711246aa34
24 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
dd812b3e49
|
Type safe retained render world (#15756)
# Objective In the Render World, there are a number of collections that are derived from Main World entities and are used to drive rendering. The most notable are: - `VisibleEntities`, which is generated in the `check_visibility` system and contains visible entities for a view. - `ExtractedInstances`, which maps entity ids to asset ids. In the old model, these collections were trivially kept in sync -- any extracted phase item could look itself up because the render entity id was guaranteed to always match the corresponding main world id. After #15320, this became much more complicated, and was leading to a number of subtle bugs in the Render World. The main rendering systems, i.e. `queue_material_meshes` and `queue_material2d_meshes`, follow a similar pattern: ```rust for visible_entity in visible_entities.iter::<With<Mesh2d>>() { let Some(mesh_instance) = render_mesh_instances.get_mut(visible_entity) else { continue; }; // Look some more stuff up and specialize the pipeline... let bin_key = Opaque2dBinKey { pipeline: pipeline_id, draw_function: draw_opaque_2d, asset_id: mesh_instance.mesh_asset_id.into(), material_bind_group_id: material_2d.get_bind_group_id().0, }; opaque_phase.add( bin_key, *visible_entity, BinnedRenderPhaseType::mesh(mesh_instance.automatic_batching), ); } ``` In this case, `visible_entities` and `render_mesh_instances` are both collections that are created and keyed by Main World entity ids, and so this lookup happens to work by coincidence. However, there is a major unintentional bug here: namely, because `visible_entities` is a collection of Main World ids, the phase item being queued is created with a Main World id rather than its correct Render World id. This happens to not break mesh rendering because the render commands used for drawing meshes do not access the `ItemQuery` parameter, but demonstrates the confusion that is now possible: our UI phase items are correctly being queued with Render World ids while our meshes aren't. Additionally, this makes it very easy and error prone to use the wrong entity id to look up things like assets. For example, if instead we ignored visibility checks and queued our meshes via a query, we'd have to be extra careful to use `&MainEntity` instead of the natural `Entity`. ## Solution Make all collections that are derived from Main World data use `MainEntity` as their key, to ensure type safety and avoid accidentally looking up data with the wrong entity id: ```rust pub type MainEntityHashMap<V> = hashbrown::HashMap<MainEntity, V, EntityHash>; ``` Additionally, we make all `PhaseItem` be able to provide both their Main and Render World ids, to allow render phase implementors maximum flexibility as to what id should be used to look up data. You can think of this like tracking at the type level whether something in the Render World should use it's "primary key", i.e. entity id, or needs to use a foreign key, i.e. `MainEntity`. ## Testing ##### TODO: This will require extensive testing to make sure things didn't break! Additionally, some extraction logic has become more complicated and needs to be checked for regressions. ## Migration Guide With the advent of the retained render world, collections that contain references to `Entity` that are extracted into the render world have been changed to contain `MainEntity` in order to prevent errors where a render world entity id is used to look up an item by accident. Custom rendering code may need to be changed to query for `&MainEntity` in order to look up the correct item from such a collection. Additionally, users who implement their own extraction logic for collections of main world entity should strongly consider extracting into a different collection that uses `MainEntity` as a key. Additionally, render phases now require specifying both the `Entity` and `MainEntity` for a given `PhaseItem`. Custom render phases should ensure `MainEntity` is available when queuing a phase item. |
||
![]() |
2d1b4939d2
|
Synchronize removed components with the render world (#15582)
# Objective Fixes #15560 Fixes (most of) #15570 Currently a lot of examples (and presumably some user code) depend on toggling certain render features by adding/removing a single component to an entity, e.g. `SpotLight` to toggle a light. Because of the retained render world this no longer works: Extract will add any new components, but when it is removed the entity persists unchanged in the render world. ## Solution Add `SyncComponentPlugin<C: Component>` that registers `SyncToRenderWorld` as a required component for `C`, and adds a component hook that will clear all components from the render world entity when `C` is removed. We add this plugin to `ExtractComponentPlugin` which fixes most instances of the problem. For custom extraction logic we can manually add `SyncComponentPlugin` for that component. We also rename `WorldSyncPlugin` to `SyncWorldPlugin` so we start a naming convention like all the `Extract` plugins. In this PR I also fixed a bunch of breakage related to the retained render world, stemming from old code that assumed that `Entity` would be the same in both worlds. I found that using the `RenderEntity` wrapper instead of `Entity` in data structures when referring to render world entities makes intent much clearer, so I propose we make this an official pattern. ## Testing Run examples like ``` cargo run --features pbr_multi_layer_material_textures --example clearcoat cargo run --example volumetric_fog ``` and see that they work, and that toggles work correctly. But really we should test every single example, as we might not even have caught all the breakage yet. --- ## Migration Guide The retained render world notes should be updated to explain this edge case and `SyncComponentPlugin` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Trashtalk217 <trashtalk217@gmail.com> |
||
![]() |
54006b107b
|
Migrate meshes and materials to required components (#15524)
# Objective A big step in the migration to required components: meshes and materials! ## Solution As per the [selected proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ): - Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle`. - Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`. - Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`, which wrap a `Handle<M>`. - Meshes *without* a mesh material should be rendered with a default material. The existence of a material is determined by `HasMaterial2d`/`HasMaterial3d`, which is required by `MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the generics. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, previously nothing was rendered. Now, it renders a white default `ColorMaterial` in 2D and a `StandardMaterial` in 3D (this can be overridden). Below, only every other entity has a material:   Why white? This is still open for discussion, but I think white makes sense for a *default* material, while *invalid* asset handles pointing to nothing should have something like a pink material to indicate that something is broken (I don't handle that in this PR yet). This is kind of a mix of Godot and Unity: Godot just renders a white material for non-existent materials, while Unity renders nothing when no materials exist, but renders pink for invalid materials. I can also change the default material to pink if that is preferable though. ## Testing I ran some 2D and 3D examples to test if anything changed visually. I have not tested all examples or features yet however. If anyone wants to test more extensively, it would be appreciated! ## Implementation Notes - The relationship between `bevy_render` and `bevy_pbr` is weird here. `bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all of the material logic, and `bevy_render` doesn't depend on it. I feel like the two crates should be refactored in some way, but I think that's out of scope for this PR. - I didn't migrate meshlets to required components yet. That can probably be done in a follow-up, as this is already a huge PR. - It is becoming increasingly clear to me that we really, *really* want to disallow raw asset handles as components. They caused me a *ton* of headache here already, and it took me a long time to find every place that queried for them or inserted them directly on entities, since there were no compiler errors for it. If we don't remove the `Component` derive, I expect raw asset handles to be a *huge* footgun for users as we transition to wrapper components, especially as handles as components have been the norm so far. I personally consider this to be a blocker for 0.15: we need to migrate to wrapper components for asset handles everywhere, and remove the `Component` derive. Also see https://github.com/bevyengine/bevy/issues/14124. --- ## Migration Guide Asset handles for meshes and mesh materials must now be wrapped in the `Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d` components for 2D and 3D respectively. Raw handles as components no longer render meshes. Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and `PbrBundle` have been deprecated. Instead, use the mesh and material components directly. Previously: ```rust commands.spawn(MaterialMesh2dBundle { mesh: meshes.add(Circle::new(100.0)).into(), material: materials.add(Color::srgb(7.5, 0.0, 7.5)), transform: Transform::from_translation(Vec3::new(-200., 0., 0.)), ..default() }); ``` Now: ```rust commands.spawn(( Mesh2d(meshes.add(Circle::new(100.0))), MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))), Transform::from_translation(Vec3::new(-200., 0., 0.)), )); ``` If the mesh material is missing, a white default material is now used. Previously, nothing was rendered if the material was missing. The `WithMesh2d` and `WithMesh3d` query filter type aliases have also been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`. --------- Co-authored-by: Tim Blackbird <justthecooldude@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
de888a373d
|
Migrate lights to required components (#15554)
# Objective Another step in the migration to required components: lights! Note that this does not include `EnvironmentMapLight` or reflection probes yet, because their API hasn't been fully chosen yet. ## Solution As per the [selected proposals](https://hackmd.io/@bevy/required_components/%2FLLnzwz9XTxiD7i2jiUXkJg): - Deprecate `PointLightBundle` in favor of the `PointLight` component - Deprecate `SpotLightBundle` in favor of the `PointLight` component - Deprecate `DirectionalLightBundle` in favor of the `DirectionalLight` component ## Testing I ran some examples with lights. --- ## Migration Guide `PointLightBundle`, `SpotLightBundle`, and `DirectionalLightBundle` have been deprecated. Use the `PointLight`, `SpotLight`, and `DirectionalLight` components instead. Adding them will now insert the other components required by them automatically. |
||
![]() |
56f8e526dd
|
The Cooler 'Retain Rendering World' (#15320)
- Adopted from #14449 - Still fixes #12144. ## Migration Guide The retained render world is a complex change: migrating might take one of a few different forms depending on the patterns you're using. For every example, we specify in which world the code is run. Most of the changes affect render world code, so for the average Bevy user who's using Bevy's high-level rendering APIs, these changes are unlikely to affect your code. ### Spawning entities in the render world Previously, if you spawned an entity with `world.spawn(...)`, `commands.spawn(...)` or some other method in the rendering world, it would be despawned at the end of each frame. In 0.15, this is no longer the case and so your old code could leak entities. This can be mitigated by either re-architecting your code to no longer continuously spawn entities (like you're used to in the main world), or by adding the `bevy_render::world_sync::TemporaryRenderEntity` component to the entity you're spawning. Entities tagged with `TemporaryRenderEntity` will be removed at the end of each frame (like before). ### Extract components with `ExtractComponentPlugin` ``` // main world app.add_plugins(ExtractComponentPlugin::<ComponentToExtract>::default()); ``` `ExtractComponentPlugin` has been changed to only work with synced entities. Entities are automatically synced if `ComponentToExtract` is added to them. However, entities are not "unsynced" if any given `ComponentToExtract` is removed, because an entity may have multiple components to extract. This would cause the other components to no longer get extracted because the entity is not synced. So be careful when only removing extracted components from entities in the render world, because it might leave an entity behind in the render world. The solution here is to avoid only removing extracted components and instead despawn the entire entity. ### Manual extraction using `Extract<Query<(Entity, ...)>>` ```rust // in render world, inspired by bevy_pbr/src/cluster/mod.rs pub fn extract_clusters( mut commands: Commands, views: Extract<Query<(Entity, &Clusters, &Camera)>>, ) { for (entity, clusters, camera) in &views { // some code commands.get_or_spawn(entity).insert(...); } } ``` One of the primary consequences of the retained rendering world is that there's no longer a one-to-one mapping from entity IDs in the main world to entity IDs in the render world. Unlike in Bevy 0.14, Entity 42 in the main world doesn't necessarily map to entity 42 in the render world. Previous code which called `get_or_spawn(main_world_entity)` in the render world (`Extract<Query<(Entity, ...)>>` returns main world entities). Instead, you should use `&RenderEntity` and `render_entity.id()` to get the correct entity in the render world. Note that this entity does need to be synced first in order to have a `RenderEntity`. When performing manual abstraction, this won't happen automatically (like with `ExtractComponentPlugin`) so add a `SyncToRenderWorld` marker component to the entities you want to extract. This results in the following code: ```rust // in render world, inspired by bevy_pbr/src/cluster/mod.rs pub fn extract_clusters( mut commands: Commands, views: Extract<Query<(&RenderEntity, &Clusters, &Camera)>>, ) { for (render_entity, clusters, camera) in &views { // some code commands.get_or_spawn(render_entity.id()).insert(...); } } // in main world, when spawning world.spawn(Clusters::default(), Camera::default(), SyncToRenderWorld) ``` ### Looking up `Entity` ids in the render world As previously stated, there's now no correspondence between main world and render world `Entity` identifiers. Querying for `Entity` in the render world will return the `Entity` id in the render world: query for `MainEntity` (and use its `id()` method) to get the corresponding entity in the main world. This is also a good way to tell the difference between synced and unsynced entities in the render world, because unsynced entities won't have a `MainEntity` component. --------- Co-authored-by: re0312 <re0312@outlook.com> Co-authored-by: re0312 <45868716+re0312@users.noreply.github.com> Co-authored-by: Periwink <charlesbour@gmail.com> Co-authored-by: Anselmo Sampietro <ans.samp@gmail.com> Co-authored-by: Emerson Coskey <56370779+ecoskey@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com> |
||
![]() |
efda7f3f9c
|
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this comment: https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300 See #15375 for more reasoning/motivation. ## Rebasing (rerunning) ```rust git switch simpler-lint-fixes git reset --hard main cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "rustfmt" cargo clippy --workspace --all-targets --all-features --fix cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "clippy" git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887 ``` |
||
![]() |
b6b28a621f
|
Reflect derived traits on all components and resources: bevy_pbr (#15224)
Solves https://github.com/bevyengine/bevy/issues/15187 for bevy_pbr |
||
![]() |
36c6f29832
|
Lighting Should Only hold Vec<Entity> instead of TypeId<Vec<Entity>> (#14073)
# Objective - After #13894, I noticed the performance of `many_lights `dropped from 120+ to 60+. I reviewed the PR but couldn't identify any mistakes. After profiling, I discovered that `Hashmap::Clone `was very slow when its not empty, causing `extract_light` to increase from 3ms to 8ms. - Lighting only checks visibility for 3D Meshes. We don't need to maintain a TypeIdMap for this, as it not only impacts performance negatively but also reduces ergonomics. ## Solution - use VisibleMeshEntities for lighint visibility checking. ## Performance cargo run --release --example many_lights --features bevy/trace_tracy name="bevy_pbr::light::check_point_light_mesh_visibility"}  system{name="bevy_pbr::render::light::extract_lights"}  ## Migration Guide > now `SpotLightBundle` , `CascadesVisibleEntities `and `CubemapVisibleEntities `use VisibleMeshEntities instead of `VisibleEntities` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
368c5cef1a
|
Implement clone for most bundles. (#12993)
# Objective Closes #12985. ## Solution - Derive clone for most types with bundle in their name. - Bundle types missing clone: - [`TextBundle`](https://docs.rs/bevy/latest/bevy/prelude/struct.TextBundle.html) (Contains [`ContentSize`](https://docs.rs/bevy/latest/bevy/ui/struct.ContentSize.html) which can't be cloned because it itself contains a `Option<MeasureFunc>` where [`MeasureFunc`](https://docs.rs/taffy/0.3.18/taffy/node/enum.MeasureFunc.html) isn't clone) - [`ImageBundle`](https://docs.rs/bevy/latest/bevy/prelude/struct.ImageBundle.html) (Same as `TextBundle`) - [`AtlasImageBundle`](https://docs.rs/bevy/latest/bevy/prelude/struct.AtlasImageBundle.html) (Will be deprecated in 0.14 there's no point) |
||
![]() |
1c67e020f7
|
Move EntityHash related types into bevy_ecs (#11498)
# Objective Reduce the size of `bevy_utils` (https://github.com/bevyengine/bevy/issues/11478) ## Solution Move `EntityHash` related types into `bevy_ecs`. This also allows us access to `Entity`, which means we no longer need `EntityHashMap`'s first generic argument. --- ## Changelog - Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap, EntityHashSet}` into `bevy::ecs::entity::hash` . - Removed `EntityHashMap`'s first generic argument. It is now hardcoded to always be `Entity`. ## Migration Guide - Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap, EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`. - Uses of `EntityHashMap` no longer have to specify the first generic parameter. It is now hardcoded to always be `Entity`. |
||
![]() |
4695b82f6b
|
Use EntityHashMap whenever possible (#11353)
# Objective Fixes #11352 ## Solution - Use `EntityHashMap<Entity, T>` instead of `HashMap<Entity, T>` --- ## Changelog Changed - Use `EntityHashMap<Entity, T>` instead of `HashMap<Entity, T>` whenever possible ## Migration Guide TODO |
||
![]() |
87f7d013c0
|
Fix a typo in DirectionalLightBundle (#9861)
# Objective Fix a typo introduced by #9497. While drafting the PR, the type was originally called `VisibleInHierarchy` before I renamed it to `InheritedVisibility`, but this field got left behind due to a typo. |
||
![]() |
02b520b4e8
|
Split ComputedVisibility into two components to allow for accurate change detection and speed up visibility propagation (#9497)
# Objective Fix #8267. Fixes half of #7840. The `ComputedVisibility` component contains two flags: hierarchy visibility, and view visibility (whether its visible to any cameras). Due to the modular and open-ended way that view visibility is computed, it triggers change detection every single frame, even when the value does not change. Since hierarchy visibility is stored in the same component as view visibility, this means that change detection for inherited visibility is completely broken. At the company I work for, this has become a real issue. We are using change detection to only re-render scenes when necessary. The broken state of change detection for computed visibility means that we have to to rely on the non-inherited `Visibility` component for now. This is workable in the early stages of our project, but since we will inevitably want to use the hierarchy, we will have to either: 1. Roll our own solution for computed visibility. 2. Fix the issue for everyone. ## Solution Split the `ComputedVisibility` component into two: `InheritedVisibilty` and `ViewVisibility`. This allows change detection to behave properly for `InheritedVisibility`. View visiblity is still erratic, although it is less useful to be able to detect changes for this flavor of visibility. Overall, this actually simplifies the API. Since the visibility system consists of self-explaining components, it is much easier to document the behavior and usage. This approach is more modular and "ECS-like" -- one could strip out the `ViewVisibility` component entirely if it's not needed, and rely only on inherited visibility. --- ## Changelog - `ComputedVisibility` has been removed in favor of: `InheritedVisibility` and `ViewVisiblity`. ## Migration Guide The `ComputedVisibilty` component has been split into `InheritedVisiblity` and `ViewVisibility`. Replace any usages of `ComputedVisibility::is_visible_in_hierarchy` with `InheritedVisibility::get`, and replace `ComputedVisibility::is_visible_in_view` with `ViewVisibility::get`. ```rust // Before: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, computed_visibility: ComputedVisibility::default(), }); // After: commands.spawn(VisibilityBundle { visibility: Visibility::Inherited, inherited_visibility: InheritedVisibility::default(), view_visibility: ViewVisibility::default(), }); ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_hierarchy() { // After: fn my_system(q: Query<&InheritedVisibility>) { for inherited_visibility in &q { if inherited_visibility.get() { ``` ```rust // Before: fn my_system(q: Query<&ComputedVisibilty>) { for vis in &q { if vis.is_visible_in_view() { // After: fn my_system(q: Query<&ViewVisibility>) { for view_visibility in &q { if view_visibility.get() { ``` ```rust // Before: fn my_system(mut q: Query<&mut ComputedVisibilty>) { for vis in &mut q { vis.set_visible_in_view(); // After: fn my_system(mut q: Query<&mut ViewVisibility>) { for view_visibility in &mut q { view_visibility.set(); ``` --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> |
||
![]() |
aeeb20ec4c
|
bevy_reflect: FromReflect Ergonomics Implementation (#6056)
# Objective **This implementation is based on https://github.com/bevyengine/rfcs/pull/59.** --- Resolves #4597 Full details and motivation can be found in the RFC, but here's a brief summary. `FromReflect` is a very powerful and important trait within the reflection API. It allows Dynamic types (e.g., `DynamicList`, etc.) to be formed into Real ones (e.g., `Vec<i32>`, etc.). This mainly comes into play concerning deserialization, where the reflection deserializers both return a `Box<dyn Reflect>` that almost always contain one of these Dynamic representations of a Real type. To convert this to our Real type, we need to use `FromReflect`. It also sneaks up in other ways. For example, it's a required bound for `T` in `Vec<T>` so that `Vec<T>` as a whole can be made `FromReflect`. It's also required by all fields of an enum as it's used as part of the `Reflect::apply` implementation. So in other words, much like `GetTypeRegistration` and `Typed`, it is very much a core reflection trait. The problem is that it is not currently treated like a core trait and is not automatically derived alongside `Reflect`. This makes using it a bit cumbersome and easy to forget. ## Solution Automatically derive `FromReflect` when deriving `Reflect`. Users can then choose to opt-out if needed using the `#[reflect(from_reflect = false)]` attribute. ```rust #[derive(Reflect)] struct Foo; #[derive(Reflect)] #[reflect(from_reflect = false)] struct Bar; fn test<T: FromReflect>(value: T) {} test(Foo); // <-- OK test(Bar); // <-- Panic! Bar does not implement trait `FromReflect` ``` #### `ReflectFromReflect` This PR also automatically adds the `ReflectFromReflect` (introduced in #6245) registration to the derived `GetTypeRegistration` impl— if the type hasn't opted out of `FromReflect` of course. <details> <summary><h4>Improved Deserialization</h4></summary> > **Warning** > This section includes changes that have since been descoped from this PR. They will likely be implemented again in a followup PR. I am mainly leaving these details in for archival purposes, as well as for reference when implementing this logic again. And since we can do all the above, we might as well improve deserialization. We can now choose to deserialize into a Dynamic type or automatically convert it using `FromReflect` under the hood. `[Un]TypedReflectDeserializer::new` will now perform the conversion and return the `Box`'d Real type. `[Un]TypedReflectDeserializer::new_dynamic` will work like what we have now and simply return the `Box`'d Dynamic type. ```rust // Returns the Real type let reflect_deserializer = UntypedReflectDeserializer::new(®istry); let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?; let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; // Returns the Dynamic type let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(®istry); let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?; let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; ``` </details> --- ## Changelog * `FromReflect` is now automatically derived within the `Reflect` derive macro * This includes auto-registering `ReflectFromReflect` in the derived `GetTypeRegistration` impl * ~~Renamed `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` to `TypedReflectDeserializer::new_dynamic` and `UntypedReflectDeserializer::new_dynamic`, respectively~~ **Descoped** * ~~Changed `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` to automatically convert the deserialized output using `FromReflect`~~ **Descoped** ## Migration Guide * `FromReflect` is now automatically derived within the `Reflect` derive macro. Items with both derives will need to remove the `FromReflect` one. ```rust // OLD #[derive(Reflect, FromReflect)] struct Foo; // NEW #[derive(Reflect)] struct Foo; ``` If using a manual implementation of `FromReflect` and the `Reflect` derive, users will need to opt-out of the automatic implementation. ```rust // OLD #[derive(Reflect)] struct Foo; impl FromReflect for Foo {/* ... */} // NEW #[derive(Reflect)] #[reflect(from_reflect = false)] struct Foo; impl FromReflect for Foo {/* ... */} ``` <details> <summary><h4>Removed Migrations</h4></summary> > **Warning** > This section includes changes that have since been descoped from this PR. They will likely be implemented again in a followup PR. I am mainly leaving these details in for archival purposes, as well as for reference when implementing this logic again. * The reflect deserializers now perform a `FromReflect` conversion internally. The expected output of `TypedReflectDeserializer::new` and `UntypedReflectDeserializer::new` is no longer a Dynamic (e.g., `DynamicList`), but its Real counterpart (e.g., `Vec<i32>`). ```rust let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(®istry); let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?; // OLD let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; // NEW let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?; ``` Alternatively, if this behavior isn't desired, use the `TypedReflectDeserializer::new_dynamic` and `UntypedReflectDeserializer::new_dynamic` methods instead: ```rust // OLD let reflect_deserializer = UntypedReflectDeserializer::new(®istry); // NEW let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(®istry); ``` </details> --------- Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
7fc6db32ce
|
Add FromReflect where Reflect is used (#8776)
# Objective Discovered that PointLight did not implement FromReflect. Adding FromReflect where Reflect is used. I overreached and applied this rule everywhere there was a Reflect without a FromReflect, except from where the compiler wouldn't allow me. Based from question: https://github.com/bevyengine/bevy/discussions/8774 ## Solution - Adding FromReflect where Reflect was already derived ## Notes First PR I do in this ecosystem, so not sure if this is the usual approach, that is, to touch many files at once. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
c3a46822e1 |
Cascaded shadow maps. (#7064)
Co-authored-by: Robert Swain <robert.swain@gmail.com> # Objective Implements cascaded shadow maps for directional lights, which produces better quality shadows without needing excessively large shadow maps. Fixes #3629 Before  After  ## Solution Rather than rendering a single shadow map for directional light, the view frustum is divided into a series of cascades, each of which gets its own shadow map. The correct cascade is then sampled for shadow determination. --- ## Changelog Directional lights now use cascaded shadow maps for improved shadow quality. ## Migration Guide You no longer have to manually specify a `shadow_projection` for a directional light, and these settings should be removed. If customization of how cascaded shadow maps work is desired, modify the `CascadeShadowConfig` component instead. |
||
![]() |
40d4992401 |
Visibilty Inheritance, universal ComputedVisibility and RenderLayers support (#5310)
# Objective Fixes #4907. Fixes #838. Fixes #5089. Supersedes #5146. Supersedes #2087. Supersedes #865. Supersedes #5114 Visibility is currently entirely local. Set a parent entity to be invisible, and the children are still visible. This makes it hard for users to hide entire hierarchies of entities. Additionally, the semantics of `Visibility` vs `ComputedVisibility` are inconsistent across entity types. 3D meshes use `ComputedVisibility` as the "definitive" visibility component, with `Visibility` being just one data source. Sprites just use `Visibility`, which means they can't feed off of `ComputedVisibility` data, such as culling information, RenderLayers, and (added in this pr) visibility inheritance information. ## Solution Splits `ComputedVisibilty::is_visible` into `ComputedVisibilty::is_visible_in_view` and `ComputedVisibilty::is_visible_in_hierarchy`. For each visible entity, `is_visible_in_hierarchy` is computed by propagating visibility down the hierarchy. The `ComputedVisibility::is_visible()` function combines these two booleans for the canonical "is this entity visible" function. Additionally, all entities that have `Visibility` now also have `ComputedVisibility`. Sprites, Lights, and UI entities now use `ComputedVisibility` when appropriate. This means that in addition to visibility inheritance, everything using Visibility now also supports RenderLayers. Notably, Sprites (and other 2d objects) now support `RenderLayers` and work properly across multiple views. Also note that this does increase the amount of work done per sprite. Bevymark with 100,000 sprites on `main` runs in `0.017612` seconds and this runs in `0.01902`. That is certainly a gap, but I believe the api consistency and extra functionality this buys us is worth it. See [this thread](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for more info. Note that #5146 in combination with #5114 _are_ a viable alternative to this PR and _would_ perform better, but that comes at the cost of api inconsistencies and doing visibility calculations in the "wrong" place. The current visibility system does have potential for performance improvements. I would prefer to evolve that one system as a whole rather than doing custom hacks / different behaviors for each feature slice. Here is a "split screen" example where the left camera uses RenderLayers to filter out the blue sprite.  Note that this builds directly on #5146 and that @james7132 deserves the credit for the baseline visibility inheritance work. This pr moves the inherited visibility field into `ComputedVisibility`, then does the additional work of porting everything to `ComputedVisibility`. See my [comments here](https://github.com/bevyengine/bevy/pull/5146#issuecomment-1182783452) for rationale. ## Follow up work * Now that lights use ComputedVisibility, VisibleEntities now includes "visible lights" in the entity list. Functionally not a problem as we use queries to filter the list down in the desired context. But we should consider splitting this out into a separate`VisibleLights` collection for both clarity and performance reasons. And _maybe_ even consider scoping `VisibleEntities` down to `VisibleMeshes`?. * Investigate alternative sprite rendering impls (in combination with visibility system tweaks) that avoid re-generating a per-view fixedbitset of visible entities every frame, then checking each ExtractedEntity. This is where most of the performance overhead lives. Ex: we could generate ExtractedEntities per-view using the VisibleEntities list, avoiding the need for the bitset. * Should ComputedVisibility use bitflags under the hood? This would cut down on the size of the component, potentially speed up the `is_visible()` function, and allow us to cheaply expand ComputedVisibility with more data (ex: split out local visibility and parent visibility, add more culling classes, etc). --- ## Changelog * ComputedVisibility now takes hierarchy visibility into account. * 2D, UI and Light entities now use the ComputedVisibility component. ## Migration Guide If you were previously reading `Visibility::is_visible` as the "actual visibility" for sprites or lights, use `ComputedVisibilty::is_visible()` instead: ```rust // before (0.7) fn system(query: Query<&Visibility>) { for visibility in query.iter() { if visibility.is_visible { log!("found visible entity"); } } } // after (0.8) fn system(query: Query<&ComputedVisibility>) { for visibility in query.iter() { if visibility.is_visible() { log!("found visible entity"); } } } ``` Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
132950cd55 |
Spotlights (#4715)
# Objective add spotlight support ## Solution / Changelog - add spotlight angles (inner, outer) to ``PointLight`` struct. emitted light is linearly attenuated from 100% to 0% as angle tends from inner to outer. Direction is taken from the existing transform rotation. - add spotlight direction (vec3) and angles (f32,f32) to ``GpuPointLight`` struct (60 bytes -> 80 bytes) in ``pbr/render/lights.rs`` and ``mesh_view_bind_group.wgsl`` - reduce no-buffer-support max point light count to 204 due to above - use spotlight data to attenuate light in ``pbr.wgsl`` - do additional cluster culling on spotlights to minimise cost in ``assign_lights_to_clusters`` - changed one of the lights in the lighting demo to a spotlight - also added a ``spotlight`` demo - probably not justified but so reviewers can see it more easily ## notes increasing the size of the GpuPointLight struct on my machine reduces the FPS of ``many_lights -- sphere`` from ~150fps to 140fps. i thought this was a reasonable tradeoff, and felt better than handling spotlights separately which is possible but would mean introducing a new bind group, refactoring light-assignment code and adding new spotlight-specific code in pbr.wgsl. the FPS impact for smaller numbers of lights should be very small. the cluster culling strategy reintroduces the cluster aabb code which was recently removed... sorry. the aabb is used to get a cluster bounding sphere, which can then be tested fairly efficiently using the strategy described at the end of https://bartwronski.com/2017/04/13/cull-that-cone/. this works well with roughly cubic clusters (where the cluster z size is close to the same as x/y size), less well for other cases like single Z slice / tiled forward rendering. In the worst case we will end up just keeping the culling of the equivalent point light. Co-authored-by: François <mockersf@gmail.com> |
||
![]() |
747b0c69b0 |
Better Materials: AsBindGroup trait and derive, simpler Material trait (#5053)
# Objective This PR reworks Bevy's Material system, making the user experience of defining Materials _much_ nicer. Bevy's previous material system leaves a lot to be desired: * Materials require manually implementing the `RenderAsset` trait, which involves manually generating the bind group, handling gpu buffer data transfer, looking up image textures, etc. Even the simplest single-texture material involves writing ~80 unnecessary lines of code. This was never the long term plan. * There are two material traits, which is confusing, hard to document, and often redundant: `Material` and `SpecializedMaterial`. `Material` implicitly implements `SpecializedMaterial`, and `SpecializedMaterial` is used in most high level apis to support both use cases. Most users shouldn't need to think about specialization at all (I consider it a "power-user tool"), so the fact that `SpecializedMaterial` is front-and-center in our apis is a miss. * Implementing either material trait involves a lot of "type soup". The "prepared asset" parameter is particularly heinous: `&<Self as RenderAsset>::PreparedAsset`. Defining vertex and fragment shaders is also more verbose than it needs to be. ## Solution Say hello to the new `Material` system: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } } ``` Thats it! This same material would have required [~80 lines of complicated "type heavy" code](https://github.com/bevyengine/bevy/blob/v0.7.0/examples/shader/shader_material.rs) in the old Material system. Now it is just 14 lines of simple, readable code. This is thanks to a new consolidated `Material` trait and the new `AsBindGroup` trait / derive. ### The new `Material` trait The old "split" `Material` and `SpecializedMaterial` traits have been removed in favor of a new consolidated `Material` trait. All of the functions on the trait are optional. The difficulty of implementing `Material` has been reduced by simplifying dataflow and removing type complexity: ```rust // Old impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn alpha_mode(render_asset: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode { render_asset.alpha_mode } } // New impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn alpha_mode(&self) -> AlphaMode { self.alpha_mode } } ``` Specialization is still supported, but it is hidden by default under the `specialize()` function (more on this later). ### The `AsBindGroup` trait / derive The `Material` trait now requires the `AsBindGroup` derive. This can be implemented manually relatively easily, but deriving it will almost always be preferable. Field attributes like `uniform` and `texture` are used to define which fields should be bindings, what their binding type is, and what index they should be bound at: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` In WGSL shaders, the binding looks like this: ```wgsl struct CoolMaterial { color: vec4<f32>; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; [[group(1), binding(1)]] var color_texture: texture_2d<f32>; [[group(1), binding(2)]] var color_sampler: sampler; ``` Note that the "group" index is determined by the usage context. It is not defined in `AsBindGroup`. Bevy material bind groups are bound to group 1. The following field-level attributes are supported: * `uniform(BINDING_INDEX)` * The field will be converted to a shader-compatible type using the `ShaderType` trait, written to a `Buffer`, and bound as a uniform. It can also be derived for custom structs. * `texture(BINDING_INDEX)` * This field's `Handle<Image>` will be used to look up the matching `Texture` gpu resource, which will be bound as a texture in shaders. The field will be assumed to implement `Into<Option<Handle<Image>>>`. In practice, most fields should be a `Handle<Image>` or `Option<Handle<Image>>`. If the value of an `Option<Handle<Image>>` is `None`, the new `FallbackImage` resource will be used instead. This attribute can be used in conjunction with a `sampler` binding attribute (with a different binding index). * `sampler(BINDING_INDEX)` * Behaves exactly like the `texture` attribute, but sets the Image's sampler binding instead of the texture. Note that fields without field-level binding attributes will be ignored. ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, this_field_is_ignored: String, } ``` As mentioned above, `Option<Handle<Image>>` is also supported: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Option<Handle<Image>>, } ``` This is useful if you want a texture to be optional. When the value is `None`, the `FallbackImage` will be used for the binding instead, which defaults to "pure white". Field uniforms with the same binding index will be combined into a single binding: ```rust #[derive(AsBindGroup)] struct CoolMaterial { #[uniform(0)] color: Color, #[uniform(0)] roughness: f32, } ``` In WGSL shaders, the binding would look like this: ```wgsl struct CoolMaterial { color: vec4<f32>; roughness: f32; }; [[group(1), binding(0)]] var<uniform> material: CoolMaterial; ``` Some less common scenarios will require "struct-level" attributes. These are the currently supported struct-level attributes: * `uniform(BINDING_INDEX, ConvertedShaderType)` * Similar to the field-level `uniform` attribute, but instead the entire `AsBindGroup` value is converted to `ConvertedShaderType`, which must implement `ShaderType`. This is useful if more complicated conversion logic is required. * `bind_group_data(DataType)` * The `AsBindGroup` type will be converted to some `DataType` using `Into<DataType>` and stored as `AsBindGroup::Data` as part of the `AsBindGroup::as_bind_group` call. This is useful if data needs to be stored alongside the generated bind group, such as a unique identifier for a material's bind group. The most common use case for this attribute is "shader pipeline specialization". The previous `CoolMaterial` example illustrating "combining multiple field-level uniform attributes with the same binding index" can also be equivalently represented with a single struct-level uniform attribute: ```rust #[derive(AsBindGroup)] #[uniform(0, CoolMaterialUniform)] struct CoolMaterial { color: Color, roughness: f32, } #[derive(ShaderType)] struct CoolMaterialUniform { color: Color, roughness: f32, } impl From<&CoolMaterial> for CoolMaterialUniform { fn from(material: &CoolMaterial) -> CoolMaterialUniform { CoolMaterialUniform { color: material.color, roughness: material.roughness, } } } ``` ### Material Specialization Material shader specialization is now _much_ simpler: ```rust #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] #[bind_group_data(CoolMaterialKey)] struct CoolMaterial { #[uniform(0)] color: Color, is_red: bool, } #[derive(Copy, Clone, Hash, Eq, PartialEq)] struct CoolMaterialKey { is_red: bool, } impl From<&CoolMaterial> for CoolMaterialKey { fn from(material: &CoolMaterial) -> CoolMaterialKey { CoolMaterialKey { is_red: material.is_red, } } } impl Material for CoolMaterial { fn fragment_shader() -> ShaderRef { "cool_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { if key.bind_group_data.is_red { let fragment = descriptor.fragment.as_mut().unwrap(); fragment.shader_defs.push("IS_RED".to_string()); } Ok(()) } } ``` Setting `bind_group_data` is not required for specialization (it defaults to `()`). Scenarios like "custom vertex attributes" also benefit from this system: ```rust impl Material for CustomMaterial { fn vertex_shader() -> ShaderRef { "custom_material.wgsl".into() } fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } fn specialize( pipeline: &MaterialPipeline<Self>, descriptor: &mut RenderPipelineDescriptor, layout: &MeshVertexBufferLayout, key: MaterialPipelineKey<Self>, ) -> Result<(), SpecializedMeshPipelineError> { let vertex_layout = layout.get_layout(&[ Mesh::ATTRIBUTE_POSITION.at_shader_location(0), ATTRIBUTE_BLEND_COLOR.at_shader_location(1), ])?; descriptor.vertex.buffers = vec![vertex_layout]; Ok(()) } } ``` ### Ported `StandardMaterial` to the new `Material` system Bevy's built-in PBR material uses the new Material system (including the AsBindGroup derive): ```rust #[derive(AsBindGroup, Debug, Clone, TypeUuid)] #[uuid = "7494888b-c082-457b-aacf-517228cc0c22"] #[bind_group_data(StandardMaterialKey)] #[uniform(0, StandardMaterialUniform)] pub struct StandardMaterial { pub base_color: Color, #[texture(1)] #[sampler(2)] pub base_color_texture: Option<Handle<Image>>, /* other fields omitted for brevity */ ``` ### Ported Bevy examples to the new `Material` system The overall complexity of Bevy's "custom shader examples" has gone down significantly. Take a look at the diffs if you want a dopamine spike. Please note that while this PR has a net increase in "lines of code", most of those extra lines come from added documentation. There is a significant reduction in the overall complexity of the code (even accounting for the new derive logic). --- ## Changelog ### Added * `AsBindGroup` trait and derive, which make it much easier to transfer data to the gpu and generate bind groups for a given type. ### Changed * The old `Material` and `SpecializedMaterial` traits have been replaced by a consolidated (much simpler) `Material` trait. Materials no longer implement `RenderAsset`. * `StandardMaterial` was ported to the new material system. There are no user-facing api changes to the `StandardMaterial` struct api, but it now implements `AsBindGroup` and `Material` instead of `RenderAsset` and `SpecializedMaterial`. ## Migration Guide The Material system has been reworked to be much simpler. We've removed a lot of boilerplate with the new `AsBindGroup` derive and the `Material` trait is simpler as well! ### Bevy 0.7 (old) ```rust #[derive(Debug, Clone, TypeUuid)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { color: Color, color_texture: Handle<Image>, } #[derive(Clone)] pub struct GpuCustomMaterial { _buffer: Buffer, bind_group: BindGroup, } impl RenderAsset for CustomMaterial { type ExtractedAsset = CustomMaterial; type PreparedAsset = GpuCustomMaterial; type Param = (SRes<RenderDevice>, SRes<MaterialPipeline<Self>>); fn extract_asset(&self) -> Self::ExtractedAsset { self.clone() } fn prepare_asset( extracted_asset: Self::ExtractedAsset, (render_device, material_pipeline): &mut SystemParamItem<Self::Param>, ) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>> { let color = Vec4::from_slice(&extracted_asset.color.as_linear_rgba_f32()); let byte_buffer = [0u8; Vec4::SIZE.get() as usize]; let mut buffer = encase::UniformBuffer::new(byte_buffer); buffer.write(&color).unwrap(); let buffer = render_device.create_buffer_with_data(&BufferInitDescriptor { contents: buffer.as_ref(), label: None, usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST, }); let (texture_view, texture_sampler) = if let Some(result) = material_pipeline .mesh_pipeline .get_image_texture(gpu_images, &Some(extracted_asset.color_texture.clone())) { result } else { return Err(PrepareAssetError::RetryNextUpdate(extracted_asset)); }; let bind_group = render_device.create_bind_group(&BindGroupDescriptor { entries: &[ BindGroupEntry { binding: 0, resource: buffer.as_entire_binding(), }, BindGroupEntry { binding: 0, resource: BindingResource::TextureView(texture_view), }, BindGroupEntry { binding: 1, resource: BindingResource::Sampler(texture_sampler), }, ], label: None, layout: &material_pipeline.material_layout, }); Ok(GpuCustomMaterial { _buffer: buffer, bind_group, }) } } impl Material for CustomMaterial { fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> { Some(asset_server.load("custom_material.wgsl")) } fn bind_group(render_asset: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup { &render_asset.bind_group } fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout { render_device.create_bind_group_layout(&BindGroupLayoutDescriptor { entries: &[ BindGroupLayoutEntry { binding: 0, visibility: ShaderStages::FRAGMENT, ty: BindingType::Buffer { ty: BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: Some(Vec4::min_size()), }, count: None, }, BindGroupLayoutEntry { binding: 1, visibility: ShaderStages::FRAGMENT, ty: BindingType::Texture { multisampled: false, sample_type: TextureSampleType::Float { filterable: true }, view_dimension: TextureViewDimension::D2Array, }, count: None, }, BindGroupLayoutEntry { binding: 2, visibility: ShaderStages::FRAGMENT, ty: BindingType::Sampler(SamplerBindingType::Filtering), count: None, }, ], label: None, }) } } ``` ### Bevy 0.8 (new) ```rust impl Material for CustomMaterial { fn fragment_shader() -> ShaderRef { "custom_material.wgsl".into() } } #[derive(AsBindGroup, TypeUuid, Debug, Clone)] #[uuid = "f690fdae-d598-45ab-8225-97e2a3f056e0"] pub struct CustomMaterial { #[uniform(0)] color: Color, #[texture(1)] #[sampler(2)] color_texture: Handle<Image>, } ``` ## Future Work * Add support for more binding types (cubemaps, buffers, etc). This PR intentionally includes a bare minimum number of binding types to keep "reviewability" in check. * Consider optionally eliding binding indices using binding names. `AsBindGroup` could pass in (optional?) reflection info as a "hint". * This would make it possible for the derive to do this: ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[uniform] color: Color, #[texture] #[sampler] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or this ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { #[binding] color: Color, #[binding] color_texture: Option<Handle<Image>>, alpha_mode: AlphaMode, } ``` * Or even this (if we flip to "include bindings by default") ```rust #[derive(AsBindGroup)] pub struct CustomMaterial { color: Color, color_texture: Option<Handle<Image>>, #[binding(ignore)] alpha_mode: AlphaMode, } ``` * If we add the option to define custom draw functions for materials (which could be done in a type-erased way), I think that would be enough to support extra non-material bindings. Worth considering! |
||
![]() |
575ea81d7b |
add Visibility for lights (#3958)
# Objective Add Visibility for lights ## Solution - add Visibility to PointLightBundle and DirectionLightBundle - filter lights used by Visibility.is_visible note: includes changes from #3916 due to overlap, will be cleaner after that is merged |
||
![]() |
85b7589388 |
bevy_gltf: Add support for loading lights (#3506)
# Objective - Add support for loading lights from glTF 2.0 files ## Solution - This adds support for the KHR_punctual_lights extension which supports point, directional, and spot lights, though we don't yet support spot lights. - Inserting light bundles when creating scenes required registering some more light bundle component types. |
||
![]() |
963e2f08a2 |
Materials and MaterialPlugin (#3428)
This adds "high level" `Material` and `SpecializedMaterial` traits, which can be used with a `MaterialPlugin<T: SpecializedMaterial>`. `MaterialPlugin` automatically registers the appropriate resources, draw functions, and queue systems. The `Material` trait is simpler, and should cover most use cases. `SpecializedMaterial` is like `Material`, but it also requires defining a "specialization key" (see #3031). `Material` has a trivial blanket impl of `SpecializedMaterial`, which allows us to use the same types + functions for both. This makes defining custom 3d materials much simpler (see the `shader_material` example diff) and ensures consistent behavior across all 3d materials (both built in and custom). I ported the built in `StandardMaterial` to `MaterialPlugin`. There is also a new `MaterialMeshBundle<T: SpecializedMaterial>`, which `PbrBundle` aliases to. |
||
![]() |
c825fda74a |
add default standard material in PbrBundle (#3325)
# Objective - Fix #3323 ## Solution - Add a default standard material that is very visible. It is similar to the previous standard material that was used <img width="1392" alt="Screenshot 2021-12-14 at 15 39 01" src="https://user-images.githubusercontent.com/8672791/146019401-ed4b5fc1-7cce-4a8f-a511-a6f9665a51d7.png"> Co-authored-by: François <8672791+mockersf@users.noreply.github.com> |
||
![]() |
ffecb05a0a |
Replace old renderer with new renderer (#3312)
This makes the [New Bevy Renderer](#2535) the default (and only) renderer. The new renderer isn't _quite_ ready for the final release yet, but I want as many people as possible to start testing it so we can identify bugs and address feedback prior to release. The examples are all ported over and operational with a few exceptions: * I removed a good portion of the examples in the `shader` folder. We still have some work to do in order to make these examples possible / ergonomic / worthwhile: #3120 and "high level shader material plugins" are the big ones. This is a temporary measure. * Temporarily removed the multiple_windows example: doing this properly in the new renderer will require the upcoming "render targets" changes. Same goes for the render_to_texture example. * Removed z_sort_debug: entity visibility sort info is no longer available in app logic. we could do this on the "render app" side, but i dont consider it a priority. |