Commit Graph

18 Commits

Author SHA1 Message Date
krunchington
96d5f1e5de Fix relationship macro for multiple named members fields (#18530)
# Objective

Fixes #18466 

## Solution

Updated the macro generation pattern to place the comma in the correct
place in the pattern.

## Testing

- Tried named and unnamed fields in combination, and used rust expand
macro tooling to see the generated code and verify its correctness (see
screenshots in example below)

---

## Showcase

Screenshot showing expanded macro with multiple named fields

![image](https://github.com/user-attachments/assets/7ecd324c-10ba-4b23-9b53-b94da03567d3)

Screenshot showing expanded macro with single unnamed field

![image](https://github.com/user-attachments/assets/be72f061-5f07-4d19-b5f6-7ff6c35ec679)

## Migration Guide

n/a
2025-03-27 22:58:21 +01:00
Carter Anderson
1db1119819 Replace VisitEntities with MapEntities (#18432)
# Objective

There are currently too many disparate ways to handle entity mapping,
especially after #17687. We now have MapEntities, VisitEntities,
VisitEntitiesMut, Component::visit_entities,
Component::visit_entities_mut.

Our only known use case at the moment for these is entity mapping. This
means we have significant consolidation potential.

Additionally, VisitEntitiesMut cannot be implemented for map-style
collections like HashSets, as you cant "just" mutate a `&mut Entity`.
Our current approach to Component mapping requires VisitEntitiesMut,
meaning this category of entity collection isn't mappable. `MapEntities`
is more generally applicable. Additionally, the _existence_ of the
blanket From impl on VisitEntitiesMut blocks us from implementing
MapEntities for HashSets (or any types we don't own), because the owner
could always add a conflicting impl in the future.

## Solution

Use `MapEntities` everywhere and remove all "visit entities" usages.

* Add `Component::map_entities`
* Remove `Component::visit_entities`, `Component::visit_entities_mut`,
`VisitEntities`, and `VisitEntitiesMut`
* Support deriving `Component::map_entities` in `#[derive(Coomponent)]`
* Add `#[derive(MapEntities)]`, and share logic with the
`Component::map_entities` derive.
* Add `ComponentCloneCtx::queue_deferred`, which is command-like logic
that runs immediately after normal clones. Reframe `FromWorld` fallback
logic in the "reflect clone" impl to use it. This cuts out a lot of
unnecessary work and I think justifies the existence of a pseudo-command
interface (given how niche, yet performance sensitive this is).

Note that we no longer auto-impl entity mapping for ` IntoIterator<Item
= &'a Entity>` types, as this would block our ability to implement cases
like `HashMap`. This means the onus is on us (or type authors) to add
explicit support for types that should be mappable.

Also note that the Component-related changes do not require a migration
guide as there hasn't been a release with them yet.

## Migration Guide

If you were previously implementing `VisitEntities` or
`VisitEntitiesMut` (likely via a derive), instead use `MapEntities`.
Those were almost certainly used in the context of Bevy Scenes or
reflection via `ReflectMapEntities`. If you have a case that uses
`VisitEntities` or `VisitEntitiesMut` directly, where `MapEntities` is
not a viable replacement, please let us know!

```rust
// before
#[derive(VisitEntities, VisitEntitiesMut)]
struct Inventory {
  items: Vec<Entity>,
  #[visit_entities(ignore)]
  label: String,
}

// after
#[derive(MapEntities)]
struct Inventory {
  #[entities]
  items: Vec<Entity>,
  label: String,
}
```
2025-03-24 00:09:29 +01:00
Alice Cecile
27d02de375 Unify and simplify command and system error handling (#18351)
# Objective

- ECS error handling is a lovely flagship feature for Bevy 0.16, all in
the name of reducing panics and encouraging better error handling
(#14275).
- Currently though, command and system error handling are completely
disjoint and use different mechanisms.
- Additionally, there's a number of distinct ways to set the
default/fallback/global error handler that have limited value. As far as
I can tell, this will be cfg flagged to toggle between dev and
production builds in 99.9% of cases, with no real value in more granular
settings or helpers.
- Fixes #17272

## Solution

- Standardize error handling on the OnceLock global error mechanisms
ironed out in https://github.com/bevyengine/bevy/pull/17215
- As discussed there, there are serious performance concerns there,
especially for commands
- I also think this is a better fit for the use cases, as it's truly
global
- Move from `SystemErrorContext` to a more general purpose
`ErrorContext`, which can handle observers and commands more clearly
- Cut the superfluous setter methods on `App` and `SubApp`
- Rename the limited (and unhelpful) `fallible_systems` example to
`error_handling`, and add an example of command error handling

## Testing

Ran the `error_handling` example.

## Notes for reviewers

- Do you see a clear way to allow commands to retain &mut World access
in the per-command custom error handlers? IMO that's a key feature here
(allowing the ad-hoc creation of custom commands), but I'm not sure how
to get there without exploding complexity.
- I've removed the feature gate on the default_error_handler: contrary
to @cart's opinion in #17215 I think that virtually all apps will want
to use this. Can you think of a category of app that a) is extremely
performance sensitive b) is fine with shipping to production with the
panic error handler? If so, I can try to gather performance numbers
and/or reintroduce the feature flag. UPDATE: see benches at the end of
this message.
- ~~`OnceLock` is in `std`: @bushrat011899 what should we do here?~~
- Do you have ideas for more automated tests for this collection of
features?

## Benchmarks

I checked the impact of the feature flag introduced: benchmarks might
show regressions. This bears more investigation. I'm still skeptical
that there are users who are well-served by a fast always panicking
approach, but I'm going to re-add the feature flag here to avoid
stalling this out.


![image](https://github.com/user-attachments/assets/237f644a-b36d-4332-9b45-76fd5cbff4d0)

---------

Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2025-03-18 21:18:06 +01:00
Carter Anderson
6d6054116a
Support skipping Relationship on_replace hooks (#18378)
# Objective

Fixes #18357

## Solution

Generalize `RelationshipInsertHookMode` to `RelationshipHookMode`, wire
it up to on_replace execution, and use it in the
`Relationship::on_replace` hook.
2025-03-18 01:24:07 +00:00
Christian Hughes
fecf2d2591
Provide a safe abstraction for split access to entities and commands (#18215)
# Objective

Currently experimenting with manually implementing
`Relationship`/`RelationshipTarget` to support associated edge data,
which means I need to replace the default hook implementations provided
by those traits. However, copying them over for editing revealed that
`UnsafeWorldCell::get_raw_command_queue` is `pub(crate)`, and I would
like to not have to clone the source collection, like the default impl.
So instead, I've taken to providing a safe abstraction for being able to
access entities and queue commands simultaneously.

## Solution

Added `World::entities_and_commands` and
`DeferredWorld::entities_and_commands`, which can be used like so:

```rust
let eid: Entity = /* ... */;
let (mut fetcher, mut commands) = world.entities_and_commands();
let emut = fetcher.get_mut(eid).unwrap();
commands.entity(eid).despawn();
```

## Testing

- Added a new test for each of the added functions.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-03-17 18:05:50 +00:00
krunchington
ab38b61001
Update Component docs to point to Relationship trait (#18179)
also updates Relationship docs terminology

# Objective

- Contributes to #18111 

## Solution

Updates Component docs with a new section linking to Relationship. Also
updates some Relationship terminology as I understand it.

## Testing

- Did you test these changes? If so, how?
  - opened Docs, verified link
- Are there any parts that need more testing?
  - I don't think so
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
- run `cargo doc --open` and check out Component and Relationship docs,
verify their correctness
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
  - I think this is n/a but I ran the doc command on Ubuntu 24.04.2 LTS

---

## Showcase


![image](https://github.com/user-attachments/assets/241eecb2-dd98-43ab-875a-1a3ec1176a79)


## Migration Guide

n/a
2025-03-07 23:32:43 +00:00
Carter Anderson
a530c07bc5
Preserve spawned RelationshipTarget order and other improvements (#17858)
Fixes #17720

## Objective

Spawning RelationshipTargets from scenes currently fails to preserve
RelationshipTarget ordering (ex: `Children` has an arbitrary order).
This is because it uses the normal hook flow to set up the collection,
which means we are pushing onto the collection in _spawn order_ (which
is currently in archetype order, which will often produce mismatched
orderings).

We need to preserve the ordering in the original RelationshipTarget
collection. Ideally without expensive checking / fixups.

## Solution

One solution would be to spawn in hierarchy-order. However this gets
complicated as there can be multiple hierarchies, and it also means we
can't spawn in more cache-friendly orders (ex: the current per-archetype
spawning, or future even-smarter per-table spawning). Additionally,
same-world cloning has _slightly_ more nuanced needs (ex: recursively
clone linked relationships, while maintaining _original_ relationships
outside of the tree via normal hooks).

The preferred approach is to directly spawn the remapped
RelationshipTarget collection, as this trivially preserves the ordering.
Unfortunately we can't _just_ do that, as when we spawn the children
with their Relationships (ex: `ChildOf`), that will insert a duplicate.

We could "fixup" the collection retroactively by just removing the back
half of duplicates, but this requires another pass / more lookups /
allocating twice as much space. Additionally, it becomes complicated
because observers could insert additional children, making it harder
(aka more expensive) to determine which children are dupes and which are
not.

The path I chose is to support "opting out" of the relationship target
hook in the contexts that need that, as this allows us to just cheaply
clone the mapped collection. The relationship hook can look for this
configuration when it runs and skip its logic when that happens. A
"simple" / small-amount-of-code way to do this would be to add a "skip
relationship spawn" flag to World. Sadly, any hook / observer that runs
_as the result of an insert_ would also read this flag. We really need a
way to scope this setting to a _specific_ insert.

Therefore I opted to add a new `RelationshipInsertHookMode` enum and an
`entity.insert_with_relationship_insert_hook_mode` variant. Obviously
this is verbose and ugly. And nobody wants _more_ insert variants. But
sadly this was the best I could come up with from a performance and
capability perspective. If you have alternatives let me know!

There are three variants:

1. `RelationshipInsertHookMode::Run`: always run relationship insert
hooks (this is the default)
2. `RelationshipInsertHookMode::Skip`: do not run any relationship
insert hooks for this insert (this is used by spawner code)
3. `RelationshipInsertHookMode::RunIfNotLinked`: only run hooks for
_unlinked_ relationships (this is used in same-world recursive entity
cloning to preserve relationships outside of the deep-cloned tree)

Note that I have intentionally only added "insert with relationship hook
mode" variants to the cases we absolutely need (everything else uses the
default `Run` mode), just to keep the code size in check. I do not think
we should add more without real _very necessary_ use cases.

I also made some other minor tweaks:

1. I split out `SourceComponent` from `ComponentCloneCtx`. Reading the
source component no longer needlessly blocks mutable access to
`ComponentCloneCtx`.
2. Thanks to (1), I've removed the `RefCell` wrapper over the cloned
component queue.
3. (1) also allowed me to write to the EntityMapper while queuing up
clones, meaning we can reserve entities during the component clone and
write them to the mapper _before_ inserting the component, meaning
cloned collections can be mapped on insert.
4. I've removed the closure from `write_target_component_ptr` to
simplify the API / make it compatible with the split `SourceComponent`
approach.
5. I've renamed `EntityCloner::recursive` to
`EntityCloner::linked_cloning` to connect that feature more directly
with `RelationshipTarget::LINKED_SPAWN`
6. I've removed `EntityCloneBehavior::RelationshipTarget`. This was
always intended to be temporary, and this new behavior removes the need
for it.

---------

Co-authored-by: Viktor Gustavsson <villor94@gmail.com>
2025-03-05 22:18:57 +00:00
JaySpruce
058497e0bb
Change Commands::get_entity to return Result and remove panic from Commands::entity (#18043)
## Objective

Alternative to #18001.

- Now that systems can handle the `?` operator, `get_entity` returning
`Result` would be more useful than `Option`.
- With `get_entity` being more flexible, combined with entity commands
now checking the entity's existence automatically, the panic in `entity`
isn't really necessary.

## Solution

- Changed `Commands::get_entity` to return `Result<EntityCommands,
EntityDoesNotExistError>`.
- Removed panic from `Commands::entity`.
2025-02-27 21:05:16 +00:00
Tim Overbeek
ccb7069e7f
Change ChildOf to Childof { parent: Entity} and support deriving Relationship and RelationshipTarget with named structs (#17905)
# Objective

fixes #17896 

## Solution

Change ChildOf ( Entity ) to ChildOf { parent: Entity }

by doing this we also allow users to use named structs for relationship
derives, When you have more than 1 field in a struct with named fields
the macro will look for a field with the attribute #[relationship] and
all of the other fields should implement the Default trait. Unnamed
fields are still supported.

When u have a unnamed struct with more than one field the macro will
fail.
Do we want to support something like this ? 

```rust
 #[derive(Component)]
 #[relationship_target(relationship = ChildOf)]
 pub struct Children (#[relationship] Entity, u8);
```
I could add this, it but doesn't seem nice.
## Testing

crates/bevy_ecs - cargo test


## Showcase


```rust

use bevy_ecs::component::Component;
use bevy_ecs::entity::Entity;

 #[derive(Component)]
 #[relationship(relationship_target = Children)]
 pub struct ChildOf {
     #[relationship]
     pub parent: Entity,
     internal: u8,
 };

 #[derive(Component)]
 #[relationship_target(relationship = ChildOf)]
 pub struct Children {
     children: Vec<Entity>
 };

```

---------

Co-authored-by: Tim Overbeek <oorbecktim@Tims-MacBook-Pro.local>
Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-042.client.nl.eduvpn.org>
Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-059.client.nl.eduvpn.org>
Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-054.client.nl.eduvpn.org>
Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-027.client.nl.eduvpn.org>
2025-02-27 19:22:17 +00:00
JaySpruce
ee44560523
Add EntityDoesNotExistError, replace cases of Entity as an error, do some easy Resultification (#17855)
## Objective
There's no general error for when an entity doesn't exist, and some
methods are going to need one when they get Resultified. The closest
thing is `EntityFetchError`, but that error has a slightly more specific
purpose.

## Solution
- Added `EntityDoesNotExistError`.
  - Contains `Entity` and `EntityDoesNotExistDetails`.
- Changed `EntityFetchError` and `QueryEntityError`:
- Changed `NoSuchEntity` variant to wrap `EntityDoesNotExistError` and
renamed the variant to `EntityDoesNotExist`.
- Renamed `EntityFetchError` to `EntityMutableFetchError` to make its
purpose clearer.
- Renamed `TryDespawnError` to `EntityDespawnError` to make it more
general.
- Changed `World::inspect_entity` to return `Result<[ok],
EntityDoesNotExistError>` instead of panicking.
- Changed `World::get_entity` and `WorldEntityFetch::fetch_ref` to
return `Result<[ok], EntityDoesNotExistError>` instead of `Result<[ok],
Entity>`.
- Changed `UnsafeWorldCell::get_entity` to return
`Result<UnsafeEntityCell, EntityDoesNotExistError>` instead of
`Option<UnsafeEntityCell>`.

## Migration Guide
- `World::inspect_entity` now returns `Result<impl Iterator<Item =
&ComponentInfo>, EntityDoesNotExistError>` instead of `impl
Iterator<Item = &ComponentInfo>`.
- `World::get_entity` now returns `EntityDoesNotExistError` as an error
instead of `Entity`. You can still access the entity's ID through the
error's `entity` field.
- `UnsafeWorldCell::get_entity` now returns `Result<UnsafeEntityCell,
EntityDoesNotExistError>` instead of `Option<UnsafeEntityCell>`.
2025-02-16 21:59:46 +00:00
raldone01
1b7db895b7
Harden proc macro path resolution and add integration tests. (#17330)
This pr uses the `extern crate self as` trick to make proc macros behave
the same way inside and outside bevy.

# Objective

- Removes noise introduced by `crate as` in the whole bevy repo.
- Fixes #17004.
- Hardens proc macro path resolution.

## TODO

- [x] `BevyManifest` needs cleanup.
- [x] Cleanup remaining `crate as`.
- [x] Add proper integration tests to the ci.

## Notes

- `cargo-manifest-proc-macros` is written by me and based/inspired by
the old `BevyManifest` implementation and
[`bkchr/proc-macro-crate`](https://github.com/bkchr/proc-macro-crate).
- What do you think about the new integration test machinery I added to
the `ci`?
  More and better integration tests can be added at a later stage.
The goal of these integration tests is to simulate an actual separate
crate that uses bevy. Ideally they would lightly touch all bevy crates.

## Testing

- Needs RA test
- Needs testing from other users
- Others need to run at least `cargo run -p ci integration-test` and
verify that they work.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-02-09 19:45:45 +00:00
Carter Anderson
3c8fae2390
Improved Entity Mapping and Cloning (#17687)
Fixes #17535

Bevy's approach to handling "entity mapping" during spawning and cloning
needs some work. The addition of
[Relations](https://github.com/bevyengine/bevy/pull/17398) both
[introduced a new "duplicate entities" bug when spawning scenes in the
scene system](#17535) and made the weaknesses of the current mapping
system exceedingly clear:

1. Entity mapping requires _a ton_ of boilerplate (implement or derive
VisitEntities and VisitEntitesMut, then register / reflect MapEntities).
Knowing the incantation is challenging and if you forget to do it in
part or in whole, spawning subtly breaks.
2. Entity mapping a spawned component in scenes incurs unnecessary
overhead: look up ReflectMapEntities, create a _brand new temporary
instance_ of the component using FromReflect, map the entities in that
instance, and then apply that on top of the actual component using
reflection. We can do much better.

Additionally, while our new [Entity cloning
system](https://github.com/bevyengine/bevy/pull/16132) is already pretty
great, it has some areas we can make better:

* It doesn't expose semantic info about the clone (ex: ignore or "clone
empty"), meaning we can't key off of that in places where it would be
useful, such as scene spawning. Rather than duplicating this info across
contexts, I think it makes more sense to add that info to the clone
system, especially given that we'd like to use cloning code in some of
our spawning scenarios.
* EntityCloner is currently built in a way that prioritizes a single
entity clone
* EntityCloner's recursive cloning is built to be done "inside out" in a
parallel context (queue commands that each have a clone of
EntityCloner). By making EntityCloner the orchestrator of the clone we
can remove internal arcs, improve the clarity of the code, make
EntityCloner mutable again, and simplify the builder code.
* EntityCloner does not currently take into account entity mapping. This
is necessary to do true "bullet proof" cloning, would allow us to unify
the per-component scene spawning and cloning UX, and ultimately would
allow us to use EntityCloner in place of raw reflection for scenes like
`Scene(World)` (which would give us a nice performance boost: fewer
archetype moves, less reflection overhead).

## Solution

### Improved Entity Mapping

First, components now have first-class "entity visiting and mapping"
behavior:

```rust
#[derive(Component, Reflect)]
#[reflect(Component)]
struct Inventory {
    size: usize,
    #[entities]
    items: Vec<Entity>,
}
```

Any field with the `#[entities]` annotation will be viewable and
mappable when cloning and spawning scenes.

Compare that to what was required before!

```rust
#[derive(Component, Reflect, VisitEntities, VisitEntitiesMut)]
#[reflect(Component, MapEntities)]
struct Inventory {
    #[visit_entities(ignore)]
    size: usize,
    items: Vec<Entity>,
}
```

Additionally, for relationships `#[entities]` is implied, meaning this
"just works" in scenes and cloning:

```rust
#[derive(Component, Reflect)]
#[relationship(relationship_target = Children)]
#[reflect(Component)]
struct ChildOf(pub Entity);
```

Note that Component _does not_ implement `VisitEntities` directly.
Instead, it has `Component::visit_entities` and
`Component::visit_entities_mut` methods. This is for a few reasons:

1. We cannot implement `VisitEntities for C: Component` because that
would conflict with our impl of VisitEntities for anything that
implements `IntoIterator<Item=Entity>`. Preserving that impl is more
important from a UX perspective.
2. We should not implement `Component: VisitEntities` VisitEntities in
the Component derive, as that would increase the burden of manual
Component trait implementors.
3. Making VisitEntitiesMut directly callable for components would make
it easy to invalidate invariants defined by a component author. By
putting it in the `Component` impl, we can make it harder to call
naturally / unavailable to autocomplete using `fn
visit_entities_mut(this: &mut Self, ...)`.

`ReflectComponent::apply_or_insert` is now
`ReflectComponent::apply_or_insert_mapped`. By moving mapping inside
this impl, we remove the need to go through the reflection system to do
entity mapping, meaning we no longer need to create a clone of the
target component, map the entities in that component, and patch those
values on top. This will make spawning mapped entities _much_ faster
(The default `Component::visit_entities_mut` impl is an inlined empty
function, so it will incur no overhead for unmapped entities).

### The Bug Fix

To solve #17535, spawning code now skips entities with the new
`ComponentCloneBehavior::Ignore` and
`ComponentCloneBehavior::RelationshipTarget` variants (note
RelationshipTarget is a temporary "workaround" variant that allows
scenes to skip these components. This is a temporary workaround that can
be removed as these cases should _really_ be using EntityCloner logic,
which should be done in a followup PR. When that is done,
`ComponentCloneBehavior::RelationshipTarget` can be merged into the
normal `ComponentCloneBehavior::Custom`).

### Improved Cloning

* `Option<ComponentCloneHandler>` has been replaced by
`ComponentCloneBehavior`, which encodes additional intent and context
(ex: `Default`, `Ignore`, `Custom`, `RelationshipTarget` (this last one
is temporary)).
* Global per-world entity cloning configuration has been removed. This
felt overly complicated, increased our API surface, and felt too
generic. Each clone context can have different requirements (ex: what a
user wants in a specific system, what a scene spawner wants, etc). I'd
prefer to see how far context-specific EntityCloners get us first.
* EntityCloner's internals have been reworked to remove Arcs and make it
mutable.
* EntityCloner is now directly stored on EntityClonerBuilder,
simplifying the code somewhat
* EntityCloner's "bundle scratch" pattern has been moved into the new
BundleScratch type, improving its usability and making it usable in
other contexts (such as future cross-world cloning code). Currently this
is still private, but with some higher level safe APIs it could be used
externally for making dynamic bundles
* EntityCloner's recursive cloning behavior has been "externalized". It
is now responsible for orchestrating recursive clones, meaning it no
longer needs to be sharable/clone-able across threads / read-only.
* EntityCloner now does entity mapping during clones, like scenes do.
This gives behavior parity and also makes it more generically useful.
* `RelatonshipTarget::RECURSIVE_SPAWN` is now
`RelationshipTarget::LINKED_SPAWN`, and this field is used when cloning
relationship targets to determine if cloning should happen recursively.
The new `LINKED_SPAWN` term was picked to make it more generically
applicable across spawning and cloning scenarios.

## Next Steps

* I think we should adapt EntityCloner to support cross world cloning. I
think this PR helps set the stage for that by making the internals
slightly more generalized. We could have a CrossWorldEntityCloner that
reuses a lot of this infrastructure.
* Once we support cross world cloning, we should use EntityCloner to
spawn `Scene(World)` scenes. This would yield significant performance
benefits (no archetype moves, less reflection overhead).

---------

Co-authored-by: eugineerd <70062110+eugineerd@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-02-06 22:13:41 +00:00
Rob Grindeland
0335f34561
Add missing return in default Relationship::on_insert impl (#17675)
# Objective

There was a bug in the default `Relationship::on_insert` implementation
that caused it to not properly handle entities targeting themselves in
relationships. The relationship component was properly removed, but it
would go on to add itself to its own target component.

## Solution

Added a missing `return` and a couple of tests
(`self_relationship_fails` failed on its second assert prior to this
PR).

## Testing

See above.
2025-02-05 21:26:16 +00:00
Zachary Harrold
41e79ae826
Refactored ComponentHook Parameters into HookContext (#17503)
# Objective

- Make the function signature for `ComponentHook` less verbose

## Solution

- Refactored `Entity`, `ComponentId`, and `Option<&Location>` into a new
`HookContext` struct.

## Testing

- CI

---

## Migration Guide

Update the function signatures for your component hooks to only take 2
arguments, `world` and `context`. Note that because `HookContext` is
plain data with all members public, you can use de-structuring to
simplify migration.

```rust
// Before
fn my_hook(
    mut world: DeferredWorld,
    entity: Entity,
    component_id: ComponentId,
) { ... }

// After
fn my_hook(
    mut world: DeferredWorld,
    HookContext { entity, component_id, caller }: HookContext,
) { ... }
``` 

Likewise, if you were discarding certain parameters, you can use `..` in
the de-structuring:

```rust
// Before
fn my_hook(
    mut world: DeferredWorld,
    entity: Entity,
    _: ComponentId,
) { ... }

// After
fn my_hook(
    mut world: DeferredWorld,
    HookContext { entity, .. }: HookContext,
) { ... }
```
2025-01-23 02:45:24 +00:00
SpecificProtagonist
f32a6fb205
Track callsite for observers & hooks (#15607)
# Objective

Fixes #14708

Also fixes some commands not updating tracked location.


## Solution

`ObserverTrigger` has a new `caller` field with the
`track_change_detection` feature;
hooks take an additional caller parameter (which is `Some(…)` or `None`
depending on the feature).

## Testing

See the new tests in `src/observer/mod.rs`

---

## Showcase

Observers now know from where they were triggered (if
`track_change_detection` is enabled):
```rust
world.observe(move |trigger: Trigger<OnAdd, Foo>| {
    println!("Added Foo from {}", trigger.caller());
});
```

## Migration

- hooks now take an additional `Option<&'static Location>` argument

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-01-22 20:02:39 +00:00
Carter Anderson
ba5e71f53d
Parent -> ChildOf (#17427)
Fixes #17412

## Objective

`Parent` uses the "has a X" naming convention. There is increasing
sentiment that we should use the "is a X" naming convention for
relationships (following #17398). This leaves `Children` as-is because
there is prevailing sentiment that `Children` is clearer than `ParentOf`
in many cases (especially when treating it like a collection).

This renames `Parent` to `ChildOf`.

This is just the implementation PR. To discuss the path forward, do so
in #17412.

## Migration Guide

- The `Parent` component has been renamed to `ChildOf`.
2025-01-20 22:13:29 +00:00
Alice Cecile
5a9bc28502
Support non-Vec data structures in relations (#17447)
# Objective

The existing `RelationshipSourceCollection` uses `Vec` as the only
possible backing for our relationships. While a reasonable choice,
benchmarking use cases might reveal that a different data type is better
or faster.

For example:

- Not all relationships require a stable ordering between the
relationship sources (i.e. children). In cases where we a) have many
such relations and b) don't care about the ordering between them, a hash
set is likely a better datastructure than a `Vec`.
- The number of children-like entities may be small on average, and a
`smallvec` may be faster

## Solution

- Implement `RelationshipSourceCollection` for `EntityHashSet`, our
custom entity-optimized `HashSet`.
-~~Implement `DoubleEndedIterator` for `EntityHashSet` to make things
compile.~~
   -  This implementation was cursed and very surprising.
- Instead, by moving the iterator type on `RelationshipSourceCollection`
from an erased RPTIT to an explicit associated type we can add a trait
bound on the offending methods!
- Implement `RelationshipSourceCollection` for `SmallVec`

## Testing

I've added a pair of new tests to make sure this pattern compiles
successfully in practice!

## Migration Guide

`EntityHashSet` and `EntityHashMap` are no longer re-exported in
`bevy_ecs::entity` directly. If you were not using `bevy_ecs` / `bevy`'s
`prelude`, you can access them through their now-public modules,
`hash_set` and `hash_map` instead.

## Notes to reviewers

The `EntityHashSet::Iter` type needs to be public for this impl to be
allowed. I initially renamed it to something that wasn't ambiguous and
re-exported it, but as @Victoronz pointed out, that was somewhat
unidiomatic.

In
1a8564898f,
I instead made the `entity_hash_set` public (and its `entity_hash_set`)
sister public, and removed the re-export. I prefer this design (give me
module docs please), but it leads to a lot of churn in this PR.

Let me know which you'd prefer, and if you'd like me to split that
change out into its own micro PR.
2025-01-20 21:26:08 +00:00
Carter Anderson
21f1e3045c
Relationships (non-fragmenting, one-to-many) (#17398)
This adds support for one-to-many non-fragmenting relationships (with
planned paths for fragmenting and non-fragmenting many-to-many
relationships). "Non-fragmenting" means that entities with the same
relationship type, but different relationship targets, are not forced
into separate tables (which would cause "table fragmentation").

Functionally, this fills a similar niche as the current Parent/Children
system. The biggest differences are:

1. Relationships have simpler internals and significantly improved
performance and UX. Commands and specialized APIs are no longer
necessary to keep everything in sync. Just spawn entities with the
relationship components you want and everything "just works".
2. Relationships are generalized. Bevy can provide additional built in
relationships, and users can define their own.

**REQUEST TO REVIEWERS**: _please don't leave top level comments and
instead comment on specific lines of code. That way we can take
advantage of threaded discussions. Also dont leave comments simply
pointing out CI failures as I can read those just fine._

## Built on top of what we have

Relationships are implemented on top of the Bevy ECS features we already
have: components, immutability, and hooks. This makes them immediately
compatible with all of our existing (and future) APIs for querying,
spawning, removing, scenes, reflection, etc. The fewer specialized APIs
we need to build, maintain, and teach, the better.

## Why focus on one-to-many non-fragmenting first?

1. This allows us to improve Parent/Children relationships immediately,
in a way that is reasonably uncontroversial. Switching our hierarchy to
fragmenting relationships would have significant performance
implications. ~~Flecs is heavily considering a switch to non-fragmenting
relations after careful considerations of the performance tradeoffs.~~
_(Correction from @SanderMertens: Flecs is implementing non-fragmenting
storage specialized for asset hierarchies, where asset hierarchies are
many instances of small trees that have a well defined structure)_
2. Adding generalized one-to-many relationships is currently a priority
for the [Next Generation Scene / UI
effort](https://github.com/bevyengine/bevy/discussions/14437).
Specifically, we're interested in building reactions and observers on
top.

## The changes

This PR does the following:

1. Adds a generic one-to-many Relationship system
3. Ports the existing Parent/Children system to Relationships, which now
lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been
removed.
4. Adds on_despawn component hooks
5. Relationships can opt-in to "despawn descendants" behavior, meaning
that the entire relationship hierarchy is despawned when
`entity.despawn()` is called. The built in Parent/Children hierarchies
enable this behavior, and `entity.despawn_recursive()` has been removed.
6. `world.spawn` now applies commands after spawning. This ensures that
relationship bookkeeping happens immediately and removes the need to
manually flush. This is in line with the equivalent behaviors recently
added to the other APIs (ex: insert).
7. Removes the ValidParentCheckPlugin (system-driven / poll based) in
favor of a `validate_parent_has_component` hook.

## Using Relationships

The `Relationship` trait looks like this:

```rust
pub trait Relationship: Component + Sized {
    type RelationshipSources: RelationshipSources<Relationship = Self>;
    fn get(&self) -> Entity;
    fn from(entity: Entity) -> Self;
}
```

A relationship is a component that:

1. Is a simple wrapper over a "target" Entity.
2. Has a corresponding `RelationshipSources` component, which is a
simple wrapper over a collection of entities. Every "target entity"
targeted by a "source entity" with a `Relationship` has a
`RelationshipSources` component, which contains every "source entity"
that targets it.

For example, the `Parent` component (as it currently exists in Bevy) is
the `Relationship` component and the entity containing the Parent is the
"source entity". The entity _inside_ the `Parent(Entity)` component is
the "target entity". And that target entity has a `Children` component
(which implements `RelationshipSources`).

In practice, the Parent/Children relationship looks like this:

```rust
#[derive(Relationship)]
#[relationship(relationship_sources = Children)]
pub struct Parent(pub Entity);

#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent)]
pub struct Children(Vec<Entity>);
```

The Relationship and RelationshipSources derives automatically implement
Component with the relevant configuration (namely, the hooks necessary
to keep everything in sync).

The most direct way to add relationships is to spawn entities with
relationship components:

```rust
let a = world.spawn_empty().id();
let b = world.spawn(Parent(a)).id();

assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]);
```

There are also convenience APIs for spawning more than one entity with
the same relationship:

```rust
world.spawn_empty().with_related::<Children>(|s| {
    s.spawn_empty();
    s.spawn_empty();
})
```

The existing `with_children` API is now a simpler wrapper over
`with_related`. This makes this change largely non-breaking for existing
spawn patterns.

```rust
world.spawn_empty().with_children(|s| {
    s.spawn_empty();
    s.spawn_empty();
})
```

There are also other relationship APIs, such as `add_related` and
`despawn_related`.

## Automatic recursive despawn via the new on_despawn hook

`RelationshipSources` can opt-in to "despawn descendants" behavior,
which will despawn all related entities in the relationship hierarchy:

```rust
#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent, despawn_descendants)]
pub struct Children(Vec<Entity>);
```

This means that `entity.despawn_recursive()` is no longer required.
Instead, just use `entity.despawn()` and the relevant related entities
will also be despawned.

To despawn an entity _without_ despawning its parent/child descendants,
you should remove the `Children` component first, which will also remove
the related `Parent` components:

```rust
entity
    .remove::<Children>()
    .despawn()
```

This builds on the on_despawn hook introduced in this PR, which is fired
when an entity is despawned (before other hooks).

## Relationships are the source of truth

`Relationship` is the _single_ source of truth component.
`RelationshipSources` is merely a reflection of what all the
`Relationship` components say. By embracing this, we are able to
significantly improve the performance of the system as a whole. We can
rely on component lifecycles to protect us against duplicates, rather
than needing to scan at runtime to ensure entities don't already exist
(which results in quadratic runtime). A single source of truth gives us
constant-time inserts. This does mean that we cannot directly spawn
populated `Children` components (or directly add or remove entities from
those components). I personally think this is a worthwhile tradeoff,
both because it makes the performance much better _and_ because it means
theres exactly one way to do things (which is a philosophy we try to
employ for Bevy APIs).

As an aside: treating both sides of the relationship as "equivalent
source of truth relations" does enable building simple and flexible
many-to-many relationships. But this introduces an _inherent_ need to
scan (or hash) to protect against duplicates.
[`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations)
has a very nice implementation of the "symmetrical many-to-many"
approach. Unfortunately I think the performance issues inherent to that
approach make it a poor choice for Bevy's default relationship system.

## Followup Work

* Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in
this PR to keep the diff reasonable, but I'm personally biased toward
this change (and using that naming pattern generally for relationships).
* [Improved spawning
ergonomics](https://github.com/bevyengine/bevy/discussions/16920)
* Consider adding relationship observers/triggers for "relationship
targets" whenever a source is added or removed. This would replace the
current "hierarchy events" system, which is unused upstream but may have
existing users downstream. I think triggers are the better fit for this
than a buffered event queue, and would prefer not to add that back.
* Fragmenting relations: My current idea hinges on the introduction of
"value components" (aka: components whose type _and_ value determines
their ComponentId, via something like Hashing / PartialEq). By labeling
a Relationship component such as `ChildOf(Entity)` as a "value
component", `ChildOf(e1)` and `ChildOf(e2)` would be considered
"different components". This makes the transition between fragmenting
and non-fragmenting a single flag, and everything else continues to work
as expected.
* Many-to-many support
* Non-fragmenting: We can expand Relationship to be a list of entities
instead of a single entity. I have largely already written the code for
this.
* Fragmenting: With the "value component" impl mentioned above, we get
many-to-many support "for free", as it would allow inserting multiple
copies of a Relationship component with different target entities.

Fixes #3742 (If this PR is merged, I think we should open more targeted
followup issues for the work above, with a fresh tracking issue free of
the large amount of less-directed historical context)
Fixes #17301
Fixes #12235 
Fixes #15299
Fixes #15308 

## Migration Guide

* Replace `ChildBuilder` with `ChildSpawnerCommands`.
* Replace calls to `.set_parent(parent_id)` with
`.insert(Parent(parent_id))`.
* Replace calls to `.replace_children()` with `.remove::<Children>()`
followed by `.add_children()`. Note that you'll need to manually despawn
any children that are not carried over.
* Replace calls to `.despawn_recursive()` with `.despawn()`.
* Replace calls to `.despawn_descendants()` with
`.despawn_related::<Children>()`.
* If you have any calls to `.despawn()` which depend on the children
being preserved, you'll need to remove the `Children` component first.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-01-18 22:20:30 +00:00