This adds a few minor items which were left out of the previous PR:
- Added synchronization from bevy_input_focus to bevy_a11y.
- Initialize InputFocusVisible resource.
- Make `input_focus` available from `bevy` module.
I've tested this using VoiceOver on Mac OS. It works, but it needs
considerable polish.
# Objective
- Fixes#16469.
## Solution
- Make the picking backend features not enabled by default in each
sub-crate.
- Make features in `bevy_internal` to set the backend features
- Make the root `bevy` crate set the features by default.
## Testing
- The mesh and sprite picking examples still work correctly.
Alternative to #16450
# Objective
detailed_trace! in its current form does not work (and breaks CI)
## Solution
Fix detailed_trace by checking for the feature properly, adding it to
the correct crates, and removing it from the incorrect crates
# Objective
- Fixes#16152
## Solution
- Put `bevy_window` and `bevy_a11y` behind the `bevy_window` feature.
they were the only difference
- Add `ScheduleRunnerPlugin` to the `DefaultPlugins` when `bevy_window`
is disabled
- Remove `HeadlessPlugins`
- Update the `headless` example
# Objective
PCSS still has some fundamental issues (#16155). We should resolve them
before "releasing" the feature.
## Solution
1. Rename the already-optional `pbr_pcss` cargo feature to
`experimental_pbr_pcss` to better communicate its state to developers.
2. Adjust the description of the `experimental_pbr_pcss` cargo feature
to better communicate its state to developers.
3. Gate PCSS-related light component fields behind that cargo feature,
to prevent surfacing them to developers by default.
# Objective
Fixes#16316
## Solution
Tweaked a few crates cargo files until I was able to build and test
`bevy_ui` via `cargo test --package bevy_ui`
## Testing
- ran `cargo test --package bevy_ui` successfully
- CI should catch anything amiss (Hopefully?)
# Objective
Fixes#15940
## Solution
Remove the `pub use` and fix the compile errors.
Make `bevy_image` available as `bevy::image`.
## Testing
Feature Frenzy would be good here! Maybe I'll learn how to use it if I
have some time this weekend, or maybe a reviewer can use it.
## Migration Guide
Use `bevy_image` instead of `bevy_render::texture` items.
---------
Co-authored-by: chompaa <antony.m.3012@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- `MeshPickingBackend` and `SpritePickingBackend` do not have the
`Plugin` suffix
- `DefaultPickingPlugins` is masquerading as a `Plugin` when in reality
it should be a `PluginGroup`
- Fixes#16081.
## Solution
- Rename some structures:
|Original Name|New Name|
|-|-|
|`MeshPickingBackend`|`MeshPickingPlugin`|
|`MeshPickingBackendSettings`|`MeshPickingSettings`|
|`SpritePickingBackend`|`SpritePickingPlugin`|
|`UiPickingBackendPlugin`|`UiPickingPlugin`|
- Make `DefaultPickingPlugins` a `PluginGroup`.
- Because `DefaultPickingPlugins` is within the `DefaultPlugins` plugin
group, I also added support for nested plugin groups to the
`plugin_group!` macro.
## Testing
- I used ripgrep to ensure all references were properly renamed.
- For the `plugin_group!` macro, I used `cargo expand` to manually
inspect the expansion of `DefaultPlugins`.
---
## Migration Guide
> [!NOTE]
>
> All 3 of the changed structures were added after 0.14, so this does
not need to be included in the 0.14 to 0.15 migration guide.
- `MeshPickingBackend` is now named `MeshPickingPlugin`.
- `MeshPickingBackendSettings` is now named `MeshPickingSettings`.
- `SpritePickingBackend` is now named `SpritePickingPlugin`.
- `UiPickingBackendPlugin` is now named `UiPickingPlugin`.
- `DefaultPickingPlugins` is now a a `PluginGroup` instead of a
`Plugin`.
The two additional linear texture samplers that PCSS added caused us to
blow past the limit on Apple Silicon macOS and WebGL. To fix the issue,
this commit adds a `--feature pbr_pcss` feature gate that disables PCSS
if not present.
Closes#15345.
Closes#15525.
Closes#15821.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
Co-authored-by: IceSentry <IceSentry@users.noreply.github.com>
Resolves#15968. Since this feature never worked, and enabling it in the
`image` crate requires system dependencies, we've decided that it's best
to just remove it and let other plugin crates offer support for it as
needed.
## Migration Guide
AVIF images are no longer supported. They never really worked, and
require system dependencies (libdav1d) to work correctly, so, it's
better to simply offer this support via an unofficial plugin instead as
needed. The corresponding types have been removed from Bevy to account
for this.
# Objective
As discussed in #15341, ghost nodes are a contentious and experimental
feature. In the interest of enabling ecosystem experimentation, we've
decided to keep them in Bevy 0.15.
That said, we don't use them internally, and don't expect third-party
crates to support them. If the experimentation returns a negative result
(they aren't very useful, an alternative design is preferred etc) they
will be removed.
We should clearly communicate this status to users, and make sure that
users don't use ghost nodes in their projects without a very clear
understanding of what they're getting themselves into.
## Solution
To make life easy for users (and Bevy), `GhostNode` and all associated
helpers remain public and are always available.
However, actually constructing these requires enabling a feature flag
that's clearly marked as experimental. To do so, I've added a
meaningless private field.
When the feature flag is enabled, our constructs (`new` and `default`)
can be used. I've added a `new` constructor, which should be preferred
over `Default::default` as that can be readily deprecated, allowing us
to prompt users to swap over to the much nicer `GhostNode` syntax once
this is a unit struct again.
Full credit: this was mostly @cart's design: I'm just implementing it!
## Testing
I've run the ghost_nodes example and it fails to compile without the
feature flag. With the feature flag, it works fine :)
---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
Closes#15545.
`bevy_picking` supports UI and sprite picking, but not mesh picking.
Being able to pick meshes would be extremely useful for various games,
tools, and our own examples, as well as scene editors and inspectors.
So, we need a mesh picking backend!
Luckily,
[`bevy_mod_picking`](https://github.com/aevyrie/bevy_mod_picking) (which
`bevy_picking` is based on) by @aevyrie already has a [backend for
it](74f0c3c0fb/backends/bevy_picking_raycast/src/lib.rs)
using [`bevy_mod_raycast`](https://github.com/aevyrie/bevy_mod_raycast).
As a side product of adding mesh picking, we also get support for
performing ray casts on meshes!
## Solution
Upstream a large chunk of the immediate-mode ray casting functionality
from `bevy_mod_raycast`, and add a mesh picking backend based on
`bevy_mod_picking`. Huge thanks to @aevyrie who did all the hard work on
these incredible crates!
All meshes are pickable by default. Picking can be disabled for
individual entities by adding `PickingBehavior::IGNORE`, like normal.
Or, if you want mesh picking to be entirely opt-in, you can set
`MeshPickingBackendSettings::require_markers` to `true` and add a
`RayCastPickable` component to the desired camera and target entities.
You can also use the new `MeshRayCast` system parameter to cast rays
into the world manually:
```rust
fn ray_cast_system(mut ray_cast: MeshRayCast, foo_query: Query<(), With<Foo>>) {
let ray = Ray3d::new(Vec3::ZERO, Dir3::X);
// Only ray cast against entities with the `Foo` component.
let filter = |entity| foo_query.contains(entity);
// Never early-exit. Note that you can change behavior per-entity.
let early_exit_test = |_entity| false;
// Ignore the visibility of entities. This allows ray casting hidden entities.
let visibility = RayCastVisibility::Any;
let settings = RayCastSettings::default()
.with_filter(&filter)
.with_early_exit_test(&early_exit_test)
.with_visibility(visibility);
// Cast the ray with the settings, returning a list of intersections.
let hits = ray_cast.cast_ray(ray, &settings);
}
```
This is largely a direct port, but I did make several changes to match
our APIs better, remove things we don't need or that I think are
unnecessary, and do some general improvements to code quality and
documentation.
### Changes Relative to `bevy_mod_raycast` and `bevy_mod_picking`
- Every `Raycast` and "raycast" has been renamed to `RayCast` and "ray
cast" (similar reasoning as the "Naming" section in #15724)
- `Raycast` system param has been renamed to `MeshRayCast` to avoid
naming conflicts and to be explicit that it is not for colliders
- `RaycastBackend` has been renamed to `MeshPickingBackend`
- `RayCastVisibility` variants are now `Any`, `Visible`, and
`VisibleInView` instead of `Ignore`, `MustBeVisible`, and
`MustBeVisibleAndInView`
- `NoBackfaceCulling` has been renamed to `RayCastBackfaces`, to avoid
implying that it affects the rendering of backfaces for meshes (it
doesn't)
- `SimplifiedMesh` and `RayCastBackfaces` live near other ray casting
API types, not in their own 10 LoC module
- All intersection logic and types are in the same `intersections`
module, not split across several modules
- Some intersection types have been renamed to be clearer and more
consistent
- `IntersectionData` -> `RayMeshHit`
- `RayHit` -> `RayTriangleHit`
- General documentation and code quality improvements
### Removed / Not Ported
- Removed unused ray helpers and types, like `PrimitiveIntersection`
- Removed getters on intersection types, and made their properties
public
- There is no `2d` feature, and `Raycast::mesh_query` and
`Raycast::mesh2d_query` have been merged into `MeshRayCast::mesh_query`,
which handles both 2D and 3D
- I assume this existed previously because `Mesh2dHandle` used to be in
`bevy_sprite`. Now both the 2D and 3D mesh are in `bevy_render`.
- There is no `debug` feature or ray debug rendering
- There is no deferred API (`RaycastSource`)
- There is no `CursorRayPlugin` (the picking backend handles this)
### Note for Reviewers
In case it's helpful, the [first
commit](281638ef10)
here is essentially a one-to-one port. The rest of the commits are
primarily refactoring and cleaning things up in the ways listed earlier,
as well as changes to the module structure.
It may also be useful to compare the original [picking
backend](74f0c3c0fb/backends/bevy_picking_raycast/src/lib.rs)
and [`bevy_mod_raycast`](https://github.com/aevyrie/bevy_mod_raycast) to
this PR. Feel free to mention if there are any changes that I should
revert or something I should not include in this PR.
## Testing
I tested mesh picking and relevant components in some examples, for both
2D and 3D meshes, and added a new `mesh_picking` example. I also
~~stole~~ ported over the [ray-mesh intersection
benchmark](dbc5ef32fe/benches/ray_mesh_intersection.rs)
from `bevy_mod_raycast`.
---
## Showcase
Below is a version of the `2d_shapes` example modified to demonstrate 2D
mesh picking. This is not included in this PR.
https://github.com/user-attachments/assets/7742528c-8630-4c00-bacd-81576ac432bf
And below is the new `mesh_picking` example:
https://github.com/user-attachments/assets/b65c7a5a-fa3a-4c2d-8bbd-e7a2c772986e
There is also a really cool new `mesh_ray_cast` example ported over from
`bevy_mod_raycast`:
https://github.com/user-attachments/assets/3c5eb6c0-bd94-4fb0-bec6-8a85668a06c9
---------
Co-authored-by: Aevyrie <aevyrie@gmail.com>
Co-authored-by: Trent <2771466+tbillington@users.noreply.github.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
Bevy supports feature gates for each format it supports, but several
formats that it loads via the `image` crate do not have feature gates.
Additionally, the QOI format is supported by the `image` crate and
wasn't available at all. This fixes that.
## Solution
The following feature gates are added:
* `avif`
* `ff` (Farbfeld)
* `gif`
* `ico`
* `qoi`
* `tiff`
None of these formats are enabled by default, despite the fact that all
these formats appeared to be enabled by default before. Since
`default-features` was disabled for the `image` crate, it's likely that
using any of these formats would have errored by default before this
change, although this probably needs additional testing.
## Testing
The changes seemed minimal enough that a compile test would be
sufficient.
## Migration guide
Image formats that previously weren't feature-gated are now
feature-gated, meaning they will have to be enabled if you use them:
* `avif`
* `ff` (Farbfeld)
* `gif`
* `ico`
* `tiff`
Additionally, the `qoi` feature has been added to support loading QOI
format images.
Previously, these formats appeared in the enum by default, but weren't
actually enabled via the `image` crate, potentially resulting in weird
bugs. Now, you should be able to add these features to your projects to
support them properly.
# Objective
- `bevy_render` should not depend on `bevy_winit`
- Fixes#15565
## Solution
- `bevy_render` no longer depends on `bevy_winit`
- The following is behind the `custom_cursor` feature
- Move custom cursor code from `bevy_render` to `bevy_winit` behind the
`custom_cursor` feature
- `bevy_winit` now depends on `bevy_render` (for `Image` and
`TextureFormat`)
- `bevy_winit` now depends on `bevy_asset` (for `Assets`, `Handle` and
`AssetId`)
- `bevy_winit` now depends on `bytemuck` (already in tree)
- Custom cursor code in `bevy_winit` reworked to use `AssetId` (other
than that it is taken over 1:1)
- Rework `bevy_winit` custom cursor interface visibility now that the
logic is all contained in `bevy_winit`
## Testing
- I ran the screenshot and window_settings examples
- Tested on linux wayland so far
---
## Migration Guide
`CursorIcon` and `CustomCursor` previously provided by
`bevy::render::view::cursor` is now available from `bevy::winit`.
A new feature `custom_cursor` enables this functionality (default
feature).
# Objective
Add two features to switch bevy to use `NativeActivity` or
`GameActivity` on Android, use `GameActivity` by default.
Also close #12058 and probably #12026 .
## Solution
Add two features to the corresponding crates so you can toggle it, like
what `winit` and `android-activity` crate did.
---
## Changelog
Removed default `NativeActivity` feature implementation for Android,
added two new features to enable `NativeActivity` and `GameActivity`,
and use `GameActivity` by default.
## Migration Guide
Because `cargo-apk` is not compatible with `GameActivity`,
building/running using `cargo apk build/run -p bevy_mobile_example` is
no longer possible.
Users should follow the new workflow described in document.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Rich Churcher <rich.churcher@gmail.com>
# Objective
Mostly covers the first point in
https://github.com/bevyengine/bevy/issues/13713#issuecomment-2364786694
The idea here is that a lot of people want to load their own texture
atlases, and many of them do this by deserializing some custom version
of `TextureAtlasLayout`. This makes that a little easier by providing
`serde` impls for them.
## Solution
In order to make `TextureAtlasLayout` serializable, the custom texture
mappings that are added by `TextureAtlasBuilder` were separated into
their own type, `TextureAtlasSources`. The inner fields are made public
so people can create their own version of this type, although because it
embeds asset IDs, it's not as easily serializable. In particular,
atlases that are loaded directly (e.g. sprite sheets) will not have a
copy of this map, and so, don't need to construct it at all.
As an aside, since this is the very first thing in `bevy_sprite` with
`serde` impls, I've added a `serialize` feature to the crate and made
sure it gets activated when the `serialize` feature is enabled on the
parent `bevy` crate.
## Testing
I was kind of shocked that there isn't anywhere in the code besides a
single example that actually used this functionality, so, it was
relatively straightforward to do.
In #13713, among other places, folks have mentioned adding custom
serialization into their pipelines. It would be nice to hear from people
whether this change matches what they're doing in their code, and if
it's relatively seamless to adapt to. I suspect that the answer is yes,
but, that's mainly the only other kind of testing that can be added.
## Migration Guide
`TextureAtlasBuilder` no longer stores a mapping back to the original
images in `TextureAtlasLayout`; that functionality has been added to a
new struct, `TextureAtlasSources`, instead. This also means that the
signature for `TextureAtlasBuilder::finish` has changed, meaning that
calls of the form:
```rust
let (atlas_layout, image) = builder.build()?;
```
Will now change to the form:
```rust
let (atlas_layout, atlas_sources, image) = builder.build()?;
```
And instead of performing a reverse-lookup from the layout, like so:
```rust
let atlas_layout_handle = texture_atlases.add(atlas_layout.clone());
let index = atlas_layout.get_texture_index(&my_handle);
let handle = TextureAtlas {
layout: atlas_layout_handle,
index,
};
```
You can perform the lookup from the sources instead:
```rust
let atlas_layout = texture_atlases.add(atlas_layout);
let index = atlas_sources.get_texture_index(&my_handle);
let handle = TextureAtlas {
layout: atlas_layout,
index,
};
```
Additionally, `TextureAtlasSources` also has a convenience method,
`handle`, which directly combines the index and an existing
`TextureAtlasLayout` handle into a new `TextureAtlas`:
```rust
let atlas_layout = texture_atlases.add(atlas_layout);
let handle = atlas_sources.handle(atlas_layout, &my_handle);
```
## Extra notes
In the future, it might make sense to combine the three types returned
by `TextureAtlasBuilder` into their own struct, just so that people
don't need to assign variable names to all three parts. In particular,
when creating a version that can be loaded directly (like #11873), we
could probably use this new type.
# Objective
Adopted from #13563.
The goal is to implement the Bevy Remote Protocol over HTTP/JSON,
allowing the ECS to be interacted with remotely.
## Solution
At a high level, there are really two separate things that have been
undertaken here:
1. First, `RemotePlugin` has been created, which has the effect of
embedding a [JSON-RPC](https://www.jsonrpc.org/specification) endpoint
into a Bevy application.
2. Second, the [Bevy Remote Protocol
verbs](https://gist.github.com/coreh/1baf6f255d7e86e4be29874d00137d1d#file-bevy-remote-protocol-md)
(excluding `POLL`) have been implemented as remote methods for that
JSON-RPC endpoint under a Bevy-exclusive namespace (e.g. `bevy/get`,
`bevy/list`, etc.).
To avoid some repetition, here is the crate-level documentation, which
explains the request/response structure, built-in-methods, and custom
method configuration:
<details>
<summary>Click to view crate-level docs</summary>
```rust
//! An implementation of the Bevy Remote Protocol over HTTP and JSON, to allow
//! for remote control of a Bevy app.
//!
//! Adding the [`RemotePlugin`] to your [`App`] causes Bevy to accept
//! connections over HTTP (by default, on port 15702) while your app is running.
//! These *remote clients* can inspect and alter the state of the
//! entity-component system. Clients are expected to `POST` JSON requests to the
//! root URL; see the `client` example for a trivial example of use.
//!
//! The Bevy Remote Protocol is based on the JSON-RPC 2.0 protocol.
//!
//! ## Request objects
//!
//! A typical client request might look like this:
//!
//! ```json
//! {
//! "method": "bevy/get",
//! "id": 0,
//! "params": {
//! "entity": 4294967298,
//! "components": [
//! "bevy_transform::components::transform::Transform"
//! ]
//! }
//! }
//! ```
//!
//! The `id` and `method` fields are required. The `param` field may be omitted
//! for certain methods:
//!
//! * `id` is arbitrary JSON data. The server completely ignores its contents,
//! and the client may use it for any purpose. It will be copied via
//! serialization and deserialization (so object property order, etc. can't be
//! relied upon to be identical) and sent back to the client as part of the
//! response.
//!
//! * `method` is a string that specifies one of the possible [`BrpRequest`]
//! variants: `bevy/query`, `bevy/get`, `bevy/insert`, etc. It's case-sensitive.
//!
//! * `params` is parameter data specific to the request.
//!
//! For more information, see the documentation for [`BrpRequest`].
//! [`BrpRequest`] is serialized to JSON via `serde`, so [the `serde`
//! documentation] may be useful to clarify the correspondence between the Rust
//! structure and the JSON format.
//!
//! ## Response objects
//!
//! A response from the server to the client might look like this:
//!
//! ```json
//! {
//! "jsonrpc": "2.0",
//! "id": 0,
//! "result": {
//! "bevy_transform::components::transform::Transform": {
//! "rotation": { "x": 0.0, "y": 0.0, "z": 0.0, "w": 1.0 },
//! "scale": { "x": 1.0, "y": 1.0, "z": 1.0 },
//! "translation": { "x": 0.0, "y": 0.5, "z": 0.0 }
//! }
//! }
//! }
//! ```
//!
//! The `id` field will always be present. The `result` field will be present if the
//! request was successful. Otherwise, an `error` field will replace it.
//!
//! * `id` is the arbitrary JSON data that was sent as part of the request. It
//! will be identical to the `id` data sent during the request, modulo
//! serialization and deserialization. If there's an error reading the `id` field,
//! it will be `null`.
//!
//! * `result` will be present if the request succeeded and will contain the response
//! specific to the request.
//!
//! * `error` will be present if the request failed and will contain an error object
//! with more information about the cause of failure.
//!
//! ## Error objects
//!
//! An error object might look like this:
//!
//! ```json
//! {
//! "code": -32602,
//! "message": "Missing \"entity\" field"
//! }
//! ```
//!
//! The `code` and `message` fields will always be present. There may also be a `data` field.
//!
//! * `code` is an integer representing the kind of an error that happened. Error codes documented
//! in the [`error_codes`] module.
//!
//! * `message` is a short, one-sentence human-readable description of the error.
//!
//! * `data` is an optional field of arbitrary type containing additional information about the error.
//!
//! ## Built-in methods
//!
//! The Bevy Remote Protocol includes a number of built-in methods for accessing and modifying data
//! in the ECS. Each of these methods uses the `bevy/` prefix, which is a namespace reserved for
//! BRP built-in methods.
//!
//! ### bevy/get
//!
//! Retrieve the values of one or more components from an entity.
//!
//! `params`:
//! - `entity`: The ID of the entity whose components will be fetched.
//! - `components`: An array of fully-qualified type names of components to fetch.
//!
//! `result`: A map associating each type name to its value on the requested entity.
//!
//! ### bevy/query
//!
//! Perform a query over components in the ECS, returning all matching entities and their associated
//! component values.
//!
//! All of the arrays that comprise this request are optional, and when they are not provided, they
//! will be treated as if they were empty.
//!
//! `params`:
//! `params`:
//! - `data`:
//! - `components` (optional): An array of fully-qualified type names of components to fetch.
//! - `option` (optional): An array of fully-qualified type names of components to fetch optionally.
//! - `has` (optional): An array of fully-qualified type names of components whose presence will be
//! reported as boolean values.
//! - `filter` (optional):
//! - `with` (optional): An array of fully-qualified type names of components that must be present
//! on entities in order for them to be included in results.
//! - `without` (optional): An array of fully-qualified type names of components that must *not* be
//! present on entities in order for them to be included in results.
//!
//! `result`: An array, each of which is an object containing:
//! - `entity`: The ID of a query-matching entity.
//! - `components`: A map associating each type name from `components`/`option` to its value on the matching
//! entity if the component is present.
//! - `has`: A map associating each type name from `has` to a boolean value indicating whether or not the
//! entity has that component. If `has` was empty or omitted, this key will be omitted in the response.
//!
//! ### bevy/spawn
//!
//! Create a new entity with the provided components and return the resulting entity ID.
//!
//! `params`:
//! - `components`: A map associating each component's fully-qualified type name with its value.
//!
//! `result`:
//! - `entity`: The ID of the newly spawned entity.
//!
//! ### bevy/destroy
//!
//! Despawn the entity with the given ID.
//!
//! `params`:
//! - `entity`: The ID of the entity to be despawned.
//!
//! `result`: null.
//!
//! ### bevy/remove
//!
//! Delete one or more components from an entity.
//!
//! `params`:
//! - `entity`: The ID of the entity whose components should be removed.
//! - `components`: An array of fully-qualified type names of components to be removed.
//!
//! `result`: null.
//!
//! ### bevy/insert
//!
//! Insert one or more components into an entity.
//!
//! `params`:
//! - `entity`: The ID of the entity to insert components into.
//! - `components`: A map associating each component's fully-qualified type name with its value.
//!
//! `result`: null.
//!
//! ### bevy/reparent
//!
//! Assign a new parent to one or more entities.
//!
//! `params`:
//! - `entities`: An array of entity IDs of entities that will be made children of the `parent`.
//! - `parent` (optional): The entity ID of the parent to which the child entities will be assigned.
//! If excluded, the given entities will be removed from their parents.
//!
//! `result`: null.
//!
//! ### bevy/list
//!
//! List all registered components or all components present on an entity.
//!
//! When `params` is not provided, this lists all registered components. If `params` is provided,
//! this lists only those components present on the provided entity.
//!
//! `params` (optional):
//! - `entity`: The ID of the entity whose components will be listed.
//!
//! `result`: An array of fully-qualified type names of components.
//!
//! ## Custom methods
//!
//! In addition to the provided methods, the Bevy Remote Protocol can be extended to include custom
//! methods. This is primarily done during the initialization of [`RemotePlugin`], although the
//! methods may also be extended at runtime using the [`RemoteMethods`] resource.
//!
//! ### Example
//! ```ignore
//! fn main() {
//! App::new()
//! .add_plugins(DefaultPlugins)
//! .add_plugins(
//! // `default` adds all of the built-in methods, while `with_method` extends them
//! RemotePlugin::default()
//! .with_method("super_user/cool_method".to_owned(), path::to::my:🆒:handler)
//! // ... more methods can be added by chaining `with_method`
//! )
//! .add_systems(
//! // ... standard application setup
//! )
//! .run();
//! }
//! ```
//!
//! The handler is expected to be a system-convertible function which takes optional JSON parameters
//! as input and returns a [`BrpResult`]. This means that it should have a type signature which looks
//! something like this:
//! ```
//! # use serde_json::Value;
//! # use bevy_ecs::prelude::{In, World};
//! # use bevy_remote::BrpResult;
//! fn handler(In(params): In<Option<Value>>, world: &mut World) -> BrpResult {
//! todo!()
//! }
//! ```
//!
//! Arbitrary system parameters can be used in conjunction with the optional `Value` input. The
//! handler system will always run with exclusive `World` access.
//!
//! [the `serde` documentation]: https://serde.rs/
```
</details>
### Message lifecycle
At a high level, the lifecycle of client-server interactions is
something like this:
1. The client sends one or more `BrpRequest`s. The deserialized version
of that is just the Rust representation of a JSON-RPC request, and it
looks like this:
```rust
pub struct BrpRequest {
/// The action to be performed. Parsing is deferred for the sake of error reporting.
pub method: Option<Value>,
/// Arbitrary data that will be returned verbatim to the client as part of
/// the response.
pub id: Option<Value>,
/// The parameters, specific to each method.
///
/// These are passed as the first argument to the method handler.
/// Sometimes params can be omitted.
pub params: Option<Value>,
}
```
2. These requests are accumulated in a mailbox resource (small lie but
close enough).
3. Each update, the mailbox is drained by a system
`process_remote_requests`, where each request is processed according to
its `method`, which has an associated handler. Each handler is a Bevy
system that runs with exclusive world access and returns a result; e.g.:
```rust
pub fn process_remote_get_request(In(params): In<Option<Value>>, world: &World) -> BrpResult { // ... }
```
4. The result (or an error) is reported back to the client.
## Testing
This can be tested by using the `server` and `client` examples. The
`client` example is not particularly exhaustive at the moment (it only
creates barebones `bevy/query` requests) but is still informative. Other
queries can be made using `curl` with the `server` example running.
For example, to make a `bevy/list` request and list all registered
components:
```bash
curl -X POST -d '{ "jsonrpc": "2.0", "id": 1, "method": "bevy/list" }' 127.0.0.1:15702 | jq .
```
---
## Future direction
There were a couple comments on BRP versioning while this was in draft.
I agree that BRP versioning is a good idea, but I think that it requires
some consensus on a couple fronts:
- First of all, what does the version actually mean? Is it a version for
the protocol itself or for the `bevy/*` methods implemented using it?
Both?
- Where does the version actually live? The most natural place is just
where we have `"jsonrpc"` right now (at least if it's versioning the
protocol itself), but this means we're not actually conforming to
JSON-RPC any more (so, for example, any client library used to construct
JSON-RPC requests would stop working). I'm not really against that, but
it's at least a real decision.
- What do we actually do when we encounter mismatched versions? Adding
handling for this would be actual scope creep instead of just a little
add-on in my opinion.
Another thing that would be nice is making the internal structure of the
implementation less JSON-specific. Right now, for example, component
values that will appear in server responses are quite eagerly converted
to JSON `Value`s, which prevents disentangling the handler logic from
the communication medium, but it can probably be done in principle and I
imagine it would enable more code reuse (e.g. for custom method
handlers) in addition to making the internals more readily usable for
other formats.
---------
Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
Co-authored-by: DragonGamesStudios <margos.michal@gmail.com>
Co-authored-by: Christopher Biscardi <chris@christopherbiscardi.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
**Note:** This is an adoption of @Shfty 's adoption (#8131) of #3996!
All I've done is updated the branch and run the docs CI.
> **Note:** This is an adoption of #3996, originally authored by
@molikto
>
> # Objective
> Allow use of `wgpu::Features::SPIRV_SHADER_PASSTHROUGH` and the
corresponding `wgpu::Device::create_shader_module_spirv` for SPIR-V
shader assets.
>
> This enables use-cases where naga is not sufficient to load a given
(valid) SPIR-V module, i.e. cases where naga lacks support for a given
SPIR-V feature employed by a third-party codegen backend like
`rust-gpu`.
>
> ## Solution
> * Reimplemented the changes from [Spirv shader
bypass #3996](https://github.com/bevyengine/bevy/pull/3996), on account
of the original branch having been deleted.
> * Documented the new `spirv_shader_passthrough` feature flag with the
appropriate platform support context from [wgpu's
documentation](https://docs.rs/wgpu/latest/wgpu/struct.Features.html#associatedconstant.SPIRV_SHADER_PASSTHROUGH).
>
> ## Changelog
> * Adds a `spirv_shader_passthrough` feature flag to the following
crates:
>
> * `bevy`
> * `bevy_internal`
> * `bevy_render`
> * Extends `RenderDevice::create_shader_module` with a conditional call
to `wgpu::Device::create_shader_module_spirv` if
`spirv_shader_passthrough` is enabled and
`wgpu::Features::SPIRV_SHADER_PASSTHROUGH` is present for the current
platform.
> * Documents the relevant `wgpu` platform support in
`docs/cargo_features.md`
---------
Co-authored-by: Josh Palmer <1253239+Shfty@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Added a `HeadlessPlugins` plugin group, that adds more default
functionality (like logging) than the `MinimumPlugins`. Fixes#15203
Changed the headless example to use the new plugin group.
I am not entirely sure if the list of plugins is correct. Are there ones
that should be added / removed?
----
The `TerminalCtrlCHandlerPlugin` has interesting effects in the headless
example: Installing it a second time it will give a log message about
skipping installation, because it is already installed. Ctrl+C will
terminate the application in that case. However, _not_ installing it the
second time (so only on the app that runs once) has the effect that the
app that runs continuously cannot be stopped using Ctrl+C.
This implies that, even though the second app did not install the Ctrl+C
handler, it did _something_ because it was keeping the one from the
first app alive.
Not sure if this is a problem or issue, or can be labeled a wierd quirk
of having multiple Apps in one executable.
# Objective
As discussed in https://github.com/bevyengine/bevy/issues/7386, system
order ambiguities within `DefaultPlugins` are a source of bugs in the
engine and badly pollute diagnostic output for users.
We should eliminate them!
This PR is an alternative to #15027: with all external ambiguities
silenced, this should be much less prone to merge conflicts and the test
output should be much easier for authors to understand.
Note that system order ambiguities are still permitted in the
`RenderApp`: these need a bit of thought in terms of how to test them,
and will be fairly involved to fix. While these aren't *good*, they'll
generally only cause graphical bugs, not logic ones.
## Solution
All remaining system order ambiguities have been resolved.
Review this PR commit-by-commit to see how each of these problems were
fixed.
## Testing
`cargo run --example ambiguity_detection` passes with no panics or
logging!
# Objective
Add `bevy_picking` sprite backend as part of the `bevy_mod_picking`
upstreamening (#12365).
## Solution
More or less a copy/paste from `bevy_mod_picking`, with the changes
[here](https://github.com/aevyrie/bevy_mod_picking/pull/354). I'm
putting that link here since those changes haven't yet made it through
review, so should probably be reviewed on their own.
## Testing
I couldn't find any sprite-backend-specific tests in `bevy_mod_picking`
and unfortunately I'm not familiar enough with Bevy's testing patterns
to write tests for code that relies on windowing and input. I'm willing
to break the pointer hit system into testable blocks and add some more
modular tests if that's deemed important enough to block, otherwise I
can open an issue for adding tests as follow-up.
## Follow-up work
- More docs/tests
- Ignore pick events on transparent sprite pixels with potential opt-out
---------
Co-authored-by: Aevyrie <aevyrie@gmail.com>
# Objective
- Remove the `wgpu_trace` feature while still making it easy/possible to
record wgpu traces for debugging.
- Close#14725.
- Get a taste of the bevy codebase. :P
## Solution
This PR performs the above objective by removing the `wgpu_trace`
feature from all `Cargo.toml` files.
However, wgpu traces are still useful for debugging - but to record
them, you need to pass in a directory path to store the traces in. To
avoid forcing users into manually creating the renderer,
`bevy_render::settings::WgpuSettings` now has a `trace_path` field, so
that all of Bevy's automatic initialization can happen while still
allowing for tracing.
## Testing
- Did you test these changes? If so, how?
- I have tested these changes, but only via running `cargo run -p ci`. I
am hoping the Github Actions workflows will catch anything I missed.
- Are there any parts that need more testing?
- I do not believe so.
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- If you want to test these changes, I have updated the debugging guide
(`docs/debugging.md`) section on WGPU Tracing.
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
- I ran the above command on a Windows 10 64-bit (x64) machine, using
the `stable-x86_64-pc-windows-msvc` toolchain. I do not have anything
set up for other platforms or targets (though I can't imagine this needs
testing on other platforms).
---
## Migration Guide
1. The `bevy/wgpu_trace`, `bevy_render/wgpu_trace`, and
`bevy_internal/wgpu_trace` features no longer exist. Remove them from
your `Cargo.toml`, CI, tooling, and what-not.
2. Follow the instructions in the updated `docs/debugging.md` file in
the repository, under the WGPU Tracing section.
Because of the changes made, you can now generate traces to any path,
rather than the hardcoded `%WorkspaceRoot%/wgpu_trace` (where
`%WorkspaceRoot%` is... the root of your crate's workspace) folder.
(If WGPU hasn't restored tracing functionality...) Do note that WGPU has
not yet restored tracing functionality. However, once it does, the above
should be sufficient to generate new traces.
---------
Co-authored-by: TrialDragon <31419708+TrialDragon@users.noreply.github.com>
Makes the newly merged picking usable for UI elements.
currently it both triggers the events, as well as sends them as throught
commands.trigger_targets. We should probably figure out if this is
needed for them all.
# Objective
Hooks up obserers and picking for a very simple example
## Solution
upstreamed the UI picking backend from bevy_mod_picking
## Testing
tested with the new example picking/simple_picking.rs
---
---------
Co-authored-by: Lixou <82600264+DasLixou@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
# Objective
This PR makes `bevy_render` an optional dependency for `bevy_gizmos`,
thereby allowing `bevy_gizmos` to be used with alternative rendering
backend.
Previously `bevy_gizmos` assumes that one of `bevy_pbr` or `bevy_sprite`
will be enabled. Here we introduced a new feature named `bevy_render`
which disables all rendering-related code paths. An alternative renderer
will then take the `LineGizmo` assets (made public in this PR) and issue
draw calls on their own. A new field `config_ty` was added to
`LineGizmo` to help looking up the related configuration info.
---
## Migration Guide
No user-visible changes needed from the users.
# Objective
#13152 added support for reflecting functions. Now, we need a way to
register those functions such that they may be accessed anywhere within
the ECS.
## Solution
Added a `FunctionRegistry` type similar to `TypeRegistry`.
This allows a function to be registered and retrieved by name.
```rust
fn foo() -> i32 {
123
}
let mut registry = FunctionRegistry::default();
registry.register("my_function", foo);
let function = registry.get_mut("my_function").unwrap();
let value = function.call(ArgList::new()).unwrap().unwrap_owned();
assert_eq!(value.downcast_ref::<i32>(), Some(&123));
```
Additionally, I added an `AppFunctionRegistry` resource which wraps a
`FunctionRegistryArc`. Functions can be registered into this resource
using `App::register_function` or by getting a mutable reference to the
resource itself.
### Limitations
#### `Send + Sync`
In order to get this registry to work across threads, it needs to be
`Send + Sync`. This means that `DynamicFunction` needs to be `Send +
Sync`, which means that its internal function also needs to be `Send +
Sync`.
In most cases, this won't be an issue because standard Rust functions
(the type most likely to be registered) are always `Send + Sync`.
Additionally, closures tend to be `Send + Sync` as well, granted they
don't capture any `!Send` or `!Sync` variables.
This PR adds this `Send + Sync` requirement, but as mentioned above, it
hopefully shouldn't be too big of an issue.
#### Closures
Unfortunately, closures can't be registered yet. This will likely be
explored and added in a followup PR.
### Future Work
Besides addressing the limitations listed above, another thing we could
look into is improving the lookup of registered functions. One aspect is
in the performance of hashing strings. The other is in the developer
experience of having to call `std::any::type_name_of_val` to get the
name of their function (assuming they didn't give it a custom name).
## Testing
You can run the tests locally with:
```
cargo test --package bevy_reflect
```
---
## Changelog
- Added `FunctionRegistry`
- Added `AppFunctionRegistry` (a `Resource` available from `bevy_ecs`)
- Added `FunctionRegistryArc`
- Added `FunctionRegistrationError`
- Added `reflect_functions` feature to `bevy_ecs` and `bevy_app`
- `FunctionInfo` is no longer `Default`
- `DynamicFunction` now requires its wrapped function be `Send + Sync`
## Internal Migration Guide
> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.
`DynamicFunction` (both those created manually and those created with
`IntoFunction`), now require `Send + Sync`. All standard Rust functions
should meet that requirement. Closures, on the other hand, may not if
they capture any `!Send` or `!Sync` variables from its environment.
# Objective
- Dynamic plugins were deprecated in #13080 due to being unsound. The
plan was to deprecate them in 0.14 and remove them in 0.15.
## Solution
- Remove all dynamic plugin functionality.
- Update documentation to reflect this change.
---
## Migration Guide
Dynamic plugins were deprecated in 0.14 for being unsound, and they have
now been fully removed. Please consider using the alternatives listed in
the `bevy_dynamic_plugin` crate documentation, or worst-case scenario
you may copy the code from 0.14.
# Objective
- Make it possible to know *what* changed your component or resource.
- Common need when debugging, when you want to know the last code
location that mutated a value in the ECS.
- This feature would be very useful for the editor alongside system
stepping.
## Solution
- Adds the caller location to column data.
- Mutations now `track_caller` all the way up to the public API.
- Commands that invoke these functions immediately call
`Location::caller`, and pass this into the functions, instead of the
functions themselves attempting to get the caller. This would not work
for commands which are deferred, as the commands are executed by the
scheduler, not the user's code.
## Testing
- The `component_change_detection` example now shows where the component
was mutated:
```
2024-07-28T06:57:48.946022Z INFO component_change_detection: Entity { index: 1, generation: 1 }: New value: MyComponent(0.0)
2024-07-28T06:57:49.004371Z INFO component_change_detection: Entity { index: 1, generation: 1 }: New value: MyComponent(1.0)
2024-07-28T06:57:49.012738Z WARN component_change_detection: Change detected!
-> value: Ref(MyComponent(1.0))
-> added: false
-> changed: true
-> changed by: examples/ecs/component_change_detection.rs:36:23
```
- It's also possible to inspect change location from a debugger:
<img width="608" alt="image"
src="https://github.com/user-attachments/assets/c90ecc7a-0462-457a-80ae-42e7f5d346b4">
---
## Changelog
- Added source locations to ECS change detection behind the
`track_change_detection` flag.
## Migration Guide
- Added `changed_by` field to many internal ECS functions used with
change detection when the `track_change_detection` feature flag is
enabled. Use Location::caller() to provide the source of the function
call.
---------
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
- Fix issue #2611
## Solution
- Add `--generate-link-to-definition` to all the `rustdoc-args` arrays
in the `Cargo.toml`s (for docs.rs)
- Add `--generate-link-to-definition` to the `RUSTDOCFLAGS` environment
variable in the docs workflow (for dev-docs.bevyengine.org)
- Document all the workspace crates in the docs workflow (needed because
otherwise only the source code of the `bevy` package will be included,
making the argument useless)
- I think this also fixes#3662, since it fixes the bug on
dev-docs.bevyengine.org, while on docs.rs it has been fixed for a while
on their side.
---
## Changelog
- The source code viewer on docs.rs now includes links to the
definitions.
# Objective
Function reflection requires a lot of macro code generation in the form
of several `all_tuples!` invocations, as well as impls generated in the
`Reflect` derive macro.
Seeing as function reflection is currently a bit more niche, it makes
sense to gate it all behind a feature.
## Solution
Add a `functions` feature to `bevy_reflect`, which can be enabled in
Bevy using the `reflect_functions` feature.
## Testing
You can test locally by running:
```
cargo test --package bevy_reflect
```
That should ensure that everything still works with the feature
disabled.
To test with the feature on, you can run:
```
cargo test --package bevy_reflect --features functions
```
---
## Changelog
- Moved function reflection behind a Cargo feature
(`bevy/reflect_functions` and `bevy_reflect/functions`)
- Add `IntoFunction` export in `bevy_reflect::prelude`
## Internal Migration Guide
> [!important]
> Function reflection was introduced as part of the 0.15 dev cycle. This
migration guide was written for developers relying on `main` during this
cycle, and is not a breaking change coming from 0.14.
Function reflection is now gated behind a feature. To use function
reflection, enable the feature:
- If using `bevy_reflect` directly, enable the `functions` feature
- If using `bevy`, enable the `reflect_functions` feature
# Objective
- Bevy currently has lot of invalid intra-doc links, let's fix them!
- Also make CI test them, to avoid future regressions.
- Helps with #1983 (but doesn't fix it, as there could still be explicit
links to docs.rs that are broken)
## Solution
- Make `cargo r -p ci -- doc-check` check fail on warnings (could also
be changed to just some specific lints)
- Manually fix all the warnings (note that in some cases it was unclear
to me what the fix should have been, I'll try to highlight them in a
self-review)
Bump version after release
This PR has been auto-generated
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Replace ab_glyph with the more capable cosmic-text
Fixes#7616.
Cosmic-text is a more mature text-rendering library that handles scripts
and ligatures better than ab_glyph, it can also handle system fonts
which can be implemented in bevy in the future
Rebase of https://github.com/bevyengine/bevy/pull/8808
## Changelog
Replaces text renderer ab_glyph with cosmic-text
The definition of the font size has changed with the migration to cosmic
text. The behavior is now consistent with other platforms (e.g. the
web), where the font size in pixels measures the height of the font (the
distance between the top of the highest ascender and the bottom of the
lowest descender). Font sizes in your app need to be rescaled to
approximately 1.2x smaller; for example, if you were using a font size
of 60.0, you should now use a font size of 50.0.
## Migration guide
- `Text2dBounds` has been replaced with `TextBounds`, and it now accepts
`Option`s to the bounds, instead of using `f32::INFINITY` to inidicate
lack of bounds
- Textsizes should be changed, dividing the current size with 1.2 will
result in the same size as before.
- `TextSettings` struct is removed
- Feature `subpixel_alignment` has been removed since cosmic-text
already does this automatically
- TextBundles and things rendering texts requires the `CosmicBuffer`
Component on them as well
## Suggested followups:
- TextPipeline: reconstruct byte indices for keeping track of eventual
cursors in text input
- TextPipeline: (future work) split text entities into section entities
- TextPipeline: (future work) text editing
- Support line height as an option. Unitless `1.2` is the default used
in browsers (1.2x font size).
- Support System Fonts and font families
- Example showing of animated text styles. Eg. throbbing hyperlinks
---------
Co-authored-by: tigregalis <anak.harimau@gmail.com>
Co-authored-by: Nico Burns <nico@nicoburns.com>
Co-authored-by: sam edelsten <samedelsten1@gmail.com>
Co-authored-by: Dimchikkk <velo.app1@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
# Objective
- Standard Material is starting to run out of samplers (currently uses
13 with no additional features off, I think in 0.13 it was 12).
- This change adds a new feature switch, modelled on the other ones
which add features to Standard Material, to turn off the new anisotropy
feature by default.
## Solution
- feature + texture define
## Testing
- Anisotropy example still works fine
- Other samples work fine
- Standard Material now takes 12 samplers by default on my Mac instead
of 13
## Migration Guide
- Add feature pbr_anisotropy_texture if you are using that texture in
any standard materials.
---------
Co-authored-by: John Payne <20407779+johngpayne@users.noreply.github.com>
# Objective
Fixes#13995.
## Solution
Override the default `Ctrl+C` handler with one that sends `AppExit`
event to every app with `TerminalCtrlCHandlerPlugin`.
## Testing
Tested by running the `3d_scene` example and hitting `Ctrl+C` in the
terminal.
---
## Changelog
Handles `Ctrl+C` in the terminal gracefully.
## Migration Guide
If you are overriding the `Ctrl+C` handler then you should call
`TerminalCtrlCHandlerPlugin::gracefully_exit` from your handler. It will
tell the app to exit.
# Objective
- Fixes#13728
## Solution
- add a new feature `smaa_luts`. if enables, it also enables `ktx2` and
`zstd`. if not, it doesn't load the files but use placeholders instead
- adds all the resources needed in the same places that system that uses
them are added.
# Objective
This is the first of a series of PRs intended to begin the upstreaming
process for `bevy_mod_picking`. The purpose of this PR is to:
+ Create the new `bevy_picking` crate
+ Upstream `CorePlugin` as `PickingPlugin`
+ Upstream the core pointer and backend abstractions.
This code has been ported verbatim from the corresponding files in
[bevy_picking_core](https://github.com/aevyrie/bevy_mod_picking/tree/main/crates/bevy_picking_core/src)
with a few tiny naming and docs tweaks.
The work here is only an initial foothold to get the up-streaming
process started in earnest. We can do refactoring and improvements once
this is in-tree.
---------
Co-authored-by: Aevyrie <aevyrie@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
StatesPlugin and GizmoPlugin were missing from the doc comment of
DefaultPlugins. I am not sure whether this was for a reason, but i just
stumbled over it and it seemed off...
## Testing
I'm not sure how to test these changes?
# Objective
There were some issues with the `serialize` feature:
- `bevy_app` had a `serialize` feature and a dependency on `serde` even
there is no usage of serde at all inside `bevy_app`
- the `bevy_app/serialize` feature enabled `bevy_ecs/serde`, which is
strange
- `bevy_internal/serialize` did not enable `bevy_app/serialize` so there
was no way of serializing an Entity in bevy 0.14
## Solution
- Remove `serde` and `bevy_app/serialize`
- Add a `serialize` flag on `bevy_ecs` that enables `serde`
- ` bevy_internal/serialize` now enables `bevy_ecs/serialize`
# Objective
After separating `bevy_states`, state installation methods like
`init_state` were kept in `bevy_app` under the `bevy_state` feature
flag.
This is problematic, because `bevy_state` is not a core module,
`bevy_app` is, yet it depends on `bevy_state`.
This causes practical problems like the inability to use
`bevy_hierarchy` inside `bevy_state`, because of circular dependencies.
## Solution
- `bevy_state` now has a `bevy_app` feature flag, which gates the new
`AppStateExt` trait.
All previous state installation methods were moved to this trait.
It's implemented for both `SubApp` and `App`.
## Changelog
- All state related app methods are now in `AppExtStates` trait in
`bevy_state`.
- Added `StatesPlugin` which is in `DefaultPlugins` when `bevy_state` is
enabled.
## Migration Guide
`App::init_state` is now provided by the
`bevy_state::app::AppExtStates;` trait: import it if you need this
method and are not blob-importing the `bevy` prelude.
# Objective
- Upgrade winit to v0.30
- Fixes https://github.com/bevyengine/bevy/issues/13331
## Solution
This is a rewrite/adaptation of the new trait system described and
implemented in `winit` v0.30.
## Migration Guide
The custom UserEvent is now renamed as WakeUp, used to wake up the loop
if anything happens outside the app (a new
[custom_user_event](https://github.com/bevyengine/bevy/pull/13366/files#diff-2de8c0a8d3028d0059a3d80ae31b2bbc1cde2595ce2d317ea378fe3e0cf6ef2d)
shows this behavior.
The internal `UpdateState` has been removed and replaced internally by
the AppLifecycle. When changed, the AppLifecycle is sent as an event.
The `UpdateMode` now accepts only two values: `Continuous` and
`Reactive`, but the latter exposes 3 new properties to enable reactive
to device, user or window events. The previous `UpdateMode::Reactive` is
now equivalent to `UpdateMode::reactive()`, while
`UpdateMode::ReactiveLowPower` to `UpdateMode::reactive_low_power()`.
The `ApplicationLifecycle` has been renamed as `AppLifecycle`, and now
contains the possible values of the application state inside the event
loop:
* `Idle`: the loop has not started yet
* `Running` (previously called `Started`): the loop is running
* `WillSuspend`: the loop is going to be suspended
* `Suspended`: the loop is suspended
* `WillResume`: the loop is going to be resumed
Note: the `Resumed` state has been removed since the resumed app is just
running.
Finally, now that `winit` enables this, it extends the `WinitPlugin` to
support custom events.
## Test platforms
- [x] Windows
- [x] MacOs
- [x] Linux (x11)
- [x] Linux (Wayland)
- [x] Android
- [x] iOS
- [x] WASM/WebGPU
- [x] WASM/WebGL2
## Outstanding issues / regressions
- [ ] iOS: build failed in CI
- blocking, but may just be flakiness
- [x] Cross-platform: when the window is maximised, changes in the scale
factor don't apply, to make them apply one has to make the window
smaller again. (Re-maximising keeps the updated scale factor)
- non-blocking, but good to fix
- [ ] Android: it's pretty easy to quickly open and close the app and
then the music keeps playing when suspended.
- non-blocking but worrying
- [ ] Web: the application will hang when switching tabs
- Not new, duplicate of https://github.com/bevyengine/bevy/issues/13486
- [ ] Cross-platform?: Screenshot failure, `ERROR present_frames:
wgpu_core::present: No work has been submitted for this frame before`
taking the first screenshot, but after pressing space
- non-blocking, but good to fix
---------
Co-authored-by: François <francois.mockers@vleue.com>
# Objective
- Followup to #13548
- It added a list of all possible labels to documentation. This seems
hard to keep up and doesn't stop people from making spelling mistake
## Solution
- Add an enum that can create all the labels possible, and encourage its
use rather than manually typed labels
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
# Objective
- We use
[`ci_testing`](https://dev-docs.bevyengine.org/bevy/dev_tools/ci_testing/index.html)
to specify per-example configuration on when to take a screenshot, when
to exit, etc.
- In the future more features may be added, such as #13512. To support
this growth, `ci_testing` should be easier to read and maintain.
## Solution
- Convert `ci_testing.rs` into the folder `ci_testing`, splitting the
configuration and systems into `ci_testing/config.rs` and
`ci_testing/systems.rs`.
- Convert `setup_app` into the plugin `CiTestingPlugin`. This new plugin
is added to both `DefaultPlugins` and `MinimalPlugins`.
- Remove `DevToolsPlugin` from `MinimalPlugins`, since it was only used
for CI testing.
- Clean up some code, add many comments, and add a few unit tests.
## Testing
The most important part is that this still passes all of the CI
validation checks (merge queue), since that is when it will be used the
most. I don't think I changed any behavior, so it should operate the
same.
You can also test it locally using:
```shell
# Run the breakout example, enabling `bevy_ci_testing` and loading the configuration used in CI.
CI_TESTING_CONFIG=".github/example-run/breakout.ron" cargo r --example breakout -F bevy_ci_testing
```
---
## Changelog
- Added `CiTestingPlugin`, which is split off from `DevToolsPlugin`.
- Removed `DevToolsPlugin` from `MinimalPlugins`.
## Migration Guide
Hi maintainers! I believe `DevToolsPlugin` was added within the same
release as this PR, so I don't think a migration guide is needed.
`DevToolsPlugin` is no longer included in `MinimalPlugins`, so you will
need to remove it manually.
```rust
// Before
App::new()
.add_plugins(MinimalPlugins)
.run();
// After
App::new()
.add_plugins(MinimalPlugins)
.add_plugins(DevToolsPlugin)
.run();
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
in bevy_pbr we check for `shader_format_glsl` before using binding
arrays due to a naga->glsl limitation. but the feature is currently only
enabled for the bevy_render crate.
fix#13232
## Solution
enable the feature for bevy_pbr too.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Extracts the state mechanisms into a new crate called "bevy_state".
This comes with a few goals:
- state wasn't really an inherent machinery of the ecs system, and so
keeping it within bevy_ecs felt forced
- by mixing it in with bevy_ecs, the maintainability of our more robust
state system was significantly compromised
moving state into a new crate makes it easier to encapsulate as it's own
feature, and easier to read and understand since it's no longer a
single, massive file.
## Solution
move the state-related elements from bevy_ecs to a new crate
## Testing
- Did you test these changes? If so, how? all the automated tests
migrated and passed, ran the pre-existing examples without changes to
validate.
---
## Migration Guide
Since bevy_state is now gated behind the `bevy_state` feature, projects
that use state but don't use the `default-features` will need to add
that feature flag.
Since it is no longer part of bevy_ecs, projects that use bevy_ecs
directly will need to manually pull in `bevy_state`, trigger the
StateTransition schedule, and handle any of the elements that bevy_app
currently sets up.
---------
Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
# Objective
Fixes#12966
## Solution
Renaming multi_threaded feature to match snake case
## Migration Guide
Bevy feature multi-threaded should be refered to multi_threaded from now
on.
Clearcoat is a separate material layer that represents a thin
translucent layer of a material. Examples include (from the [Filament
spec]) car paint, soda cans, and lacquered wood. This commit implements
support for clearcoat following the Filament and Khronos specifications,
marking the beginnings of support for multiple PBR layers in Bevy.
The [`KHR_materials_clearcoat`] specification describes the clearcoat
support in glTF. In Blender, applying a clearcoat to the Principled BSDF
node causes the clearcoat settings to be exported via this extension. As
of this commit, Bevy parses and reads the extension data when present in
glTF. Note that the `gltf` crate has no support for
`KHR_materials_clearcoat`; this patch therefore implements the JSON
semantics manually.
Clearcoat is integrated with `StandardMaterial`, but the code is behind
a series of `#ifdef`s that only activate when clearcoat is present.
Additionally, the `pbr_feature_layer_material_textures` Cargo feature
must be active in order to enable support for clearcoat factor maps,
clearcoat roughness maps, and clearcoat normal maps. This approach
mirrors the same pattern used by the existing transmission feature and
exists to avoid running out of texture bindings on platforms like WebGL
and WebGPU. Note that constant clearcoat factors and roughness values
*are* supported in the browser; only the relatively-less-common maps are
disabled on those platforms.
This patch refactors the lighting code in `StandardMaterial`
significantly in order to better support multiple layers in a natural
way. That code was due for a refactor in any case, so this is a nice
improvement.
A new demo, `clearcoat`, has been added. It's based on [the
corresponding three.js demo], but all the assets (aside from the skybox
and environment map) are my original work.
[Filament spec]:
https://google.github.io/filament/Filament.html#materialsystem/clearcoatmodel
[`KHR_materials_clearcoat`]:
https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_clearcoat/README.md
[the corresponding three.js demo]:
https://threejs.org/examples/webgl_materials_physical_clearcoat.html


## Changelog
### Added
* `StandardMaterial` now supports a clearcoat layer, which represents a
thin translucent layer over an underlying material.
* The glTF loader now supports the `KHR_materials_clearcoat` extension,
representing materials with clearcoat layers.
## Migration Guide
* The lighting functions in the `pbr_lighting` WGSL module now have
clearcoat parameters, if `STANDARD_MATERIAL_CLEARCOAT` is defined.
* The `R` reflection vector parameter has been removed from some
lighting functions, as it was unused.
# Objective
- `README.md` is a common file that usually gives an overview of the
folder it is in.
- When on <https://crates.io>, `README.md` is rendered as the main
description.
- Many crates in this repository are lacking `README.md` files, which
makes it more difficult to understand their purpose.
<img width="1552" alt="image"
src="https://github.com/bevyengine/bevy/assets/59022059/78ebf91d-b0c4-4b18-9874-365d6310640f">
- There are also a few inconsistencies with `README.md` files that this
PR and its follow-ups intend to fix.
## Solution
- Create a `README.md` file for all crates that do not have one.
- This file only contains the title of the crate (underscores removed,
proper capitalization, acronyms expanded) and the <https://shields.io>
badges.
- Remove the `readme` field in `Cargo.toml` for `bevy` and
`bevy_reflect`.
- This field is redundant because [Cargo automatically detects
`README.md`
files](https://doc.rust-lang.org/cargo/reference/manifest.html#the-readme-field).
The field is only there if you name it something else, like `INFO.md`.
- Fix capitalization of `bevy_utils`'s `README.md`.
- It was originally `Readme.md`, which is inconsistent with the rest of
the project.
- I created two commits renaming it to `README.md`, because Git appears
to be case-insensitive.
- Expand acronyms in title of `bevy_ptr` and `bevy_utils`.
- In the commit where I created all the new `README.md` files, I
preferred using expanded acronyms in the titles. (E.g. "Bevy Developer
Tools" instead of "Bevy Dev Tools".)
- This commit changes the title of existing `README.md` files to follow
the same scheme.
- I do not feel strongly about this change, please comment if you
disagree and I can revert it.
- Add <https://shields.io> badges to `bevy_time` and `bevy_transform`,
which are the only crates currently lacking them.
---
## Changelog
- Added `README.md` files to all crates missing it.
# Objective
Makes crate module docs render correctly in the docs for the monolithic
library. Fixes https://github.com/bevyengine/bevy/issues/13055.
## Solution
Swap from
```rust
pub mod foo {
pub use bevy_foo::*;
}
```
to
```rust
pub use bevy_foo as foo;
```
# Objective
As described in #12467, Bevy does not have any spans for any of the
tasks scheduled onto the IO and async compute task pools.
## Solution
Instrument all asset loads and asset processing. Since this change is
restricted to asset tasks, it does not completely solve #12467, but it
does mean we can record the asset path in the trace.

---
## Changelog
Tracing will now include spans for asset loading and asset processing.
# Objective
- Fixes#12976
## Solution
This one is a doozy.
- Run `cargo +beta clippy --workspace --all-targets --all-features` and
fix all issues
- This includes:
- Moving inner attributes to be outer attributes, when the item in
question has both inner and outer attributes
- Use `ptr::from_ref` in more scenarios
- Extend the valid idents list used by `clippy:doc_markdown` with more
names
- Use `Clone::clone_from` when possible
- Remove redundant `ron` import
- Add backticks to **so many** identifiers and items
- I'm sorry whoever has to review this
---
## Changelog
- Added links to more identifiers in documentation.
# Objective
- Disabling some plugins causes a crash due to ambiguities relying in
feature flags and not checking if both plugins are enabled causing code
like this to crash:
`app.add_plugins(DefaultPlugins.build().disable::<AnimationPlugin>())`
## Solution
- Check if plugins were added before ambiguities.
- Move bevy_gizmos ambiguities from bevy_internal to bevy_gizmos since
they already depend on them.
# Objective
- Move `PanicHandlerPlugin` into `bevy_app`
- Fixes#12603 .
## Solution
- I moved the `bevy_panic_handler` into `bevy_app`
- Copy pasted `bevy_panic_handler`'s lib.rs into a separate module in
`bevy_app` as a `panic_handler.rs` module file and added the
`PanicHandlerPlugin` in lib.rs of `bevy_app`
- added the dependency into `cargo.toml`
## Review notes
- I probably want some feedback if I imported App and Plugin correctly
in `panic_handler.rs` line 10 and 11.
- As of yet I have not deleted `bevy_panic_handler` crate, wanted to get
a check if I added it correctly.
- Once validated that my move was correct, I'll probably have to remove
the panic handler find default plugins which I probably need some help
to find.
- And then remove bevy panic_handler and making sure ci passes.
- This is my first issue for contributing to bevy so let me know if I am
doing anything wrong.
## tools context
- rust is 1.76 version
- Windows 11
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Resolves#3824. `unsafe` code should be the exception, not the norm in
Rust. It's obviously needed for various use cases as it's interfacing
with platforms and essentially running the borrow checker at runtime in
the ECS, but the touted benefits of Bevy is that we are able to heavily
leverage Rust's safety, and we should be holding ourselves accountable
to that by minimizing our unsafe footprint.
## Solution
Deny `unsafe_code` workspace wide. Add explicit exceptions for the
following crates, and forbid it in almost all of the others.
* bevy_ecs - Obvious given how much unsafe is needed to achieve
performant results
* bevy_ptr - Works with raw pointers, even more low level than bevy_ecs.
* bevy_render - due to needing to integrate with wgpu
* bevy_window - due to needing to integrate with raw_window_handle
* bevy_utils - Several unsafe utilities used by bevy_ecs. Ideally moved
into bevy_ecs instead of made publicly usable.
* bevy_reflect - Required for the unsafe type casting it's doing.
* bevy_transform - for the parallel transform propagation
* bevy_gizmos - For the SystemParam impls it has.
* bevy_assets - To support reflection. Might not be required, not 100%
sure yet.
* bevy_mikktspace - due to being a conversion from a C library. Pending
safe rewrite.
* bevy_dynamic_plugin - Inherently unsafe due to the dynamic loading
nature.
Several uses of unsafe were rewritten, as they did not need to be using
them:
* bevy_text - a case of `Option::unchecked` could be rewritten as a
normal for loop and match instead of an iterator.
* bevy_color - the Pod/Zeroable implementations were replaceable with
bytemuck's derive macros.
# Objective
Currently the built docs only shows the logo and favicon for the top
level `bevy` crate. This makes views like
https://docs.rs/bevy_ecs/latest/bevy_ecs/ look potentially unrelated to
the project at first glance.
## Solution
Reproduce the docs attributes for every crate that Bevy publishes.
Ideally this would be done with some workspace level Cargo.toml control,
but AFAICT, such support does not exist.
# Objective
- Add serialize feature to bevy_color
- "Fixes #12527".
## Solution
- Added feature for serialization
---
## Changelog
- Serde serialization is now optional, with flag 'serialize'
## Migration Guide
- If user wants color data structures to be serializable, then
application needs to be build with flag 'serialize'
# Objective
- Allow configuring of platform-specific panic handlers.
- Remove the silent overwrite of the WASM panic handler
- Closes#12546
## Solution
- Separates the panic handler to a new plugin, `PanicHandlerPlugin`.
- `PanicHandlerPlugin` was added to `DefaultPlugins`.
- Can be disabled on `DefaultPlugins`, in the case someone needs to
configure custom panic handlers.
---
## Changelog
### Added
- A `PanicHandlerPlugin` was added to the `DefaultPlugins`, which now
sets sensible target-specific panic handlers.
### Changed
- On WASM, the panic stack trace was output to the console through the
`BevyLogPlugin`. Since this was separated out into `PanicHandlerPlugin`,
you may need to add the new `PanicHandlerPlugin` (included in
`DefaultPlugins`).
## Migration Guide
- If you used `MinimalPlugins` with `LogPlugin` for a WASM-target build,
you will need to add the new `PanicHandlerPlugin` to set the panic
behavior to output to the console. Otherwise, you will see the default
panic handler (opaque, `unreachable` errors in the console).
# Objective
- Fix#12356
- better isolation of ci testing tools in dev tools instead of being in
various crates
## Solution
- Move the parts doing the work of ci testing to the dev tools
# Objective
- Resolves#11309
## Solution
- Add `bevy_dev_tools` crate as a default feature.
- Add `DevToolsPlugin` and add it to an app if the `bevy_dev_tools`
feature is enabled.
`bevy_dev_tools` is reserved by @alice-i-cecile, should we wait until it
gets transferred to cart before merging?
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
# Objective
- As part of the migration process we need to a) see the end effect of
the migration on user ergonomics b) check for serious perf regressions
c) actually migrate the code
- To accomplish this, I'm going to attempt to migrate all of the
remaining user-facing usages of `LegacyColor` in one PR, being careful
to keep a clean commit history.
- Fixes#12056.
## Solution
I've chosen to use the polymorphic `Color` type as our standard
user-facing API.
- [x] Migrate `bevy_gizmos`.
- [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs
- [x] Migrate sprites
- [x] Migrate UI
- [x] Migrate `ColorMaterial`
- [x] Migrate `MaterialMesh2D`
- [x] Migrate fog
- [x] Migrate lights
- [x] Migrate StandardMaterial
- [x] Migrate wireframes
- [x] Migrate clear color
- [x] Migrate text
- [x] Migrate gltf loader
- [x] Register color types for reflection
- [x] Remove `LegacyColor`
- [x] Make sure CI passes
Incidental improvements to ease migration:
- added `Color::srgba_u8`, `Color::srgba_from_array` and friends
- added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the
`Alpha` trait
- add and immediately deprecate (lol) `Color::rgb` and friends in favor
of more explicit and consistent `Color::srgb`
- standardized on white and black for most example text colors
- added vector field traits to `LinearRgba`: ~~`Add`, `Sub`,
`AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications
and divisions do not scale alpha. `Add` and `Sub` have been cut from
this PR.
- added `LinearRgba` and `Srgba` `RED/GREEN/BLUE`
- added `LinearRgba_to_f32_array` and `LinearRgba::to_u32`
## Migration Guide
Bevy's color types have changed! Wherever you used a
`bevy::render::Color`, a `bevy::color::Color` is used instead.
These are quite similar! Both are enums storing a color in a specific
color space (or to be more precise, using a specific color model).
However, each of the different color models now has its own type.
TODO...
- `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`,
`Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`,
`Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`.
- `Color::set_a` and `Color::a` is now `Color::set_alpha` and
`Color::alpha`. These are part of the `Alpha` trait in `bevy_color`.
- `Color::is_fully_transparent` is now part of the `Alpha` trait in
`bevy_color`
- `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for
`g`, `b` `h`, `s` and `l` have been removed due to causing silent
relatively expensive conversions. Convert your `Color` into the desired
color space, perform your operations there, and then convert it back
into a polymorphic `Color` enum.
- `Color::hex` is now `Srgba::hex`. Call `.into` or construct a
`Color::Srgba` variant manually to convert it.
- `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`,
`ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now
store a `LinearRgba`, rather than a polymorphic `Color`
- `Color::rgb_linear` and `Color::rgba_linear` are now
`Color::linear_rgb` and `Color::linear_rgba`
- The various CSS color constants are no longer stored directly on
`Color`. Instead, they're defined in the `Srgba` color space, and
accessed via `bevy::color::palettes::css`. Call `.into()` on them to
convert them into a `Color` for quick debugging use, and consider using
the much prettier `tailwind` palette for prototyping.
- The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with
the standard naming.
- Vector field arithmetic operations on `Color` (add, subtract, multiply
and divide by a f32) have been removed. Instead, convert your colors
into `LinearRgba` space, and perform your operations explicitly there.
This is particularly relevant when working with emissive or HDR colors,
whose color channel values are routinely outside of the ordinary 0 to 1
range.
- `Color::as_linear_rgba_f32` has been removed. Call
`LinearRgba::to_f32_array` instead, converting if needed.
- `Color::as_linear_rgba_u32` has been removed. Call
`LinearRgba::to_u32` instead, converting if needed.
- Several other color conversion methods to transform LCH or HSL colors
into float arrays or `Vec` types have been removed. Please reimplement
these externally or open a PR to re-add them if you found them
particularly useful.
- Various methods on `Color` such as `rgb` or `hsl` to convert the color
into a specific color space have been removed. Convert into
`LinearRgba`, then to the color space of your choice.
- Various implicitly-converting color value methods on `Color` such as
`r`, `g`, `b` or `h` have been removed. Please convert it into the color
space of your choice, then check these properties.
- `Color` no longer implements `AsBindGroup`. Store a `LinearRgba`
internally instead to avoid conversion costs.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Co-authored-by: Afonso Lage <lage.afonso@gmail.com>
Co-authored-by: Rob Parrett <robparrett@gmail.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
- Fixes https://github.com/bevyengine/bevy/issues/11929
- make sysinfo plugin optional
## Solution
- added features to allow for conditional compilation
---
## Migration Guide
- For users who disable default features of bevy and wish to enable the
diagnostic plugin, add `sysinfo_plugin` to your bevy features list.
---------
Co-authored-by: ebola <dev@axiomatic>
Co-authored-by: François <mockersf@gmail.com>
# Objective
As we start to migrate to `bevy_color` in earnest (#12056), we should
make it visible to Bevy users, and usable in examples.
## Solution
1. Add a prelude to `bevy_color`: I've only excluded the rarely used
`ColorRange` type and the testing-focused color distance module. I
definitely think that some color spaces are less useful than others to
end users, but at the same time the types used there are very unlikely
to conflict with user-facing types.
2. Add `bevy_color` to `bevy_internal` as an optional crate.
3. Re-export `bevy_color`'s prelude as part of `bevy::prelude`.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
# Objective
The migration process for `bevy_color` (#12013) will be fairly involved:
there will be hundreds of affected files, and a large number of APIs.
## Solution
To allow us to proceed granularly, we're going to keep both
`bevy_color::Color` (new) and `bevy_render::Color` (old) around until
the migration is complete.
However, simply doing this directly is confusing! They're both called
`Color`, making it very hard to tell when a portion of the code has been
ported.
As discussed in #12056, by renaming the old `Color` type, we can make it
easier to gradually migrate over, one API at a time.
## Migration Guide
THIS MIGRATION GUIDE INTENTIONALLY LEFT BLANK.
This change should not be shipped to end users: delete this section in
the final migration guide!
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
Fixes#12016.
Bump version after release
This PR has been auto-generated
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
Bevy's animation system currently does tree traversals based on `Name`
that aren't necessary. Not only do they require in unsafe code because
tree traversals are awkward with parallelism, but they are also somewhat
slow, brittle, and complex, which manifested itself as way too many
queries in #11670.
# Solution
Divide animation into two phases: animation *advancement* and animation
*evaluation*, which run after one another. *Advancement* operates on the
`AnimationPlayer` and sets the current animation time to match the game
time. *Evaluation* operates on all animation bones in the scene in
parallel and sets the transforms and/or morph weights based on the time
and the clip.
To do this, we introduce a new component, `AnimationTarget`, which the
asset loader places on every bone. It contains the ID of the entity
containing the `AnimationPlayer`, as well as a UUID that identifies
which bone in the animation the target corresponds to. In the case of
glTF, the UUID is derived from the full path name to the bone. The rule
that `AnimationTarget`s are descendants of the entity containing
`AnimationPlayer` is now just a convention, not a requirement; this
allows us to eliminate the unsafe code.
# Migration guide
* `AnimationClip` now uses UUIDs instead of hierarchical paths based on
the `Name` component to refer to bones. This has several consequences:
- A new component, `AnimationTarget`, should be placed on each bone that
you wish to animate, in order to specify its UUID and the associated
`AnimationPlayer`. The glTF loader automatically creates these
components as necessary, so most uses of glTF rigs shouldn't need to
change.
- Moving a bone around the tree, or renaming it, no longer prevents an
`AnimationPlayer` from affecting it.
- Dynamically changing the `AnimationPlayer` component will likely
require manual updating of the `AnimationTarget` components.
* Entities with `AnimationPlayer` components may now possess descendants
that also have `AnimationPlayer` components. They may not, however,
animate the same bones.
* As they aren't specific to `TypeId`s,
`bevy_reflect::utility::NoOpTypeIdHash` and
`bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to
`bevy_reflect::utility::NoOpHash` and
`bevy_reflect::utility::NoOpHasher` respectively.
# Objective
Fixes#11908
## Solution
- Remove the `naga_oil` dependency from `bevy_pbr`.
- We were doing a little dance to disable `glsl` support on not-wasm, so
incorporate that dance into `bevy_render`'s `Cargo.toml`.
# Objective
Loading some textures from the days of yonder give me errors cause the
mipmap level is 0
## Solution
Set a minimum of 1
## Changelog
Make mipmap level at least 1
# Objective
- Pipeline compilation is slow and blocks the frame
- Closes https://github.com/bevyengine/bevy/issues/8224
## Solution
- Compile pipelines in a Task on the AsyncComputeTaskPool
---
## Changelog
- Render/compute pipeline compilation is now done asynchronously over
multiple frames when the multi-threaded feature is enabled and on
non-wasm and non-macOS platforms
- Added `CachedPipelineState::Creating`
- Added `PipelineCache::block_on_render_pipeline()`
- Added `bevy_utils::futures::check_ready`
- Added `bevy_render/multi-threaded` cargo feature
## Migration Guide
- Match on the new `Creating` variant for exhaustive matches of
`CachedPipelineState`
# Objective
Currently the `missing_docs` lint is allowed-by-default and enabled at
crate level when their documentations is complete (see #3492).
This PR proposes to inverse this logic by making `missing_docs`
warn-by-default and mark crates with imcomplete docs allowed.
## Solution
Makes `missing_docs` warn at workspace level and allowed at crate level
when the docs is imcomplete.
# Objective
Add interactive system debugging capabilities to bevy, providing
step/break/continue style capabilities to running system schedules.
* Original implementation: #8063
- `ignore_stepping()` everywhere was too much complexity
* Schedule-config & Resource discussion: #8168
- Decided on selective adding of Schedules & Resource-based control
## Solution
Created `Stepping` Resource. This resource can be used to enable
stepping on a per-schedule basis. Systems within schedules can be
individually configured to:
* AlwaysRun: Ignore any stepping state and run every frame
* NeverRun: Never run while stepping is enabled
- this allows for disabling of systems while debugging
* Break: If we're running the full frame, stop before this system is run
Stepping provides two modes of execution that reflect traditional
debuggers:
* Step-based: Only execute one system at a time
* Continue/Break: Run all systems, but stop before running a system
marked as Break
### Demo
https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov
Breakout has been modified to use Stepping. The game runs normally for a
couple of seconds, then stepping is enabled and the game appears to
pause. A list of Schedules & Systems appears with a cursor at the first
System in the list. The demo then steps forward full frames using the
spacebar until the ball is about to hit a brick. Then we step system by
system as the ball impacts a brick, showing the cursor moving through
the individual systems. Finally the demo switches back to frame stepping
as the ball changes course.
### Limitations
Due to architectural constraints in bevy, there are some cases systems
stepping will not function as a user would expect.
#### Event-driven systems
Stepping does not support systems that are driven by `Event`s as events
are flushed after 1-2 frames. Although game systems are not running
while stepping, ignored systems are still running every frame, so events
will be flushed.
This presents to the user as stepping the event-driven system never
executes the system. It does execute, but the events have already been
flushed.
This can be resolved by changing event handling to use a buffer for
events, and only dropping an event once all readers have read it.
The work-around to allow these systems to properly execute during
stepping is to have them ignore stepping:
`app.add_systems(event_driven_system.ignore_stepping())`. This was done
in the breakout example to ensure sound played even while stepping.
#### Conditional Systems
When a system is stepped, it is given an opportunity to run. If the
conditions of the system say it should not run, it will not.
Similar to Event-driven systems, if a system is conditional, and that
condition is only true for a very small time window, then stepping the
system may not execute the system. This includes depending on any sort
of external clock.
This exhibits to the user as the system not always running when it is
stepped.
A solution to this limitation is to ensure any conditions are consistent
while stepping is enabled. For example, all systems that modify any
state the condition uses should also enable stepping.
#### State-transition Systems
Stepping is configured on the per-`Schedule` level, requiring the user
to have a `ScheduleLabel`.
To support state-transition systems, bevy generates needed schedules
dynamically. Currently it’s very difficult (if not impossible, I haven’t
verified) for the user to get the labels for these schedules.
Without ready access to the dynamically generated schedules, and a
resolution for the `Event` lifetime, **stepping of the state-transition
systems is not supported**
---
## Changelog
- `Schedule::run()` updated to consult `Stepping` Resource to determine
which Systems to run each frame
- Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting
`Schedule::set_label()` and `Schedule::label()` methods
- `Stepping` needed to know which `Schedule` was running, and prior to
this PR, `Schedule` didn't track its own label
- Would have preferred to add `Schedule::with_label()` and remove
`Schedule::new()`, but this PR touches enough already
- Added calls to `Schedule.set_label()` to `App` and `World` as needed
- Added `Stepping` resource
- Added `Stepping::begin_frame()` system to `MainSchedulePlugin`
- Run before `Main::run_main()`
- Notifies any `Stepping` Resource a new render frame is starting
## Migration Guide
- Add a call to `Schedule::set_label()` for any custom `Schedule`
- This is only required if the `Schedule` will be stepped
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fixes#11453
This is a temporary fix. There is PR fixing it (#11460), but I'm not
sure if it's going to be merged before the 0.13 release.
# Objective
Keep core dependencies up to date.
## Solution
Update the dependencies.
wgpu 0.19 only supports raw-window-handle (rwh) 0.6, so bumping that was
included in this.
The rwh 0.6 version bump is just the simplest way of doing it. There
might be a way we can take advantage of wgpu's new safe surface creation
api, but I'm not familiar enough with bevy's window management to
untangle it and my attempt ended up being a mess of lifetimes and rustc
complaining about missing trait impls (that were implemented). Thanks to
@MiniaczQ for the (much simpler) rwh 0.6 version bump code.
Unblocks https://github.com/bevyengine/bevy/pull/9172 and
https://github.com/bevyengine/bevy/pull/10812
~~This might be blocked on cpal and oboe updating their ndk versions to
0.8, as they both currently target ndk 0.7 which uses rwh 0.5.2~~ Tested
on android, and everything seems to work correctly (audio properly stops
when minimized, and plays when re-focusing the app).
---
## Changelog
- `wgpu` has been updated to 0.19! The long awaited arcanization has
been merged (for more info, see
https://gfx-rs.github.io/2023/11/24/arcanization.html), and Vulkan
should now be working again on Intel GPUs.
- Targeting WebGPU now requires that you add the new `webgpu` feature
(setting the `RUSTFLAGS` environment variable to
`--cfg=web_sys_unstable_apis` is still required). This feature currently
overrides the `webgl2` feature if you have both enabled (the `webgl2`
feature is enabled by default), so it is not recommended to add it as a
default feature to libraries without putting it behind a flag that
allows library users to opt out of it! In the future we plan on
supporting wasm binaries that can target both webgl2 and webgpu now that
wgpu added support for doing so (see
https://github.com/bevyengine/bevy/issues/11505).
- `raw-window-handle` has been updated to version 0.6.
## Migration Guide
- `bevy_render::instance_index::get_instance_index()` has been removed
as the webgl2 workaround is no longer required as it was fixed upstream
in wgpu. The `BASE_INSTANCE_WORKAROUND` shaderdef has also been removed.
- WebGPU now requires the new `webgpu` feature to be enabled. The
`webgpu` feature currently overrides the `webgl2` feature so you no
longer need to disable all default features and re-add them all when
targeting `webgpu`, but binaries built with both the `webgpu` and
`webgl2` features will only target the webgpu backend, and will only
work on browsers that support WebGPU.
- Places where you conditionally compiled things for webgl2 need to be
updated because of this change, eg:
- `#[cfg(any(not(feature = "webgl"), not(target_arch = "wasm32")))]`
becomes `#[cfg(any(not(feature = "webgl") ,not(target_arch = "wasm32"),
feature = "webgpu"))]`
- `#[cfg(all(feature = "webgl", target_arch = "wasm32"))]` becomes
`#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature =
"webgpu")))]`
- `if cfg!(all(feature = "webgl", target_arch = "wasm32"))` becomes `if
cfg!(all(feature = "webgl", target_arch = "wasm32", not(feature =
"webgpu")))`
- `create_texture_with_data` now also takes a `TextureDataOrder`. You
can probably just set this to `TextureDataOrder::default()`
- `TextureFormat`'s `block_size` has been renamed to `block_copy_size`
- See the `wgpu` changelog for anything I might've missed:
https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md
---------
Co-authored-by: François <mockersf@gmail.com>
This pull request re-submits #10057, which was backed out for breaking
macOS, iOS, and Android. I've tested this version on macOS and Android
and on the iOS simulator.
# Objective
This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].
## Solution
This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.
A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.
A frequent question is "why two components instead of just one?" The
advantages of this setup are:
1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.
2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.
Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.
An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.
Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:
* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)
* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.
* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.
Future work includes:
* Blending between multiple reflection probes.
* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.
* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.
* Support for WebGL 2, by breaking batches when reflection probes are
used.
These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.
---
## Changelog
### Added
* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.
[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html
[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi
[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
# Objective
This pull request implements *reflection probes*, which generalize
environment maps to allow for multiple environment maps in the same
scene, each of which has an axis-aligned bounding box. This is a
standard feature of physically-based renderers and was inspired by [the
corresponding feature in Blender's Eevee renderer].
## Solution
This is a minimal implementation of reflection probes that allows
artists to define cuboid bounding regions associated with environment
maps. For every view, on every frame, a system builds up a list of the
nearest 4 reflection probes that are within the view's frustum and
supplies that list to the shader. The PBR fragment shader searches
through the list, finds the first containing reflection probe, and uses
it for indirect lighting, falling back to the view's environment map if
none is found. Both forward and deferred renderers are fully supported.
A reflection probe is an entity with a pair of components, *LightProbe*
and *EnvironmentMapLight* (as well as the standard *SpatialBundle*, to
position it in the world). The *LightProbe* component (along with the
*Transform*) defines the bounding region, while the
*EnvironmentMapLight* component specifies the associated diffuse and
specular cubemaps.
A frequent question is "why two components instead of just one?" The
advantages of this setup are:
1. It's readily extensible to other types of light probes, in particular
*irradiance volumes* (also known as ambient cubes or voxel global
illumination), which use the same approach of bounding cuboids. With a
single component that applies to both reflection probes and irradiance
volumes, we can share the logic that implements falloff and blending
between multiple light probes between both of those features.
2. It reduces duplication between the existing *EnvironmentMapLight* and
these new reflection probes. Systems can treat environment maps attached
to cameras the same way they treat environment maps applied to
reflection probes if they wish.
Internally, we gather up all environment maps in the scene and place
them in a cubemap array. At present, this means that all environment
maps must have the same size, mipmap count, and texture format. A
warning is emitted if this restriction is violated. We could potentially
relax this in the future as part of the automatic mipmap generation
work, which could easily do texture format conversion as part of its
preprocessing.
An easy way to generate reflection probe cubemaps is to bake them in
Blender and use the `export-blender-gi` tool that's part of the
[`bevy-baked-gi`] project. This tool takes a `.blend` file containing
baked cubemaps as input and exports cubemap images, pre-filtered with an
embedded fork of the [glTF IBL Sampler], alongside a corresponding
`.scn.ron` file that the scene spawner can use to recreate the
reflection probes.
Note that this is intentionally a minimal implementation, to aid
reviewability. Known issues are:
* Reflection probes are basically unsupported on WebGL 2, because WebGL
2 has no cubemap arrays. (Strictly speaking, you can have precisely one
reflection probe in the scene if you have no other cubemaps anywhere,
but this isn't very useful.)
* Reflection probes have no falloff, so reflections will abruptly change
when objects move from one bounding region to another.
* As mentioned before, all cubemaps in the world of a given type
(diffuse or specular) must have the same size, format, and mipmap count.
Future work includes:
* Blending between multiple reflection probes.
* A falloff/fade-out region so that reflected objects disappear
gradually instead of vanishing all at once.
* Irradiance volumes for voxel-based global illumination. This should
reuse much of the reflection probe logic, as they're both GI techniques
based on cuboid bounding regions.
* Support for WebGL 2, by breaking batches when reflection probes are
used.
These issues notwithstanding, I think it's best to land this with
roughly the current set of functionality, because this patch is useful
as is and adding everything above would make the pull request
significantly larger and harder to review.
---
## Changelog
### Added
* A new *LightProbe* component is available that specifies a bounding
region that an *EnvironmentMapLight* applies to. The combination of a
*LightProbe* and an *EnvironmentMapLight* offers *reflection probe*
functionality similar to that available in other engines.
[the corresponding feature in Blender's Eevee renderer]:
https://docs.blender.org/manual/en/latest/render/eevee/light_probes/reflection_cubemaps.html
[`bevy-baked-gi`]: https://github.com/pcwalton/bevy-baked-gi
[glTF IBL Sampler]: https://github.com/KhronosGroup/glTF-IBL-Sampler
# Objective
- Fixes#11119
## Solution
- Creation of the serialize feature to ui
---
## Changelog
### Changed
- Changed all the structs that implement Serialize and Deserialize to
only implement when feature is on
## Migration Guide
- If you want to use serialize and deserialize with types from bevy_ui,
you need to use the feature serialize in your TOML
```toml
[dependencies.bevy]
features = ["serialize"]
```
# Objective
- Shorten paths by removing unnecessary prefixes
## Solution
- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
# Objective
- Standardize fmt for toml files
## Solution
- Add [taplo](https://taplo.tamasfe.dev/) to CI (check for fmt and diff
for toml files), for context taplo is used by the most popular extension
in VScode [Even Better
TOML](https://marketplace.visualstudio.com/items?itemName=tamasfe.even-better-toml
- Add contribution section to explain toml fmt with taplo.
Now to pass CI you need to run `taplo fmt --option indent_string=" "` or
if you use vscode have the `Even Better TOML` extension with 4 spaces
for indent
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796
## Solution
- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```
## Changelog
- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```
---------
Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
Preparing next release
This PR has been auto-generated
---------
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
<img width="1920" alt="Screenshot 2023-04-26 at 01 07 34"
src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png">
This PR adds both diffuse and specular light transmission capabilities
to the `StandardMaterial`, with support for screen space refractions.
This enables realistically representing a wide range of real-world
materials, such as:
- Glass; (Including frosted glass)
- Transparent and translucent plastics;
- Various liquids and gels;
- Gemstones;
- Marble;
- Wax;
- Paper;
- Leaves;
- Porcelain.
Unlike existing support for transparency, light transmission does not
rely on fixed function alpha blending, and therefore works with both
`AlphaMode::Opaque` and `AlphaMode::Mask` materials.
## Solution
- Introduces a number of transmission related fields in the
`StandardMaterial`;
- For specular transmission:
- Adds logic to take a view main texture snapshot after the opaque
phase; (in order to perform screen space refractions)
- Introduces a new `Transmissive3d` phase to the renderer, to which all
meshes with `transmission > 0.0` materials are sent.
- Calculates a light exit point (of the approximate mesh volume) using
`ior` and `thickness` properties
- Samples the snapshot texture with an adaptive number of taps across a
`roughness`-controlled radius enabling “blurry” refractions
- For diffuse transmission:
- Approximates transmitted diffuse light by using a second, flipped +
displaced, diffuse-only Lambertian lobe for each light source.
## To Do
- [x] Figure out where `fresnel_mix()` is taking place, if at all, and
where `dielectric_specular` is being calculated, if at all, and update
them to use the `ior` value (Not a blocker, just a nice-to-have for more
correct BSDF)
- To the _best of my knowledge, this is now taking place, after
964340cdd. The fresnel mix is actually "split" into two parts in our
implementation, one `(1 - fresnel(...))` in the transmission, and
`fresnel()` in the light implementations. A surface with more
reflectance now will produce slightly dimmer transmission towards the
grazing angle, as more of the light gets reflected.
- [x] Add `transmission_texture`
- [x] Add `diffuse_transmission_texture`
- [x] Add `thickness_texture`
- [x] Add `attenuation_distance` and `attenuation_color`
- [x] Connect values to glTF loader
- [x] `transmission` and `transmission_texture`
- [x] `thickness` and `thickness_texture`
- [x] `ior`
- [ ] `diffuse_transmission` and `diffuse_transmission_texture` (needs
upstream support in `gltf` crate, not a blocker)
- [x] Add support for multiple screen space refraction “steps”
- [x] Conditionally create no transmission snapshot texture at all if
`steps == 0`
- [x] Conditionally enable/disable screen space refraction transmission
snapshots
- [x] Read from depth pre-pass to prevent refracting pixels in front of
the light exit point
- [x] Use `interleaved_gradient_noise()` function for sampling blur in a
way that benefits from TAA
- [x] Drill down a TAA `#define`, tweak some aspects of the effect
conditionally based on it
- [x] Remove const array that's crashing under HLSL (unless a new `naga`
release with https://github.com/gfx-rs/naga/pull/2496 comes out before
we merge this)
- [ ] Look into alternatives to the `switch` hack for dynamically
indexing the const array (might not be needed, compilers seem to be
decent at expanding it)
- [ ] Add pipeline keys for gating transmission (do we really want/need
this?)
- [x] Tweak some material field/function names?
## A Note on Texture Packing
_This was originally added as a comment to the
`specular_transmission_texture`, `thickness_texture` and
`diffuse_transmission_texture` documentation, I removed it since it was
more confusing than helpful, and will likely be made redundant/will need
to be updated once we have a better infrastructure for preprocessing
assets_
Due to how channels are mapped, you can more efficiently use a single
shared texture image
for configuring the following:
- R - `specular_transmission_texture`
- G - `thickness_texture`
- B - _unused_
- A - `diffuse_transmission_texture`
The `KHR_materials_diffuse_transmission` glTF extension also defines a
`diffuseTransmissionColorTexture`,
that _we don't currently support_. One might choose to pack the
intensity and color textures together,
using RGB for the color and A for the intensity, in which case this
packing advice doesn't really apply.
---
## Changelog
- Added a new `Transmissive3d` render phase for rendering specular
transmissive materials with screen space refractions
- Added rendering support for transmitted environment map light on the
`StandardMaterial` as a fallback for screen space refractions
- Added `diffuse_transmission`, `specular_transmission`, `thickness`,
`ior`, `attenuation_distance` and `attenuation_color` to the
`StandardMaterial`
- Added `diffuse_transmission_texture`, `specular_transmission_texture`,
`thickness_texture` to the `StandardMaterial`, gated behind a new
`pbr_transmission_textures` cargo feature (off by default, for maximum
hardware compatibility)
- Added `Camera3d::screen_space_specular_transmission_steps` for
controlling the number of “layers of transparency” rendered for
transmissive objects
- Added a `TransmittedShadowReceiver` component for enabling shadows in
(diffusely) transmitted light. (disabled by default, as it requires
carefully setting up the `thickness` to avoid self-shadow artifacts)
- Added support for the `KHR_materials_transmission`,
`KHR_materials_ior` and `KHR_materials_volume` glTF extensions
- Renamed items related to temporal jitter for greater consistency
## Migration Guide
- `SsaoPipelineKey::temporal_noise` has been renamed to
`SsaoPipelineKey::temporal_jitter`
- The `TAA` shader def (controlled by the presence of the
`TemporalAntiAliasSettings` component in the camera) has been replaced
with the `TEMPORAL_JITTER` shader def (controlled by the presence of the
`TemporalJitter` component in the camera)
- `MeshPipelineKey::TAA` has been replaced by
`MeshPipelineKey::TEMPORAL_JITTER`
- The `TEMPORAL_NOISE` shader def has been consolidated with
`TEMPORAL_JITTER`
# Objective
- I want to use the `debug_glam_assert` feature with bevy.
## Solution
- Re-export the feature flag
---
## Changelog
- Re-export `debug_glam_assert` feature flag from glam.
# Objective
Users shouldn't need to change their source code between "development
workflows" and "releasing". Currently, Bevy Asset V2 has two "processed"
asset modes `Processed` (assumes assets are already processed) and
`ProcessedDev` (starts an asset processor and processes assets). This
means that the mode must be changed _in code_ when switching from "app
dev" to "release". Very suboptimal.
We have already removed "runtime opt-in" for hot-reloading. Enabling the
`file_watcher` feature _automatically_ enables file watching in code.
This means deploying a game (without hot reloading enabled) just means
calling `cargo build --release` instead of `cargo run --features
bevy/file_watcher`.
We should adopt this pattern for asset processing.
## Solution
This adds the `asset_processor` feature, which will start the
`AssetProcessor` when an `AssetPlugin` runs in `AssetMode::Processed`.
The "asset processing workflow" is now:
1. Enable `AssetMode::Processed` on `AssetPlugin`
2. When developing, run with the `asset_processor` and `file_watcher`
features
3. When releasing, build without these features.
The `AssetMode::ProcessedDev` mode has been removed.
This adds support for **Multiple Asset Sources**. You can now register a
named `AssetSource`, which you can load assets from like you normally
would:
```rust
let shader: Handle<Shader> = asset_server.load("custom_source://path/to/shader.wgsl");
```
Notice that `AssetPath` now supports `some_source://` syntax. This can
now be accessed through the `asset_path.source()` accessor.
Asset source names _are not required_. If one is not specified, the
default asset source will be used:
```rust
let shader: Handle<Shader> = asset_server.load("path/to/shader.wgsl");
```
The behavior of the default asset source has not changed. Ex: the
`assets` folder is still the default.
As referenced in #9714
## Why?
**Multiple Asset Sources** enables a number of often-asked-for
scenarios:
* **Loading some assets from other locations on disk**: you could create
a `config` asset source that reads from the OS-default config folder
(not implemented in this PR)
* **Loading some assets from a remote server**: you could register a new
`remote` asset source that reads some assets from a remote http server
(not implemented in this PR)
* **Improved "Binary Embedded" Assets**: we can use this system for
"embedded-in-binary assets", which allows us to replace the old
`load_internal_asset!` approach, which couldn't support asset
processing, didn't support hot-reloading _well_, and didn't make
embedded assets accessible to the `AssetServer` (implemented in this pr)
## Adding New Asset Sources
An `AssetSource` is "just" a collection of `AssetReader`, `AssetWriter`,
and `AssetWatcher` entries. You can configure new asset sources like
this:
```rust
app.register_asset_source(
"other",
AssetSource::build()
.with_reader(|| Box::new(FileAssetReader::new("other")))
)
)
```
Note that `AssetSource` construction _must_ be repeatable, which is why
a closure is accepted.
`AssetSourceBuilder` supports `with_reader`, `with_writer`,
`with_watcher`, `with_processed_reader`, `with_processed_writer`, and
`with_processed_watcher`.
Note that the "asset source" system replaces the old "asset providers"
system.
## Processing Multiple Sources
The `AssetProcessor` now supports multiple asset sources! Processed
assets can refer to assets in other sources and everything "just works".
Each `AssetSource` defines an unprocessed and processed `AssetReader` /
`AssetWriter`.
Currently this is all or nothing for a given `AssetSource`. A given
source is either processed or it is not. Later we might want to add
support for "lazy asset processing", where an `AssetSource` (such as a
remote server) can be configured to only process assets that are
directly referenced by local assets (in order to save local disk space
and avoid doing extra work).
## A new `AssetSource`: `embedded`
One of the big features motivating **Multiple Asset Sources** was
improving our "embedded-in-binary" asset loading. To prove out the
**Multiple Asset Sources** implementation, I chose to build a new
`embedded` `AssetSource`, which replaces the old `load_interal_asset!`
system.
The old `load_internal_asset!` approach had a number of issues:
* The `AssetServer` was not aware of (or capable of loading) internal
assets.
* Because internal assets weren't visible to the `AssetServer`, they
could not be processed (or used by assets that are processed). This
would prevent things "preprocessing shaders that depend on built in Bevy
shaders", which is something we desperately need to start doing.
* Each "internal asset" needed a UUID to be defined in-code to reference
it. This was very manual and toilsome.
The new `embedded` `AssetSource` enables the following pattern:
```rust
// Called in `crates/bevy_pbr/src/render/mesh.rs`
embedded_asset!(app, "mesh.wgsl");
// later in the app
let shader: Handle<Shader> = asset_server.load("embedded://bevy_pbr/render/mesh.wgsl");
```
Notice that this always treats the crate name as the "root path", and it
trims out the `src` path for brevity. This is generally predictable, but
if you need to debug you can use the new `embedded_path!` macro to get a
`PathBuf` that matches the one used by `embedded_asset`.
You can also reference embedded assets in arbitrary assets, such as WGSL
shaders:
```rust
#import "embedded://bevy_pbr/render/mesh.wgsl"
```
This also makes `embedded` assets go through the "normal" asset
lifecycle. They are only loaded when they are actually used!
We are also discussing implicitly converting asset paths to/from shader
modules, so in the future (not in this PR) you might be able to load it
like this:
```rust
#import bevy_pbr::render::mesh::Vertex
```
Compare that to the old system!
```rust
pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);
load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);
// The mesh asset is the _only_ accessible via MESH_SHADER_HANDLE and _cannot_ be loaded via the AssetServer.
```
## Hot Reloading `embedded`
You can enable `embedded` hot reloading by enabling the
`embedded_watcher` cargo feature:
```
cargo run --features=embedded_watcher
```
## Improved Hot Reloading Workflow
First: the `filesystem_watcher` cargo feature has been renamed to
`file_watcher` for brevity (and to match the `FileAssetReader` naming
convention).
More importantly, hot asset reloading is no longer configured in-code by
default. If you enable any asset watcher feature (such as `file_watcher`
or `rust_source_watcher`), asset watching will be automatically enabled.
This removes the need to _also_ enable hot reloading in your app code.
That means you can replace this:
```rust
app.add_plugins(DefaultPlugins.set(AssetPlugin::default().watch_for_changes()))
```
with this:
```rust
app.add_plugins(DefaultPlugins)
```
If you want to hot reload assets in your app during development, just
run your app like this:
```
cargo run --features=file_watcher
```
This means you can use the same code for development and deployment! To
deploy an app, just don't include the watcher feature
```
cargo build --release
```
My intent is to move to this approach for pretty much all dev workflows.
In a future PR I would like to replace `AssetMode::ProcessedDev` with a
`runtime-processor` cargo feature. We could then group all common "dev"
cargo features under a single `dev` feature:
```sh
# this would enable file_watcher, embedded_watcher, runtime-processor, and more
cargo run --features=dev
```
## AssetMode
`AssetPlugin::Unprocessed`, `AssetPlugin::Processed`, and
`AssetPlugin::ProcessedDev` have been replaced with an `AssetMode` field
on `AssetPlugin`.
```rust
// before
app.add_plugins(DefaultPlugins.set(AssetPlugin::Processed { /* fields here */ })
// after
app.add_plugins(DefaultPlugins.set(AssetPlugin { mode: AssetMode::Processed, ..default() })
```
This aligns `AssetPlugin` with our other struct-like plugins. The old
"source" and "destination" `AssetProvider` fields in the enum variants
have been replaced by the "asset source" system. You no longer need to
configure the AssetPlugin to "point" to custom asset providers.
## AssetServerMode
To improve the implementation of **Multiple Asset Sources**,
`AssetServer` was made aware of whether or not it is using "processed"
or "unprocessed" assets. You can check that like this:
```rust
if asset_server.mode() == AssetServerMode::Processed {
/* do something */
}
```
Note that this refactor should also prepare the way for building "one to
many processed output files", as it makes the server aware of whether it
is loading from processed or unprocessed sources. Meaning we can store
and read processed and unprocessed assets differently!
## AssetPath can now refer to folders
The "file only" restriction has been removed from `AssetPath`. The
`AssetServer::load_folder` API now accepts an `AssetPath` instead of a
`Path`, meaning you can load folders from other asset sources!
## Improved AssetPath Parsing
AssetPath parsing was reworked to support sources, improve error
messages, and to enable parsing with a single pass over the string.
`AssetPath::new` was replaced by `AssetPath::parse` and
`AssetPath::try_parse`.
## AssetWatcher broken out from AssetReader
`AssetReader` is no longer responsible for constructing `AssetWatcher`.
This has been moved to `AssetSourceBuilder`.
## Duplicate Event Debouncing
Asset V2 already debounced duplicate filesystem events, but this was
_input_ events. Multiple input event types can produce the same _output_
`AssetSourceEvent`. Now that we have `embedded_watcher`, which does
expensive file io on events, it made sense to debounce output events
too, so I added that! This will also benefit the AssetProcessor by
preventing integrity checks for duplicate events (and helps keep the
noise down in trace logs).
## Next Steps
* **Port Built-in Shaders**: Currently the primary (and essentially
only) user of `load_interal_asset` in Bevy's source code is "built-in
shaders". I chose not to do that in this PR for a few reasons:
1. We need to add the ability to pass shader defs in to shaders via meta
files. Some shaders (such as MESH_VIEW_TYPES) need to pass shader def
values in that are defined in code.
2. We need to revisit the current shader module naming system. I think
we _probably_ want to imply modules from source structure (at least by
default). Ideally in a way that can losslessly convert asset paths
to/from shader modules (to enable the asset system to resolve modules
using the asset server).
3. I want to keep this change set minimal / get this merged first.
* **Deprecate `load_internal_asset`**: we can't do that until we do (1)
and (2)
* **Relative Asset Paths**: This PR significantly increases the need for
relative asset paths (which was already pretty high). Currently when
loading dependencies, it is assumed to be an absolute path, which means
if in an `AssetLoader` you call `context.load("some/path/image.png")` it
will assume that is the "default" asset source, _even if the current
asset is in a different asset source_. This will cause breakage for
AssetLoaders that are not designed to add the current source to whatever
paths are being used. AssetLoaders should generally not need to be aware
of the name of their current asset source, or need to think about the
"current asset source" generally. We should build apis that support
relative asset paths and then encourage using relative paths as much as
possible (both via api design and docs). Relative paths are also
important because they will allow developers to move folders around
(even across providers) without reprocessing, provided there is no path
breakage.
# Objective
Allow Bevy apps to run without requiring to start from the main thread.
This allows other projects and applications to do things like spawning a
normal or scoped
thread and run Bevy applications there.
The current behaviour if you try this is a panic.
## Solution
Allow this by default on platforms winit supports this behaviour on
(x11, Wayland, Windows).
---
## Changelog
### Added
- Added the ability to start Bevy apps outside of the main thread on
x11, Wayland, Windows
---------
Signed-off-by: Torstein Grindvik <torstein.grindvik@nordicsemi.no>
Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com>
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
Fixes#9625
## Solution
Adds `async-io` as an optional dependency of `bevy_tasks`. When enabled,
this causes calls to `futures_lite::future::block_on` to be replaced
with calls to `async_io::block_on`.
---
## Changelog
- Added a new `async-io` feature to `bevy_tasks`. When enabled, this
causes `bevy_tasks` to use `async-io`'s implemention of `block_on`
instead of `futures-lite`'s implementation. You should enable this if
you use `async-io` in your application.
# Objective
Fixes#9787
## Solution
~~"serialize" feature enables "bevy_asset" now~~
"serialize" feature no longer enables the optional "bevy_scene" feature
if it's not enabled from elsewhere (thanks to @mockersf)
# Objective
The rename is confusing. Each time I import `TypeRegistry` I have to
think at least 10 seconds about how to import it. And I've been working
a lot with bevy reflect, which multiplies the papercut.
In my crates, you can find lots of:
```rust
use bevy::reflect::{TypeRegistryInternal as TypeRegistry};
```
When I "go to definition" on `TypeRegistry` I get to `TypeRegistryArc`.
And when I mean `TypeRegistry` in my function signature, 100% of the
time I mean `TypeRegistry`, not the arc wrapper.
Rust has borrowing, and most use-cases of the TypeRegistry accepts
borrow of the registry, with no need to mutate it.
`TypeRegistryInternal` is also confusing. In bevy crates, it doesn't
exist. The bevy crate documentation often refers to `TypeRegistry` and
link to `TypeRegistryInternal`. It only exists in the bevy re-exports.
It makes it hard to understand which names qualifies which types.
## Solution
Remove the rename, keep the type names as they are in `bevy_reflect`
---
## Changelog
- Remove `TypeRegistry` and `TypeRegistryArc` renames from bevy
`bevy_reflect` re-exports.
## Migration Guide
- `TypeRegistry` as re-exported by the wrapper `bevy` crate is now
`TypeRegistryArc`
- `TypeRegistryInternal` as re-exported by the wrapper `bevy` crate is
now `TypeRegistry`