to prevent. Whatever
you do with unsafe is between you and your compiler.
- I am marking this PR as ready, but I suspect it will undergo fairly
major revisions based on SME feedback.
- I've marked this PR as _Uncontroversial_ based on the feature, not the
implementation.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
Co-authored-by: Nuutti Kotivuori <naked@iki.fi>
# Objective
Make documentation of a component's required components more visible by
moving it to the type's docs
## Solution
Change `#[require]` from a derive macro helper to an attribute macro.
Disadvantages:
- this silences any unused code warnings on the component, as it is used
by the macro!
- need to import `require` if not using the ecs prelude (I have not
included this in the migration guilde as Rust tooling already suggests
the fix)
---
## Showcase

---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com>
This patch adds the infrastructure necessary for Bevy to support
*bindless resources*, by adding a new `#[bindless]` attribute to
`AsBindGroup`.
Classically, only a single texture (or sampler, or buffer) can be
attached to each shader binding. This means that switching materials
requires breaking a batch and issuing a new drawcall, even if the mesh
is otherwise identical. This adds significant overhead not only in the
driver but also in `wgpu`, as switching bind groups increases the amount
of validation work that `wgpu` must do.
*Bindless resources* are the typical solution to this problem. Instead
of switching bindings between each texture, the renderer instead
supplies a large *array* of all textures in the scene up front, and the
material contains an index into that array. This pattern is repeated for
buffers and samplers as well. The renderer now no longer needs to switch
binding descriptor sets while drawing the scene.
Unfortunately, as things currently stand, this approach won't quite work
for Bevy. Two aspects of `wgpu` conspire to make this ideal approach
unacceptably slow:
1. In the DX12 backend, all binding arrays (bindless resources) must
have a constant size declared in the shader, and all textures in an
array must be bound to actual textures. Changing the size requires a
recompile.
2. Changing even one texture incurs revalidation of all textures, a
process that takes time that's linear in the total size of the binding
array.
This means that declaring a large array of textures big enough to
encompass the entire scene is presently unacceptably slow. For example,
if you declare 4096 textures, then `wgpu` will have to revalidate all
4096 textures if even a single one changes. This process can take
multiple frames.
To work around this problem, this PR groups bindless resources into
small *slabs* and maintains a free list for each. The size of each slab
for the bindless arrays associated with a material is specified via the
`#[bindless(N)]` attribute. For instance, consider the following
declaration:
```rust
#[derive(AsBindGroup)]
#[bindless(16)]
struct MyMaterial {
#[buffer(0)]
color: Vec4,
#[texture(1)]
#[sampler(2)]
diffuse: Handle<Image>,
}
```
The `#[bindless(N)]` attribute specifies that, if bindless arrays are
supported on the current platform, each resource becomes a binding array
of N instances of that resource. So, for `MyMaterial` above, the `color`
attribute is exposed to the shader as `binding_array<vec4<f32>, 16>`,
the `diffuse` texture is exposed to the shader as
`binding_array<texture_2d<f32>, 16>`, and the `diffuse` sampler is
exposed to the shader as `binding_array<sampler, 16>`. Inside the
material's vertex and fragment shaders, the applicable index is
available via the `material_bind_group_slot` field of the `Mesh`
structure. So, for instance, you can access the current color like so:
```wgsl
// `uniform` binding arrays are a non-sequitur, so `uniform` is automatically promoted
// to `storage` in bindless mode.
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
let color = material_color[mesh[in.instance_index].material_bind_group_slot];
...
}
```
Note that portable shader code can't guarantee that the current platform
supports bindless textures. Indeed, bindless mode is only available in
Vulkan and DX12. The `BINDLESS` shader definition is available for your
use to determine whether you're on a bindless platform or not. Thus a
portable version of the shader above would look like:
```wgsl
#ifdef BINDLESS
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
#else // BINDLESS
@group(2) @binding(0) var<uniform> material_color: Color;
#endif // BINDLESS
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
#ifdef BINDLESS
let color = material_color[mesh[in.instance_index].material_bind_group_slot];
#else // BINDLESS
let color = material_color;
#endif // BINDLESS
...
}
```
Importantly, this PR *doesn't* update `StandardMaterial` to be bindless.
So, for example, `scene_viewer` will currently not run any faster. I
intend to update `StandardMaterial` to use bindless mode in a follow-up
patch.
A new example, `shaders/shader_material_bindless`, has been added to
demonstrate how to use this new feature.
Here's a Tracy profile of `submit_graph_commands` of this patch and an
additional patch (not submitted yet) that makes `StandardMaterial` use
bindless. Red is those patches; yellow is `main`. The scene was Bistro
Exterior with a hack that forces all textures to opaque. You can see a
1.47x mean speedup.

## Migration Guide
* `RenderAssets::prepare_asset` now takes an `AssetId` parameter.
* Bin keys now have Bevy-specific material bind group indices instead of
`wgpu` material bind group IDs, as part of the bindless change. Use the
new `MaterialBindGroupAllocator` to map from bind group index to bind
group ID.
# Objective
Fixes#15941
## Solution
Created https://crates.io/crates/variadics_please and moved the code
there; updating references
`bevy_utils/macros` is deleted.
## Testing
cargo check
## Migration Guide
Use `variadics_please::{all_tuples, all_tuples_with_size}` instead of
`bevy::utils::{all_tuples, all_tuples_with_size}`.
# Objective
- Fixes: #15663
## Solution
- Add an `is_forward_plane` method to `Aabb`, and a `contains_aabb`
method to `Frustum`.
## Test
- I have created a frustum with an offset along with three unit tests to
evaluate the `contains_aabb` algorithm.
## Explanation for the Test Cases
- To facilitate the code review, I will explain how the frustum is
created. Initially, we create a frustum without any offset and then
create a cuboid that is just contained within it.
<img width="714" alt="image"
src="https://github.com/user-attachments/assets/a9ac53a2-f8a3-4e09-b20b-4ee71b27a099">
- Secondly, we move the cuboid by 2 units along both the x-axis and the
y-axis to make it more general.
## Reference
- [Frustum
Culling](https://learnopengl.com/Guest-Articles/2021/Scene/Frustum-Culling#)
- [AABB Plane
intersection](https://gdbooks.gitbooks.io/3dcollisions/content/Chapter2/static_aabb_plane.html)
---------
Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
# Objective
- Fixes#16363
- Ensure that someone using minimum version doesn't get the bugs that
were fixed in the 23.0.1 patch
## Solution
- Use wgpu 23.0.1
# Objective
- Refactor
## Solution
- Refactor
## Testing
- Ran 3d_scene
---
## Migration Guide
`RenderCreation::Manual` variant fields are now wrapped in a struct
called `RenderResources`
# Objective
`TemporaryRenderEntity` currently uses `SparseSet` storage, but doesn't
seem to fit the criteria for a component that would benefit from this.
Typical usage of `TemporaryRenderEntity` (and all current usages of it
in engine as far as I can tell) would be to spawn an entity with it once
and then iterate over it once to despawn that entity.
`SparseSet` is said to be useful for insert/removal perf at the cost of
iteration perf.
## Solution
Use the default table storage
## Testing
Possibly this could show up in stress tests like `many_buttons`. I
didn't do any benchmarking.
# Objective
Original motivation was a bundle I am migrating that is `Copy` which
needs to be synced to the render world. It probably doesn't actually
*need* to be `Copy`, so this isn't critical or anything.
I am continuing to use this bundle while bundles still exist to give
users an easier migration path.
## Solution
These ZSTs might as well be `Copy`. Add `Copy` derives.