Commit Graph

4 Commits

Author SHA1 Message Date
Patrick Walton
8a066faea9 Add bindless support back to ExtendedMaterial. (#18025)
PR #17898 disabled bindless support for `ExtendedMaterial`. This commit
adds it back. It also adds a new example, `extended_material_bindless`,
showing how to use it.
2025-04-10 01:19:33 +02:00
Patrick Walton
913eb46324
Reimplement bindless storage buffers. (#17994)
Support for bindless storage buffers was temporarily removed with the
bindless revamp. This commit restores that support.
2025-03-10 21:32:19 +00:00
Patrick Walton
5d7a60592d
Add a new #[data] attribute to AsBindGroup that allows packing data for multiple materials into a single array. (#17965)
Currently, the structure-level `#[uniform]` attribute of `AsBindGroup`
creates a binding array of individual buffers, each of which contains
data for a single material. A more efficient approach would be to
provide a single buffer with an array containing all of the data for all
materials in the bind group. Because `StandardMaterial` uses
`#[uniform]`, this can be notably inefficient with large numbers of
materials.

This patch introduces a new attribute on `AsBindGroup`, `#[data]`, which
works identically to `#[uniform]` except that it concatenates all the
data into a single buffer that the material bind group allocator itself
manages. It also converts `StandardMaterial` to use this new
functionality. This effectively provides the "material data in arrays"
feature.
2025-02-24 21:38:55 +00:00
Patrick Walton
28441337bb
Use global binding arrays for bindless resources. (#17898)
Currently, Bevy's implementation of bindless resources is rather
unusual: every binding in an object that implements `AsBindGroup` (most
commonly, a material) becomes its own separate binding array in the
shader. This is inefficient for two reasons:

1. If multiple materials reference the same texture or other resource,
the reference to that resource will be duplicated many times. This
increases `wgpu` validation overhead.

2. It creates many unused binding array slots. This increases `wgpu` and
driver overhead and makes it easier to hit limits on APIs that `wgpu`
currently imposes tight resource limits on, like Metal.

This PR fixes these issues by switching Bevy to use the standard
approach in GPU-driven renderers, in which resources are de-duplicated
and passed as global arrays, one for each type of resource.

Along the way, this patch introduces per-platform resource limits and
bumps them from 16 resources per binding array to 64 resources per bind
group on Metal and 2048 resources per bind group on other platforms.
(Note that the number of resources per *binding array* isn't the same as
the number of resources per *bind group*; as it currently stands, if all
the PBR features are turned on, Bevy could pack as many as 496 resources
into a single slab.) The limits have been increased because `wgpu` now
has universal support for partially-bound binding arrays, which mean
that we no longer need to fill the binding arrays with fallback
resources on Direct3D 12. The `#[bindless(LIMIT)]` declaration when
deriving `AsBindGroup` can now simply be written `#[bindless]` in order
to have Bevy choose a default limit size for the current platform.
Custom limits are still available with the new
`#[bindless(limit(LIMIT))]` syntax: e.g. `#[bindless(limit(8))]`.

The material bind group allocator has been completely rewritten. Now
there are two allocators: one for bindless materials and one for
non-bindless materials. The new non-bindless material allocator simply
maintains a 1:1 mapping from material to bind group. The new bindless
material allocator maintains a list of slabs and allocates materials
into slabs on a first-fit basis. This unfortunately makes its
performance O(number of resources per object * number of slabs), but the
number of slabs is likely to be low, and it's planned to become even
lower in the future with `wgpu` improvements. Resources are
de-duplicated with in a slab and reference counted. So, for instance, if
multiple materials refer to the same texture, that texture will exist
only once in the appropriate binding array.

To support these new features, this patch adds the concept of a
*bindless descriptor* to the `AsBindGroup` trait. The bindless
descriptor allows the material bind group allocator to probe the layout
of the material, now that an array of `BindGroupLayoutEntry` records is
insufficient to describe the group. The `#[derive(AsBindGroup)]` has
been heavily modified to support the new features. The most important
user-facing change to that macro is that the struct-level `uniform`
attribute, `#[uniform(BINDING_NUMBER, StandardMaterial)]`, now reads
`#[uniform(BINDLESS_INDEX, MATERIAL_UNIFORM_TYPE,
binding_array(BINDING_NUMBER)]`, allowing the material to specify the
binding number for the binding array that holds the uniform data.

To make this patch simpler, I removed support for bindless
`ExtendedMaterial`s, as well as field-level bindless uniform and storage
buffers. I intend to add back support for these as a follow-up. Because
they aren't in any released Bevy version yet, I figured this was OK.

Finally, this patch updates `StandardMaterial` for the new bindless
changes. Generally, code throughout the PBR shaders that looked like
`base_color_texture[slot]` now looks like
`bindless_2d_textures[material_indices[slot].base_color_texture]`.

This patch fixes a system hang that I experienced on the [Caldera test]
when running with `caldera --random-materials --texture-count 100`. The
time per frame is around 19.75 ms, down from 154.2 ms in Bevy 0.14: a
7.8× speedup.

[Caldera test]: https://github.com/DGriffin91/bevy_caldera_scene
2025-02-21 05:55:36 +00:00