# Objective
- Prevent usage of `println!`, `eprintln!` and the like because they
require `std`
- Fixes#17446
## Solution
- Enable the `print_stdout` and `print_stderr` clippy lints
- Replace all `println!` and `eprintln!` occurrences with `log::*` where
applicable or alternatively ignore the warnings
## Testing
- Run `cargo clippy --workspace` to ensure that there are no warnings
relating to printing to `stdout` or `stderr`
# Objective
- Fixes#17960
## Solution
- Followed the [edition upgrade
guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html)
## Testing
- CI
---
## Summary of Changes
### Documentation Indentation
When using lists in documentation, proper indentation is now linted for.
This means subsequent lines within the same list item must start at the
same indentation level as the item.
```rust
/* Valid */
/// - Item 1
/// Run-on sentence.
/// - Item 2
struct Foo;
/* Invalid */
/// - Item 1
/// Run-on sentence.
/// - Item 2
struct Foo;
```
### Implicit `!` to `()` Conversion
`!` (the never return type, returned by `panic!`, etc.) no longer
implicitly converts to `()`. This is particularly painful for systems
with `todo!` or `panic!` statements, as they will no longer be functions
returning `()` (or `Result<()>`), making them invalid systems for
functions like `add_systems`. The ideal fix would be to accept functions
returning `!` (or rather, _not_ returning), but this is blocked on the
[stabilisation of the `!` type
itself](https://doc.rust-lang.org/std/primitive.never.html), which is
not done.
The "simple" fix would be to add an explicit `-> ()` to system
signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`).
However, this is _also_ banned, as there is an existing lint which (IMO,
incorrectly) marks this as an unnecessary annotation.
So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ...
}` closuers into variables and give the variable an explicit type (e.g.,
`fn()`).
```rust
// Valid
let system: fn() = || todo!("Not implemented yet!");
app.add_systems(..., system);
// Invalid
app.add_systems(..., || todo!("Not implemented yet!"));
```
### Temporary Variable Lifetimes
The order in which temporary variables are dropped has changed. The
simple fix here is _usually_ to just assign temporaries to a named
variable before use.
### `gen` is a keyword
We can no longer use the name `gen` as it is reserved for a future
generator syntax. This involved replacing uses of the name `gen` with
`r#gen` (the raw-identifier syntax).
### Formatting has changed
Use statements have had the order of imports changed, causing a
substantial +/-3,000 diff when applied. For now, I have opted-out of
this change by amending `rustfmt.toml`
```toml
style_edition = "2021"
```
This preserves the original formatting for now, reducing the size of
this PR. It would be a simple followup to update this to 2024 and run
`cargo fmt`.
### New `use<>` Opt-Out Syntax
Lifetimes are now implicitly included in RPIT types. There was a handful
of instances where it needed to be added to satisfy the borrow checker,
but there may be more cases where it _should_ be added to avoid
breakages in user code.
### `MyUnitStruct { .. }` is an invalid pattern
Previously, you could match against unit structs (and unit enum
variants) with a `{ .. }` destructuring. This is no longer valid.
### Pretty much every use of `ref` and `mut` are gone
Pattern binding has changed to the point where these terms are largely
unused now. They still serve a purpose, but it is far more niche now.
### `iter::repeat(...).take(...)` is bad
New lint recommends using the more explicit `iter::repeat_n(..., ...)`
instead.
## Migration Guide
The lifetimes of functions using return-position impl-trait (RPIT) are
likely _more_ conservative than they had been previously. If you
encounter lifetime issues with such a function, please create an issue
to investigate the addition of `+ use<...>`.
## Notes
- Check the individual commits for a clearer breakdown for what
_actually_ changed.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
This pr uses the `extern crate self as` trick to make proc macros behave
the same way inside and outside bevy.
# Objective
- Removes noise introduced by `crate as` in the whole bevy repo.
- Fixes#17004.
- Hardens proc macro path resolution.
## TODO
- [x] `BevyManifest` needs cleanup.
- [x] Cleanup remaining `crate as`.
- [x] Add proper integration tests to the ci.
## Notes
- `cargo-manifest-proc-macros` is written by me and based/inspired by
the old `BevyManifest` implementation and
[`bkchr/proc-macro-crate`](https://github.com/bkchr/proc-macro-crate).
- What do you think about the new integration test machinery I added to
the `ci`?
More and better integration tests can be added at a later stage.
The goal of these integration tests is to simulate an actual separate
crate that uses bevy. Ideally they would lightly touch all bevy crates.
## Testing
- Needs RA test
- Needs testing from other users
- Others need to run at least `cargo run -p ci integration-test` and
verify that they work.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Contributes to #16877
## Solution
- Moved `hashbrown`, `foldhash`, and related types out of `bevy_utils`
and into `bevy_platform_support`
- Refactored the above to match the layout of these types in `std`.
- Updated crates as required.
## Testing
- CI
---
## Migration Guide
- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::hash`:
- `FixedState`
- `DefaultHasher`
- `RandomState`
- `FixedHasher`
- `Hashed`
- `PassHash`
- `PassHasher`
- `NoOpHash`
- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::collections`:
- `HashMap`
- `HashSet`
- `bevy_utils::hashbrown` has been removed. Instead, import from
`bevy_platform_support::collections` _or_ take a dependency on
`hashbrown` directly.
- `bevy_utils::Entry` has been removed. Instead, import from
`bevy_platform_support::collections::hash_map` or
`bevy_platform_support::collections::hash_set` as appropriate.
- All of the above equally apply to `bevy::utils` and
`bevy::platform_support`.
## Notes
- I left `PreHashMap`, `PreHashMapExt`, and `TypeIdMap` in `bevy_utils`
as they might be candidates for micro-crating. They can always be moved
into `bevy_platform_support` at a later date if desired.
# Objective
`bevy_ecs`'s `system` module is something of a grab bag, and *very*
large. This is particularly true for the `system_param` module, which is
more than 2k lines long!
While it could be defensible to put `Res` and `ResMut` there (lol no
they're in change_detection.rs, obviously), it doesn't make any sense to
put the `Resource` trait there. This is confusing to navigate (and
painful to work on and review).
## Solution
- Create a root level `bevy_ecs/resource.rs` module to mirror
`bevy_ecs/component.rs`
- move the `Resource` trait to that module
- move the `Resource` derive macro to that module as well (Rust really
likes when you pun on the names of the derive macro and trait and put
them in the same path)
- fix all of the imports
## Notes to reviewers
- We could probably move more stuff into here, but I wanted to keep this
PR as small as possible given the absurd level of import changes.
- This PR is ground work for my upcoming attempts to store resource data
on components (resources-as-entities). Splitting this code out will make
the work and review a bit easier, and is the sort of overdue refactor
that's good to do as part of more meaningful work.
## Testing
cargo build works!
## Migration Guide
`bevy_ecs::system::Resource` has been moved to
`bevy_ecs::resource::Resource`.
# Objective
- https://github.com/bevyengine/bevy/issues/17111
## Solution
Set the `clippy::allow_attributes` and
`clippy::allow_attributes_without_reason` lints to `warn`, and bring
`bevy_ecs` in line with the new restrictions.
## Testing
This PR is a WIP; testing will happen after it's finished.
# Background
In `no_std` compatible crates, there is often an `std` feature which
will allow access to the standard library. Currently, with the `std`
feature _enabled_, the
[`std::prelude`](https://doc.rust-lang.org/std/prelude/index.html) is
implicitly imported in all modules. With the feature _disabled_, instead
the [`core::prelude`](https://doc.rust-lang.org/core/prelude/index.html)
is implicitly imported. This creates a subtle and pervasive issue where
`alloc` items _may_ be implicitly included (if `std` is enabled), or
must be explicitly included (if `std` is not enabled).
# Objective
- Make the implicit imports for `no_std` crates consistent regardless of
what features are/not enabled.
## Solution
- Replace the `cfg_attr` "double negative" `no_std` attribute with
conditional compilation to _include_ `std` as an external crate.
```rust
// Before
#![cfg_attr(not(feature = "std"), no_std)]
// After
#![no_std]
#[cfg(feature = "std")]
extern crate std;
```
- Fix imports that are currently broken but are only now visible with
the above fix.
## Testing
- CI
## Notes
I had previously used the "double negative" version of `no_std` based on
general consensus that it was "cleaner" within the Rust embedded
community. However, this implicit prelude issue likely was considered
when forming this consensus. I believe the reason why is the items most
affected by this issue are provided by the `alloc` crate, which is
rarely used within embedded but extensively used within Bevy.
# Objective
- #16589 added an enum to switch between fallible and infallible system.
This branching should be unnecessary if we wrap infallible systems in a
function to return `Ok(())`.
## Solution
- Create a wrapper system for `System<(), ()>`s that returns `Ok` on the
call to `run` and `run_unsafe`. The wrapper should compile out, but I
haven't checked.
- I removed the `impl IntoSystemConfigs for BoxedSystem<(), ()>` as I
couldn't figure out a way to keep the impl without double boxing.
## Testing
- ran `many_foxes` example to check if it still runs.
## Migration Guide
- `IntoSystemConfigs` has been removed for `BoxedSystem<(), ()>`. Either
use `InfallibleSystemWrapper` before boxing or make your system return
`bevy::ecs::prelude::Result`.
# Objective
- Contributes to #15460
## Solution
- Added the following features:
- `std` (default)
- `async_executor` (default)
- `edge_executor`
- `critical-section`
- `portable-atomic`
- Gated `tracing` in `bevy_utils` to allow compilation on certain
platforms
- Switched from `tracing` to `log` for simple message logging within
`bevy_ecs`. Note that `tracing` supports capturing from `log` so this
should be an uncontroversial change.
- Fixed imports and added feature gates as required
- Made `bevy_tasks` optional within `bevy_ecs`. Turns out it's only
needed for parallel operations which are already gated behind
`multi_threaded` anyway.
## Testing
- Added to `compile-check-no-std` CI command
- `cargo check -p bevy_ecs --no-default-features --features
edge_executor,critical-section,portable-atomic --target
thumbv6m-none-eabi`
- `cargo check -p bevy_ecs --no-default-features --features
edge_executor,critical-section`
- `cargo check -p bevy_ecs --no-default-features`
## Draft Release Notes
Bevy's core ECS now supports `no_std` platforms.
In prior versions of Bevy, it was not possible to work with embedded or
niche platforms due to our reliance on the standard library, `std`. This
has blocked a number of novel use-cases for Bevy, such as an embedded
database for IoT devices, or for creating games on retro consoles.
With this release, `bevy_ecs` no longer requires `std`. To use Bevy on a
`no_std` platform, you must disable default features and enable the new
`edge_executor` and `critical-section` features. You may also need to
enable `portable-atomic` and `critical-section` if your platform does
not natively support all atomic types and operations used by Bevy.
```toml
[dependencies]
bevy_ecs = { version = "0.16", default-features = false, features = [
# Required for platforms with incomplete atomics (e.g., Raspberry Pi Pico)
"portable-atomic",
"critical-section",
# Optional
"bevy_reflect",
"serialize",
"bevy_debug_stepping",
"edge_executor"
] }
```
Currently, this has been tested on bare-metal x86 and the Raspberry Pi
Pico. If you have trouble using `bevy_ecs` on a particular platform,
please reach out either through a GitHub issue or in the `no_std`
working group on the Bevy Discord server.
Keep an eye out for future `no_std` updates as we continue to improve
the parity between `std` and `no_std`. We look forward to seeing what
kinds of applications are now possible with Bevy!
## Notes
- Creating PR in draft to ensure CI is passing before requesting
reviews.
- This implementation has no support for multithreading in `no_std`,
especially due to `NonSend` being unsound if allowed in multithreading.
The reason is we cannot check the `ThreadId` in `no_std`, so we have no
mechanism to at-runtime determine if access is sound.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Vic <59878206+Victoronz@users.noreply.github.com>
# Objective
- Remove `derive_more`'s error derivation and replace it with
`thiserror`
## Solution
- Added `derive_more`'s `error` feature to `deny.toml` to prevent it
sneaking back in.
- Reverted to `thiserror` error derivation
## Notes
Merge conflicts were too numerous to revert the individual changes, so
this reversion was done manually. Please scrutinise carefully during
review.
# Objective
Error handling in bevy is hard. See for reference
https://github.com/bevyengine/bevy/issues/11562,
https://github.com/bevyengine/bevy/issues/10874 and
https://github.com/bevyengine/bevy/issues/12660. The goal of this PR is
to make it better, by allowing users to optionally return `Result` from
systems as outlined by Cart in
<https://github.com/bevyengine/bevy/issues/14275#issuecomment-2223708314>.
## Solution
This PR introduces a new `ScheuleSystem` type to represent systems that
can be added to schedules. Instances of this type contain either an
infallible `BoxedSystem<(), ()>` or a fallible `BoxedSystem<(),
Result>`. `ScheuleSystem` implements `System<In = (), Out = Result>` and
replaces all uses of `BoxedSystem` in schedules. The async executor now
receives a result after executing a system, which for infallible systems
is always `Ok(())`. Currently it ignores this result, but more useful
error handling could also be implemented.
Aliases for `Error` and `Result` have been added to the `bevy_ecs`
prelude, as well as const `OK` which new users may find more friendly
than `Ok(())`.
## Testing
- Currently there are not actual semantics changes that really require
new tests, but I added a basic one just to make sure we don't break
stuff in the future.
- The behavior of existing systems is totally unchanged, including
logging.
- All of the existing systems tests pass, and I have not noticed
anything strange while playing with the examples
## Showcase
The following minimal example prints "hello world" once, then completes.
```rust
use bevy::prelude::*;
fn main() {
App::new().add_systems(Update, hello_world_system).run();
}
fn hello_world_system() -> Result {
println!("hello world");
Err("string")?;
println!("goodbye world");
OK
}
```
## Migration Guide
This change should be pretty much non-breaking, except for users who
have implemented their own custom executors. Those users should use
`ScheduleSystem` in place of `BoxedSystem<(), ()>` and import the
`System` trait where needed. They can choose to do whatever they wish
with the result.
## Current Work
+ [x] Fix tests & doc comments
+ [x] Write more tests
+ [x] Add examples
+ [X] Draft release notes
## Draft Release Notes
As of this release, systems can now return results.
First a bit of background: Bevy has hisotrically expected systems to
return the empty type `()`. While this makes sense in the context of the
ecs, it's at odds with how error handling is typically done in rust:
returning `Result::Error` to indicate failure, and using the
short-circuiting `?` operator to propagate that error up the call stack
to where it can be properly handled. Users of functional languages will
tell you this is called "monadic error handling".
Not being able to return `Results` from systems left bevy users with a
quandry. They could add custom error handling logic to every system, or
manually pipe every system into an error handler, or perhaps sidestep
the issue with some combination of fallible assignents, logging, macros,
and early returns. Often, users would just litter their systems with
unwraps and possible panics.
While any one of these approaches might be fine for a particular user,
each of them has their own drawbacks, and none makes good use of the
language. Serious issues could also arrise when two different crates
used by the same project made different choices about error handling.
Now, by returning results, systems can defer error handling to the
application itself. It looks like this:
```rust
// Previous, handling internally
app.add_systems(my_system)
fn my_system(window: Query<&Window>) {
let Ok(window) = query.get_single() else {
return;
};
// ... do something to the window here
}
// Previous, handling externally
app.add_systems(my_system.pipe(my_error_handler))
fn my_system(window: Query<&Window>) -> Result<(), impl Error> {
let window = query.get_single()?;
// ... do something to the window here
Ok(())
}
// Previous, panicking
app.add_systems(my_system)
fn my_system(window: Query<&Window>) {
let window = query.single();
// ... do something to the window here
}
// Now
app.add_systems(my_system)
fn my_system(window: Query<&Window>) -> Result {
let window = query.get_single()?;
// ... do something to the window here
Ok(())
}
```
There are currently some limitations. Systems must either return `()` or
`Result<(), Box<dyn Error + Send + Sync + 'static>>`, with no
in-between. Results are also ignored by default, and though implementing
a custom handler is possible, it involves writing your own custom ecs
executor (which is *not* recomended).
Systems should return errors when they cannot perform their normal
behavior. In turn, errors returned to the executor while running the
schedule will (eventually) be treated as unexpected. Users and library
authors should prefer to return errors for anything that disrupts the
normal expected behavior of a system, and should only handle expected
cases internally.
We have big plans for improving error handling further:
+ Allowing users to change the error handling logic of the default
executors.
+ Adding source tracking and optional backtraces to errors.
+ Possibly adding tracing-levels (Error/Warn/Info/Debug/Trace) to
errors.
+ Generally making the default error logging more helpful and
inteligent.
+ Adding monadic system combininators for fallible systems.
+ Possibly removing all panicking variants from our api.
---------
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Fixes#12976
## Solution
This one is a doozy.
- Run `cargo +beta clippy --workspace --all-targets --all-features` and
fix all issues
- This includes:
- Moving inner attributes to be outer attributes, when the item in
question has both inner and outer attributes
- Use `ptr::from_ref` in more scenarios
- Extend the valid idents list used by `clippy:doc_markdown` with more
names
- Use `Clone::clone_from` when possible
- Remove redundant `ron` import
- Add backticks to **so many** identifiers and items
- I'm sorry whoever has to review this
---
## Changelog
- Added links to more identifiers in documentation.
# Objective
- I daily drive nightly Rust when developing Bevy, so I notice when new
warnings are raised by `cargo check` and Clippy.
- `cargo +nightly clippy` raises a few of these new warnings.
## Solution
- Fix most warnings from `cargo +nightly clippy`
- I skipped the docs-related warnings because some were covered by
#12692.
- Use `Clone::clone_from` in applicable scenarios, which can sometimes
avoid an extra allocation.
- Implement `Default` for structs that have a `pub const fn new() ->
Self` method.
- Fix an occurrence where generic constraints were defined in both `<C:
Trait>` and `where C: Trait`.
- Removed generic constraints that were implied by the `Bundle` trait.
---
## Changelog
- `BatchingStrategy`, `NonGenericTypeCell`, and `GenericTypeCell` now
implement `Default`.
# Objective
- There are several redundant imports in the tests and examples that are
not caught by CI because additional flags need to be passed.
## Solution
- Run `cargo check --workspace --tests` and `cargo check --workspace
--examples`, then fix all warnings.
- Add `test-check` to CI, which will be run in the check-compiles job.
This should catch future warnings for tests. Examples are already
checked, but I'm not yet sure why they weren't caught.
## Discussion
- Should the `--tests` and `--examples` flags be added to CI, so this is
caught in the future?
- If so, #12818 will need to be merged first. It was also a warning
raised by checking the examples, but I chose to split off into a
separate PR.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
Make bevy_utils less of a compilation bottleneck. Tackle #11478.
## Solution
* Move all of the directly reexported dependencies and move them to
where they're actually used.
* Remove the UUID utilities that have gone unused since `TypePath` took
over for `TypeUuid`.
* There was also a extraneous bytemuck dependency on `bevy_core` that
has not been used for a long time (since `encase` became the primary way
to prepare GPU buffers).
* Remove the `all_tuples` macro reexport from bevy_ecs since it's
accessible from `bevy_utils`.
---
## Changelog
Removed: Many of the reexports from bevy_utils (petgraph, uuid, nonmax,
smallvec, and thiserror).
Removed: bevy_core's reexports of bytemuck.
## Migration Guide
bevy_utils' reexports of petgraph, uuid, nonmax, smallvec, and thiserror
have been removed.
bevy_core' reexports of bytemuck's types has been removed.
Add them as dependencies in your own crate instead.
# Objective
- Fixes#11679
## Solution
- Added `IntoSystem::system_type_id` which returns the equivalent of
`system.into_system().type_id()` without construction. This allows for
getting the `TypeId` of functions (a function is an unnamed type and
therefore you cannot call `TypeId::of::<apply_deferred::System>()`)
- Added default implementation of `System::type_id` to ensure
consistency between implementations. Some returned `Self`, while others
were returning an inner value instead. This ensures consistency with
`IntoSystem::system_type_id`.
## Migration Guide
If you use `System::type_id()` on function systems (exclusive or not),
ensure you are comparing its value to other `System::type_id()` calls,
or `IntoSystem::system_type_id()`.
This code wont require any changes, because `IntoSystem`'s are directly
compared to each other.
```rust
fn test_system() {}
let type_id = test_system.type_id();
// ...
// No change required
assert_eq!(test_system.type_id(), type_id);
```
Likewise, this code wont, because `System`'s are directly compared.
```rust
fn test_system() {}
let type_id = IntoSystem::into_system(test_system).type_id();
// ...
// No change required
assert_eq!(IntoSystem::into_system(test_system).type_id(), type_id);
```
The below _does_ require a change, since you're comparing a `System`
type to a `IntoSystem` type.
```rust
fn test_system() {}
// Before
assert_eq!(test_system.type_id(), IntoSystem::into_system(test_system).type_id());
// After
assert_eq!(test_system.system_type_id(), IntoSystem::into_system(test_system).type_id());
```
Use `TypeIdMap<T>` instead of `HashMap<TypeId, T>`
- ~~`TypeIdMap` was in `bevy_ecs`. I've kept it there because of
#11478~~
- ~~I haven't swapped `bevy_reflect` over because it doesn't depend on
`bevy_ecs`, but I'd also be happy with moving `TypeIdMap` to
`bevy_utils` and then adding a dependency to that~~
- ~~this is a slight change in the public API of
`DrawFunctionsInternal`, does this need to go in the changelog?~~
## Changelog
- moved `TypeIdMap` to `bevy_utils`
- changed `DrawFunctionsInternal::indices` to `TypeIdMap`
## Migration Guide
- `TypeIdMap` now lives in `bevy_utils`
- `DrawFunctionsInternal::indices` now uses a `TypeIdMap`.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Add interactive system debugging capabilities to bevy, providing
step/break/continue style capabilities to running system schedules.
* Original implementation: #8063
- `ignore_stepping()` everywhere was too much complexity
* Schedule-config & Resource discussion: #8168
- Decided on selective adding of Schedules & Resource-based control
## Solution
Created `Stepping` Resource. This resource can be used to enable
stepping on a per-schedule basis. Systems within schedules can be
individually configured to:
* AlwaysRun: Ignore any stepping state and run every frame
* NeverRun: Never run while stepping is enabled
- this allows for disabling of systems while debugging
* Break: If we're running the full frame, stop before this system is run
Stepping provides two modes of execution that reflect traditional
debuggers:
* Step-based: Only execute one system at a time
* Continue/Break: Run all systems, but stop before running a system
marked as Break
### Demo
https://user-images.githubusercontent.com/857742/233630981-99f3bbda-9ca6-4cc4-a00f-171c4946dc47.mov
Breakout has been modified to use Stepping. The game runs normally for a
couple of seconds, then stepping is enabled and the game appears to
pause. A list of Schedules & Systems appears with a cursor at the first
System in the list. The demo then steps forward full frames using the
spacebar until the ball is about to hit a brick. Then we step system by
system as the ball impacts a brick, showing the cursor moving through
the individual systems. Finally the demo switches back to frame stepping
as the ball changes course.
### Limitations
Due to architectural constraints in bevy, there are some cases systems
stepping will not function as a user would expect.
#### Event-driven systems
Stepping does not support systems that are driven by `Event`s as events
are flushed after 1-2 frames. Although game systems are not running
while stepping, ignored systems are still running every frame, so events
will be flushed.
This presents to the user as stepping the event-driven system never
executes the system. It does execute, but the events have already been
flushed.
This can be resolved by changing event handling to use a buffer for
events, and only dropping an event once all readers have read it.
The work-around to allow these systems to properly execute during
stepping is to have them ignore stepping:
`app.add_systems(event_driven_system.ignore_stepping())`. This was done
in the breakout example to ensure sound played even while stepping.
#### Conditional Systems
When a system is stepped, it is given an opportunity to run. If the
conditions of the system say it should not run, it will not.
Similar to Event-driven systems, if a system is conditional, and that
condition is only true for a very small time window, then stepping the
system may not execute the system. This includes depending on any sort
of external clock.
This exhibits to the user as the system not always running when it is
stepped.
A solution to this limitation is to ensure any conditions are consistent
while stepping is enabled. For example, all systems that modify any
state the condition uses should also enable stepping.
#### State-transition Systems
Stepping is configured on the per-`Schedule` level, requiring the user
to have a `ScheduleLabel`.
To support state-transition systems, bevy generates needed schedules
dynamically. Currently it’s very difficult (if not impossible, I haven’t
verified) for the user to get the labels for these schedules.
Without ready access to the dynamically generated schedules, and a
resolution for the `Event` lifetime, **stepping of the state-transition
systems is not supported**
---
## Changelog
- `Schedule::run()` updated to consult `Stepping` Resource to determine
which Systems to run each frame
- Added `Schedule.label` as a `BoxedSystemLabel`, along with supporting
`Schedule::set_label()` and `Schedule::label()` methods
- `Stepping` needed to know which `Schedule` was running, and prior to
this PR, `Schedule` didn't track its own label
- Would have preferred to add `Schedule::with_label()` and remove
`Schedule::new()`, but this PR touches enough already
- Added calls to `Schedule.set_label()` to `App` and `World` as needed
- Added `Stepping` resource
- Added `Stepping::begin_frame()` system to `MainSchedulePlugin`
- Run before `Main::run_main()`
- Notifies any `Stepping` Resource a new render frame is starting
## Migration Guide
- Add a call to `Schedule::set_label()` for any custom `Schedule`
- This is only required if the `Schedule` will be stepped
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>