Commit Graph

9 Commits

Author SHA1 Message Date
Zachary Harrold
a8b9c945c7
Add no_std Support to bevy_math (#15810)
# Objective

- Contributes to #15460

## Solution

- Added two new features, `std` (default) and `alloc`, gating `std` and
`alloc` behind them respectively.
- Added missing `f32` functions to `std_ops` as required. These `f32`
methods have been added to the `clippy.toml` deny list to aid in
`no_std` development.

## Testing

- CI
- `cargo clippy -p bevy_math --no-default-features --features libm
--target "x86_64-unknown-none"`
- `cargo test -p bevy_math --no-default-features --features libm`
- `cargo test -p bevy_math --no-default-features --features "libm,
alloc"`
- `cargo test -p bevy_math --no-default-features --features "libm,
alloc, std"`
- `cargo test -p bevy_math --no-default-features --features "std"`

## Notes

The following items require the `alloc` feature to be enabled:

- `CubicBSpline`
- `CubicBezier`
- `CubicCardinalSpline`
- `CubicCurve`
- `CubicGenerator`
- `CubicHermite`
- `CubicNurbs`
- `CyclicCubicGenerator`
- `RationalCurve`
- `RationalGenerator`
- `BoxedPolygon`
- `BoxedPolyline2d`
- `BoxedPolyline3d`
- `SampleCurve`
- `SampleAutoCurve`
- `UnevenSampleCurve`
- `UnevenSampleAutoCurve`
- `EvenCore`
- `UnevenCore`
- `ChunkedUnevenCore`

This requirement could be relaxed in certain cases, but I had erred on
the side of gating rather than modifying. Since `no_std` is a new set of
platforms we are adding support to, and the `alloc` feature is enabled
by default, this is not a breaking change.

---------

Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com>
Co-authored-by: Matty <2975848+mweatherley@users.noreply.github.com>
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
2024-12-03 17:14:51 +00:00
Matty
61a1530c56
Make bevy_math's libm feature use libm for all f32methods with unspecified precision (#14693)
# Objective

Closes #14474

Previously, the `libm` feature of bevy_math would just pass the same
feature flag down to glam. However, bevy_math itself had many uses of
floating-point arithmetic with unspecified precision. For example,
`f32::sin_cos` and `f32::powi` have unspecified precision, which means
that the exact details of their output are not guaranteed to be stable
across different systems and/or versions of Rust. This means that users
of bevy_math could observe slightly different behavior on different
systems if these methods were used.

The goal of this PR is to make it so that the `libm` feature flag
actually guarantees some degree of determinacy within bevy_math itself
by switching to the libm versions of these functions when the `libm`
feature is enabled.

## Solution

bevy_math now has an internal module `bevy_math::ops`, which re-exports
either the standard versions of the operations or the libm versions
depending on whether the `libm` feature is enabled. For example,
`ops::sin` compiles to `f32::sin` without the `libm` feature and to
`libm::sinf` with it.

This approach has a small shortfall, which is that `f32::powi` (integer
powers of floating point numbers) does not have an equivalent in `libm`.
On the other hand, this method is only used for squaring and cubing
numbers in bevy_math. Accordingly, this deficit is covered by the
introduction of a trait `ops::FloatPow`:
```rust
pub(crate) trait FloatPow {
    fn squared(self) -> Self;
    fn cubed(self) -> Self;
}
```

Next, each current usage of the unspecified-precision methods has been
replaced by its equivalent in `ops`, so that when `libm` is enabled, the
libm version is used instead. The exception, of course, is that
`.powi(2)`/`.powi(3)` have been replaced with `.squared()`/`.cubed()`.

Finally, the usage of the plain `f32` methods with unspecified precision
is now linted out of bevy_math (and hence disallowed in CI). For
example, using `f32::sin` within bevy_math produces a warning that tells
the user to use the `ops::sin` version instead.

## Testing

Ran existing tests. It would be nice to check some benchmarks on NURBS
things once #14677 merges. I'm happy to wait until then if the rest of
this PR is fine.

---

## Discussion

In the future, it might make sense to actually expose `bevy_math::ops`
as public if any downstream Bevy crates want to provide similar
determinacy guarantees. For now, it's all just `pub(crate)`.

This PR also only covers `f32`. If we find ourselves using `f64`
internally in parts of bevy_math for better robustness, we could extend
the module and lints to cover the `f64` versions easily enough.

I don't know how feasible it is, but it would also be nice if we could
standardize the bevy_math tests with the `libm` feature in CI, since
their success is currently platform-dependent (e.g. 8 of them fail on my
machine when run locally).

---------

Co-authored-by: IQuick 143 <IQuick143cz@gmail.com>
2024-08-12 16:13:36 +00:00
Matty
6c9ec88e54
Basic isometry types (#14269)
# Objective

Introduce isometry types for describing relative and absolute position
in mathematical contexts.

## Solution

For the time being, this is a very minimal implementation. This
implements the following faculties for two- and three-dimensional
isometry types:
- Identity transformations
- Creation from translations and/or rotations
- Inverses
- Multiplication (composition) of isometries with each other
- Application of isometries to points (as vectors)
- Conversion of isometries to affine transformations

There is obviously a lot more that could be added, so I erred on the
side of adding things that I knew would be useful, with the idea of
expanding this in the near future as needed.

(I also fixed some random doc problems in `bevy_math`.)

---

## Design

One point of interest here is the matter of if/when to use aligned
types. In the implementation of 3d isometries, I used `Vec3A` rather
than `Vec3` because it has no impact on size/alignment, but I'm still
not sure about that decision (although it is easily changed).

For 2d isometries — which are encoded by four floats — the idea of
shoving them into a single 128-bit buffer (`__m128` or whatever) sounds
kind of enticing, but it's more involved and would involve writing
unsafe code, so I didn't do that for now.

## Future work

- Expand the API to include shortcuts like `inverse_mul` and
`inverse_transform` for efficiency reasons.
- Include more convenience constructors and methods (e.g. `from_xy`,
`from_xyz`).
- Refactor `bevy_math::bounding` to use the isometry types.
- Add conversions to/from isometries for `Transform`/`GlobalTransform`
in `bevy_transform`.
2024-07-14 15:27:42 +00:00
Giacomo Stevanato
d7080369a7
Fix intra-doc links and make CI test them (#14076)
# Objective

- Bevy currently has lot of invalid intra-doc links, let's fix them!
- Also make CI test them, to avoid future regressions.
- Helps with #1983 (but doesn't fix it, as there could still be explicit
links to docs.rs that are broken)

## Solution

- Make `cargo r -p ci -- doc-check` check fail on warnings (could also
be changed to just some specific lints)
- Manually fix all the warnings (note that in some cases it was unclear
to me what the fix should have been, I'll try to highlight them in a
self-review)
2024-07-11 13:08:31 +00:00
Olle Lukowski
d7fc20c484
Implemented Reflect for (almost) all bevy_math types (#13537)
# Objective

Fixes #13535.

## Solution

I implemented `Reflect` for close to all math types now, except for some
types that it would cause issues (like some boxed types).

## Testing

- Everything seems to still build, will await CI though.
---

## Changelog

- Made close to all math types implement `Reflect`.
2024-05-27 18:18:10 +00:00
NiseVoid
414abb4959
Use Vec3A for 3D bounding volumes and raycasts (#13087)
# Objective

- People have reported bounding volumes being slower than their existing
solution because it doesn't use SIMD aligned types.

## Solution

- Use `Vec3A` internally for bounding volumes, accepting `Into<Vec3A>`
wherever possible
- Change some code to make it more likely SIMD operations are used.

---

## Changelog

- Use `Vec3A` for 3D bounding volumes and raycasts

## Migration Guide

- 3D bounding volumes now use `Vec3A` types internally, return values
from methods on them now return `Vec3A` instead of `Vec3`
2024-04-25 18:56:58 +00:00
Joona Aalto
f418de8eb6
Rename Direction2d/3d to Dir2/3 (#12189)
# Objective

Split up from #12017, rename Bevy's direction types.

Currently, Bevy has the `Direction2d`, `Direction3d`, and `Direction3dA`
types, which provide a type-level guarantee that their contained vectors
remain normalized. They can be very useful for a lot of APIs for safety,
explicitness, and in some cases performance, as they can sometimes avoid
unnecessary normalizations.

However, many consider them to be inconvenient to use, and opt for
standard vector types like `Vec3` because of this. One reason is that
the direction type names are a bit long and can be annoying to write (of
course you can use autocomplete, but just typing `Vec3` is still nicer),
and in some intances, the extra characters can make formatting worse.
The naming is also inconsistent with Glam's shorter type names, and
results in names like `Direction3dA`, which (in my opinion) are
difficult to read and even a bit ugly.

This PR proposes renaming the types to `Dir2`, `Dir3`, and `Dir3A`.
These names are nice and easy to write, consistent with Glam, and work
well for variants like the SIMD aligned `Dir3A`. As a bonus, it can also
result in nicer formatting in a lot of cases, which can be seen from the
diff of this PR.

Some examples of what it looks like: (copied from #12017)

```rust
// Before
let ray_cast = RayCast2d::new(Vec2::ZERO, Direction2d::X, 5.0);

// After
let ray_cast = RayCast2d::new(Vec2::ZERO, Dir2::X, 5.0);
```

```rust
// Before (an example using Bevy XPBD)
let hit = spatial_query.cast_ray(
    Vec3::ZERO,
    Direction3d::X,
    f32::MAX,
    true,
    SpatialQueryFilter::default(),
);

// After
let hit = spatial_query.cast_ray(
    Vec3::ZERO,
    Dir3::X,
    f32::MAX,
    true,
    SpatialQueryFilter::default(),
);
```

```rust
// Before
self.circle(
    Vec3::new(0.0, -2.0, 0.0),
    Direction3d::Y,
    5.0,
    Color::TURQUOISE,
);

// After (formatting is collapsed in this case)
self.circle(Vec3::new(0.0, -2.0, 0.0), Dir3::Y, 5.0, Color::TURQUOISE);
```

## Solution

Rename `Direction2d`, `Direction3d`, and `Direction3dA` to `Dir2`,
`Dir3`, and `Dir3A`.

---

## Migration Guide

The `Direction2d` and `Direction3d` types have been renamed to `Dir2`
and `Dir3`.

## Additional Context

This has been brought up on the Discord a few times, and we had a small
[poll](https://discord.com/channels/691052431525675048/1203087353850364004/1212465038711984158)
on this. `Dir2`/`Dir3`/`Dir3A` was quite unanimously chosen as the best
option, but of course it was a very small poll and inconclusive, so
other opinions are certainly welcome too.

---------

Co-authored-by: IceSentry <c.giguere42@gmail.com>
2024-02-28 22:48:43 +00:00
Joona Aalto
9bd6cc0a5e
Add Direction3dA and move direction types out of primitives (#12018)
# Objective

Split up from #12017, add an aligned version of `Direction3d` for SIMD,
and move direction types out of `primitives`.

## Solution

Add `Direction3dA` and move direction types into a new `direction`
module.

---

## Migration Guide

The `Direction2d`, `Direction3d`, and `InvalidDirectionError` types have
been moved out of `bevy::math::primitives`.

Before:

```rust
use bevy::math::primitives::Direction3d;
```

After:

```rust
use bevy::math::Direction3d;
```

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2024-02-26 13:57:49 +00:00
NiseVoid
0ffc8d8a6f
Rename RayTest to RayCast (#11635)
# Objective

- `RayTest` vs `AabbCast` and `CircleCast` is inconsistent

## Solution

- Renaming the other two would only make the name more confusing, so we
rename `RayTest2d/3d` to `RayCast2d/3d`
2024-02-02 15:01:04 +00:00