# Objective
Add support for interpolation in OKLab and OKLCH color spaces for UI
gradients.
## Solution
* New `InterpolationColorSpace` enum with `OkLab`, `OkLch`, `OkLchLong`,
`Srgb` and `LinearRgb` variants.
* Added a color space specialization to the gradients pipeline.
* Added support for interpolation in OkLCH and OkLAB color spaces to the
gradients shader. OKLCH interpolation supports both short and long hue
paths. This is mostly based on the conversion functions from
`bevy_color` except that interpolation in polar space uses radians.
* Added `color_space` fields to each gradient type.
## Testing
The `gradients` example has been updated to demonstrate the different
color interpolation methods.
Press space to cycle through the different options.
---
## Showcase

# Objective
When running the `gradient` example, part of the content doesn't fit
within the initial window:

The UI requires 1830×930 pixels, but the initial window size is
1280×720.
## Solution
Make ui elements smaller:

Alternative: Use a larger initial window size. I decided against this
because that would make the examples less uniform, make the code less
focused on gradients and not help on web.
# Objective
Allowing drawing of UI nodes with a gradient instead of a flat color.
## Solution
The are three gradient structs corresponding to the three types of
gradients supported: `LinearGradient`, `ConicGradient` and
`RadialGradient`. These are then wrapped in a `Gradient` enum
discriminator which has `Linear`, `Conic` and `Radial` variants.
Each gradient type consists of the geometric properties for that
gradient and a list of color stops.
Color stops consist of a color, a position or angle and an optional
hint. If no position is specified for a stop, it's evenly spaced between
the previous and following stops. Color stop positions are absolute, if
you specify a list of stops:
```vec


Conic gradients can be used to draw simple pie charts like in CSS:
