818a8fe154
11 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
7b1c9f192e
|
Adopt consistent FooSystems naming convention for system sets (#18900)
# Objective Fixes a part of #14274. Bevy has an incredibly inconsistent naming convention for its system sets, both internally and across the ecosystem. <img alt="System sets in Bevy" src="https://github.com/user-attachments/assets/d16e2027-793f-4ba4-9cc9-e780b14a5a1b" width="450" /> *Names of public system set types in Bevy* Most Bevy types use a naming of `FooSystem` or just `Foo`, but there are also a few `FooSystems` and `FooSet` types. In ecosystem crates on the other hand, `FooSet` is perhaps the most commonly used name in general. Conventions being so wildly inconsistent can make it harder for users to pick names for their own types, to search for system sets on docs.rs, or to even discern which types *are* system sets. To reign in the inconsistency a bit and help unify the ecosystem, it would be good to establish a common recommended naming convention for system sets in Bevy itself, similar to how plugins are commonly suffixed with `Plugin` (ex: `TimePlugin`). By adopting a consistent naming convention in first-party Bevy, we can softly nudge ecosystem crates to follow suit (for types where it makes sense to do so). Choosing a naming convention is also relevant now, as the [`bevy_cli` recently adopted lints](https://github.com/TheBevyFlock/bevy_cli/pull/345) to enforce naming for plugins and system sets, and the recommended naming used for system sets is still a bit open. ## Which Name To Use? Now the contentious part: what naming convention should we actually adopt? This was discussed on the Bevy Discord at the end of last year, starting [here](<https://discord.com/channels/691052431525675048/692572690833473578/1310659954683936789>). `FooSet` and `FooSystems` were the clear favorites, with `FooSet` very narrowly winning an unofficial poll. However, it seems to me like the consensus was broadly moving towards `FooSystems` at the end and after the poll, with Cart ([source](https://discord.com/channels/691052431525675048/692572690833473578/1311140204974706708)) and later Alice ([source](https://discord.com/channels/691052431525675048/692572690833473578/1311092530732859533)) and also me being in favor of it. Let's do a quick pros and cons list! Of course these are just what I thought of, so take it with a grain of salt. `FooSet`: - Pro: Nice and short! - Pro: Used by many ecosystem crates. - Pro: The `Set` suffix comes directly from the trait name `SystemSet`. - Pro: Pairs nicely with existing APIs like `in_set` and `configure_sets`. - Con: `Set` by itself doesn't actually indicate that it's related to systems *at all*, apart from the implemented trait. A set of what? - Con: Is `FooSet` a set of `Foo`s or a system set related to `Foo`? Ex: `ContactSet`, `MeshSet`, `EnemySet`... `FooSystems`: - Pro: Very clearly indicates that the type represents a collection of systems. The actual core concept, system(s), is in the name. - Pro: Parallels nicely with `FooPlugins` for plugin groups. - Pro: Low risk of conflicts with other names or misunderstandings about what the type is. - Pro: In most cases, reads *very* nicely and clearly. Ex: `PhysicsSystems` and `AnimationSystems` as opposed to `PhysicsSet` and `AnimationSet`. - Pro: Easy to search for on docs.rs. - Con: Usually results in longer names. - Con: Not yet as widely used. Really the big problem with `FooSet` is that it doesn't actually describe what it is. It describes what *kind of thing* it is (a set of something), but not *what it is a set of*, unless you know the type or check its docs or implemented traits. `FooSystems` on the other hand is much more self-descriptive in this regard, at the cost of being a bit longer to type. Ultimately, in some ways it comes down to preference and how you think of system sets. Personally, I was originally in favor of `FooSet`, but have been increasingly on the side of `FooSystems`, especially after seeing what the new names would actually look like in Avian and now Bevy. I prefer it because it usually reads better, is much more clearly related to groups of systems than `FooSet`, and overall *feels* more correct and natural to me in the long term. For these reasons, and because Alice and Cart also seemed to share a preference for it when it was previously being discussed, I propose that we adopt a `FooSystems` naming convention where applicable. ## Solution Rename Bevy's system set types to use a consistent `FooSet` naming where applicable. - `AccessibilitySystem` → `AccessibilitySystems` - `GizmoRenderSystem` → `GizmoRenderSystems` - `PickSet` → `PickingSystems` - `RunFixedMainLoopSystem` → `RunFixedMainLoopSystems` - `TransformSystem` → `TransformSystems` - `RemoteSet` → `RemoteSystems` - `RenderSet` → `RenderSystems` - `SpriteSystem` → `SpriteSystems` - `StateTransitionSteps` → `StateTransitionSystems` - `RenderUiSystem` → `RenderUiSystems` - `UiSystem` → `UiSystems` - `Animation` → `AnimationSystems` - `AssetEvents` → `AssetEventSystems` - `TrackAssets` → `AssetTrackingSystems` - `UpdateGizmoMeshes` → `GizmoMeshSystems` - `InputSystem` → `InputSystems` - `InputFocusSet` → `InputFocusSystems` - `ExtractMaterialsSet` → `MaterialExtractionSystems` - `ExtractMeshesSet` → `MeshExtractionSystems` - `RumbleSystem` → `RumbleSystems` - `CameraUpdateSystem` → `CameraUpdateSystems` - `ExtractAssetsSet` → `AssetExtractionSystems` - `Update2dText` → `Text2dUpdateSystems` - `TimeSystem` → `TimeSystems` - `AudioPlaySet` → `AudioPlaybackSystems` - `SendEvents` → `EventSenderSystems` - `EventUpdates` → `EventUpdateSystems` A lot of the names got slightly longer, but they are also a lot more consistent, and in my opinion the majority of them read much better. For a few of the names I took the liberty of rewording things a bit; definitely open to any further naming improvements. There are still also cases where the `FooSystems` naming doesn't really make sense, and those I left alone. This primarily includes system sets like `Interned<dyn SystemSet>`, `EnterSchedules<S>`, `ExitSchedules<S>`, or `TransitionSchedules<S>`, where the type has some special purpose and semantics. ## Todo - [x] Should I keep all the old names as deprecated type aliases? I can do this, but to avoid wasting work I'd prefer to first reach consensus on whether these renames are even desired. - [x] Migration guide - [x] Release notes |
||
![]() |
35101f3ed5
|
Use multi_draw_indirect_count where available, in preparation for two-phase occlusion culling. (#17211)
This commit allows Bevy to use `multi_draw_indirect_count` for drawing meshes. The `multi_draw_indirect_count` feature works just like `multi_draw_indirect`, but it takes the number of indirect parameters from a GPU buffer rather than specifying it on the CPU. Currently, the CPU constructs the list of indirect draw parameters with the instance count for each batch set to zero, uploads the resulting buffer to the GPU, and dispatches a compute shader that bumps the instance count for each mesh that survives culling. Unfortunately, this is inefficient when we support `multi_draw_indirect_count`. Draw commands corresponding to meshes for which all instances were culled will remain present in the list when calling `multi_draw_indirect_count`, causing overhead. Proper use of `multi_draw_indirect_count` requires eliminating these empty draw commands. To address this inefficiency, this PR makes Bevy fully construct the indirect draw commands on the GPU instead of on the CPU. Instead of writing instance counts to the draw command buffer, the mesh preprocessing shader now writes them to a separate *indirect metadata buffer*. A second compute dispatch known as the *build indirect parameters* shader runs after mesh preprocessing and converts the indirect draw metadata into actual indirect draw commands for the GPU. The build indirect parameters shader operates on a batch at a time, rather than an instance at a time, and as such each thread writes only 0 or 1 indirect draw parameters, simplifying the current logic in `mesh_preprocessing`, which currently has to have special cases for the first mesh in each batch. The build indirect parameters shader emits draw commands in a tightly packed manner, enabling maximally efficient use of `multi_draw_indirect_count`. Along the way, this patch switches mesh preprocessing to dispatch one compute invocation per render phase per view, instead of dispatching one compute invocation per view. This is preparation for two-phase occlusion culling, in which we will have two mesh preprocessing stages. In that scenario, the first mesh preprocessing stage must only process opaque and alpha tested objects, so the work items must be separated into those that are opaque or alpha tested and those that aren't. Thus this PR splits out the work items into a separate buffer for each phase. As this patch rewrites so much of the mesh preprocessing infrastructure, it was simpler to just fold the change into this patch instead of deferring it to the forthcoming occlusion culling PR. Finally, this patch changes mesh preprocessing so that it runs separately for indexed and non-indexed meshes. This is because draw commands for indexed and non-indexed meshes have different sizes and layouts. *The existing code is actually broken for non-indexed meshes*, as it attempts to overlay the indirect parameters for non-indexed meshes on top of those for indexed meshes. Consequently, right now the parameters will be read incorrectly when multiple non-indexed meshes are multi-drawn together. *This is a bug fix* and, as with the change to dispatch phases separately noted above, was easiest to include in this patch as opposed to separately. ## Migration Guide * Systems that add custom phase items now need to populate the indirect drawing-related buffers. See the `specialized_mesh_pipeline` example for an example of how this is done. |
||
![]() |
141b7673ab
|
Key render phases off the main world view entity, not the render world view entity. (#16942)
We won't be able to retain render phases from frame to frame if the keys are unstable. It's not as simple as simply keying off the main world entity, however, because some main world entities extract to multiple render world entities. For example, directional lights extract to multiple shadow cascades, and point lights extract to one view per cubemap face. Therefore, we key off a new type, `RetainedViewEntity`, which contains the main entity plus a *subview ID*. This is part of the preparation for retained bins. --------- Co-authored-by: ickshonpe <david.curthoys@googlemail.com> |
||
![]() |
3742e621ef
|
Allow clippy::too_many_arguments to lint without warnings (#17249)
# Objective Many instances of `clippy::too_many_arguments` linting happen to be on systems - functions which we don't call manually, and thus there's not much reason to worry about the argument count. ## Solution Allow `clippy::too_many_arguments` globally, and remove all lint attributes related to it. |
||
![]() |
00722b8d0f
|
Make indirect drawing opt-out instead of opt-in, enabling multidraw by default. (#16757)
This patch replaces the undocumented `NoGpuCulling` component with a new component, `NoIndirectDrawing`, effectively turning indirect drawing on by default. Indirect mode is needed for the recently-landed multidraw feature (#16427). Since multidraw is such a win for performance, when that feature is supported the small performance tax that indirect mode incurs is virtually always worth paying. To ensure that custom drawing code such as that in the `custom_shader_instancing` example continues to function, this commit additionally makes GPU culling take the `NoFrustumCulling` component into account. This PR is an alternative to #16670 that doesn't break the `custom_shader_instancing` example. **PR #16755 should land first in order to avoid breaking deferred rendering, as multidraw currently breaks it**. ## Migration Guide * Indirect drawing (GPU culling) is now enabled by default, so the `GpuCulling` component is no longer available. To disable indirect mode, which may be useful with custom render nodes, add the new `NoIndirectDrawing` component to your camera. |
||
![]() |
f5de3f08fb
|
Use multidraw for opaque meshes when GPU culling is in use. (#16427)
This commit adds support for *multidraw*, which is a feature that allows multiple meshes to be drawn in a single drawcall. `wgpu` currently implements multidraw on Vulkan, so this feature is only enabled there. Multiple meshes can be drawn at once if they're in the same vertex and index buffers and are otherwise placed in the same bin. (Thus, for example, at present the materials and textures must be identical, but see #16368.) Multidraw is a significant performance improvement during the draw phase because it reduces the number of rebindings, as well as the number of drawcalls. This feature is currently only enabled when GPU culling is used: i.e. when `GpuCulling` is present on a camera. Therefore, if you run for example `scene_viewer`, you will not see any performance improvements, because `scene_viewer` doesn't add the `GpuCulling` component to its camera. Additionally, the multidraw feature is only implemented for opaque 3D meshes and not for shadows or 2D meshes. I plan to make GPU culling the default and to extend the feature to shadows in the future. Also, in the future I suspect that polyfilling multidraw on APIs that don't support it will be fruitful, as even without driver-level support use of multidraw allows us to avoid expensive `wgpu` rebindings. |
||
![]() |
bdd0af6bfb
|
Deprecate SpatialBundle (#15830)
# Objective - Required components replace bundles, but `SpatialBundle` is yet to be deprecated ## Solution - Deprecate `SpatialBundle` - Insert `Transform` and `Visibility` instead in examples using it - In `spawn` or `insert` inserting a default `Transform` or `Visibility` with component already requiring either, remove those components from the tuple ## Testing - Did you test these changes? If so, how? Yes, I ran the examples I changed and tests - Are there any parts that need more testing? The `gamepad_viewer` and and `custom_shader_instancing` examples don't work as intended due to entirely unrelated code, didn't check main. - How can other people (reviewers) test your changes? Is there anything specific they need to know? Run examples, or just check that all spawned values are identical - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? Linux, wayland trough x11 (cause that's the default feature) --- ## Migration Guide `SpatialBundle` is now deprecated, insert `Transform` and `Visibility` instead which will automatically insert all other components that were in the bundle. If you do not specify these values and any other components in your `spawn`/`insert` call already requires either of these components you can leave that one out. before: ```rust commands.spawn(SpatialBundle::default()); ``` after: ```rust commands.spawn((Transform::default(), Visibility::default()); ``` |
||
![]() |
dd812b3e49
|
Type safe retained render world (#15756)
# Objective In the Render World, there are a number of collections that are derived from Main World entities and are used to drive rendering. The most notable are: - `VisibleEntities`, which is generated in the `check_visibility` system and contains visible entities for a view. - `ExtractedInstances`, which maps entity ids to asset ids. In the old model, these collections were trivially kept in sync -- any extracted phase item could look itself up because the render entity id was guaranteed to always match the corresponding main world id. After #15320, this became much more complicated, and was leading to a number of subtle bugs in the Render World. The main rendering systems, i.e. `queue_material_meshes` and `queue_material2d_meshes`, follow a similar pattern: ```rust for visible_entity in visible_entities.iter::<With<Mesh2d>>() { let Some(mesh_instance) = render_mesh_instances.get_mut(visible_entity) else { continue; }; // Look some more stuff up and specialize the pipeline... let bin_key = Opaque2dBinKey { pipeline: pipeline_id, draw_function: draw_opaque_2d, asset_id: mesh_instance.mesh_asset_id.into(), material_bind_group_id: material_2d.get_bind_group_id().0, }; opaque_phase.add( bin_key, *visible_entity, BinnedRenderPhaseType::mesh(mesh_instance.automatic_batching), ); } ``` In this case, `visible_entities` and `render_mesh_instances` are both collections that are created and keyed by Main World entity ids, and so this lookup happens to work by coincidence. However, there is a major unintentional bug here: namely, because `visible_entities` is a collection of Main World ids, the phase item being queued is created with a Main World id rather than its correct Render World id. This happens to not break mesh rendering because the render commands used for drawing meshes do not access the `ItemQuery` parameter, but demonstrates the confusion that is now possible: our UI phase items are correctly being queued with Render World ids while our meshes aren't. Additionally, this makes it very easy and error prone to use the wrong entity id to look up things like assets. For example, if instead we ignored visibility checks and queued our meshes via a query, we'd have to be extra careful to use `&MainEntity` instead of the natural `Entity`. ## Solution Make all collections that are derived from Main World data use `MainEntity` as their key, to ensure type safety and avoid accidentally looking up data with the wrong entity id: ```rust pub type MainEntityHashMap<V> = hashbrown::HashMap<MainEntity, V, EntityHash>; ``` Additionally, we make all `PhaseItem` be able to provide both their Main and Render World ids, to allow render phase implementors maximum flexibility as to what id should be used to look up data. You can think of this like tracking at the type level whether something in the Render World should use it's "primary key", i.e. entity id, or needs to use a foreign key, i.e. `MainEntity`. ## Testing ##### TODO: This will require extensive testing to make sure things didn't break! Additionally, some extraction logic has become more complicated and needs to be checked for regressions. ## Migration Guide With the advent of the retained render world, collections that contain references to `Entity` that are extracted into the render world have been changed to contain `MainEntity` in order to prevent errors where a render world entity id is used to look up an item by accident. Custom rendering code may need to be changed to query for `&MainEntity` in order to look up the correct item from such a collection. Additionally, users who implement their own extraction logic for collections of main world entity should strongly consider extracting into a different collection that uses `MainEntity` as a key. Additionally, render phases now require specifying both the `Entity` and `MainEntity` for a given `PhaseItem`. Custom render phases should ensure `MainEntity` is available when queuing a phase item. |
||
![]() |
3da0ef048e
|
Remove the Component trait implementation from Handle (#15796)
# Objective - Closes #15716 - Closes #15718 ## Solution - Replace `Handle<MeshletMesh>` with a new `MeshletMesh3d` component - As expected there were some random things that needed fixing: - A couple tests were storing handles just to prevent them from being dropped I believe, which seems to have been unnecessary in some. - The `SpriteBundle` still had a `Handle<Image>` field. I've removed this. - Tests in `bevy_sprite` incorrectly added a `Handle<Image>` field outside of the `Sprite` component. - A few examples were still inserting `Handle`s, switched those to their corresponding wrappers. - 2 examples that were still querying for `Handle<Image>` were changed to query `Sprite` ## Testing - I've verified that the changed example work now ## Migration Guide `Handle` can no longer be used as a `Component`. All existing Bevy types using this pattern have been wrapped in their own semantically meaningful type. You should do the same for any custom `Handle` components your project needs. The `Handle<MeshletMesh>` component is now `MeshletMesh3d`. The `WithMeshletMesh` type alias has been removed. Use `With<MeshletMesh3d>` instead. |
||
![]() |
25bfa80e60
|
Migrate cameras to required components (#15641)
# Objective Yet another PR for migrating stuff to required components. This time, cameras! ## Solution As per the [selected proposal](https://hackmd.io/tsYID4CGRiWxzsgawzxG_g#Combined-Proposal-1-Selected), deprecate `Camera2dBundle` and `Camera3dBundle` in favor of `Camera2d` and `Camera3d`. Adding a `Camera` without `Camera2d` or `Camera3d` now logs a warning, as suggested by Cart [on Discord](https://discord.com/channels/691052431525675048/1264881140007702558/1291506402832945273). I would personally like cameras to work a bit differently and be split into a few more components, to avoid some footguns and confusing semantics, but that is more controversial, and shouldn't block this core migration. ## Testing I ran a few 2D and 3D examples, and tried cameras with and without render graphs. --- ## Migration Guide `Camera2dBundle` and `Camera3dBundle` have been deprecated in favor of `Camera2d` and `Camera3d`. Inserting them will now also insert the other components required by them automatically. |
||
![]() |
120d66482e
|
Clarify purpose of shader_instancing example (#15456)
# Objective - The shader_instancing example can be misleading since it doesn't explain that bevy has built in automatic instancing. ## Solution - Explain that bevy has built in instancing and that this example is for advanced users. - Add a new automatic_instancing example that shows how to use the built in automatic instancing - Rename the shader_instancing example to custom_shader_instancing to highlight that this is a more advanced implementation --------- Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com> |