96dcbc5f8c
17 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
96dcbc5f8c
|
Ugrade to wgpu version 25.0 (#19563)
# Objective Upgrade to `wgpu` version `25.0`. Depends on https://github.com/bevyengine/naga_oil/pull/121 ## Solution ### Problem The biggest issue we face upgrading is the following requirement: > To facilitate this change, there was an additional validation rule put in place: if there is a binding array in a bind group, you may not use dynamic offset buffers or uniform buffers in that bind group. This requirement comes from vulkan rules on UpdateAfterBind descriptors. This is a major difficulty for us, as there are a number of binding arrays that are used in the view bind group. Note, this requirement does not affect merely uniform buffors that use dynamic offset but the use of *any* uniform in a bind group that also has a binding array. ### Attempted fixes The easiest fix would be to change uniforms to be storage buffers whenever binding arrays are in use: ```wgsl #ifdef BINDING_ARRAYS_ARE_USED @group(0) @binding(0) var<uniform> view: View; @group(0) @binding(1) var<uniform> lights: types::Lights; #else @group(0) @binding(0) var<storage> view: array<View>; @group(0) @binding(1) var<storage> lights: array<types::Lights>; #endif ``` This requires passing the view index to the shader so that we know where to index into the buffer: ```wgsl struct PushConstants { view_index: u32, } var<push_constant> push_constants: PushConstants; ``` Using push constants is no problem because binding arrays are only usable on native anyway. However, this greatly complicates the ability to access `view` in shaders. For example: ```wgsl #ifdef BINDING_ARRAYS_ARE_USED mesh_view_bindings::view.view_from_world[0].z #else mesh_view_bindings::view[mesh_view_bindings::view_index].view_from_world[0].z #endif ``` Using this approach would work but would have the effect of polluting our shaders with ifdef spam basically *everywhere*. Why not use a function? Unfortunately, the following is not valid wgsl as it returns a binding directly from a function in the uniform path. ```wgsl fn get_view() -> View { #if BINDING_ARRAYS_ARE_USED let view_index = push_constants.view_index; let view = views[view_index]; #endif return view; } ``` This also poses problems for things like lights where we want to return a ptr to the light data. Returning ptrs from wgsl functions isn't allowed even if both bindings were buffers. The next attempt was to simply use indexed buffers everywhere, in both the binding array and non binding array path. This would be viable if push constants were available everywhere to pass the view index, but unfortunately they are not available on webgpu. This means either passing the view index in a storage buffer (not ideal for such a small amount of state) or using push constants sometimes and uniform buffers only on webgpu. However, this kind of conditional layout infects absolutely everything. Even if we were to accept just using storage buffer for the view index, there's also the additional problem that some dynamic offsets aren't actually per-view but per-use of a setting on a camera, which would require passing that uniform data on *every* camera regardless of whether that rendering feature is being used, which is also gross. As such, although it's gross, the simplest solution just to bump binding arrays into `@group(1)` and all other bindings up one bind group. This should still bring us under the device limit of 4 for most users. ### Next steps / looking towards the future I'd like to avoid needing split our view bind group into multiple parts. In the future, if `wgpu` were to add `@builtin(draw_index)`, we could build a list of draw state in gpu processing and avoid the need for any kind of state change at all (see https://github.com/gfx-rs/wgpu/issues/6823). This would also provide significantly more flexibility to handle things like offsets into other arrays that may not be per-view. ### Testing Tested a number of examples, there are probably more that are still broken. --------- Co-authored-by: François Mockers <mockersf@gmail.com> Co-authored-by: Elabajaba <Elabajaba@users.noreply.github.com> |
||
![]() |
065a95e0a1
|
Make the StandardMaterial bindless index table have a fixed size regardless of the features that are enabled. (#18771)
Due to the preprocessor usage in the shader, different combinations of features could cause the fields of `StandardMaterialBindings` to shift around. In certain cases, this could cause them to not line up with the bindings specified in `StandardMaterial`. This resulted in #18104. This commit fixes the issue by making `StandardMaterialBindings` have a fixed size. On the CPU side, it uses the `#[bindless(index_table(range(M..N)))]` feature I added to `AsBindGroup` in #18025 to do so. Thus this patch has a dependency on #18025. Closes #18104. --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> |
||
![]() |
5d7a60592d
|
Add a new #[data] attribute to AsBindGroup that allows packing data for multiple materials into a single array. (#17965)
Currently, the structure-level `#[uniform]` attribute of `AsBindGroup` creates a binding array of individual buffers, each of which contains data for a single material. A more efficient approach would be to provide a single buffer with an array containing all of the data for all materials in the bind group. Because `StandardMaterial` uses `#[uniform]`, this can be notably inefficient with large numbers of materials. This patch introduces a new attribute on `AsBindGroup`, `#[data]`, which works identically to `#[uniform]` except that it concatenates all the data into a single buffer that the material bind group allocator itself manages. It also converts `StandardMaterial` to use this new functionality. This effectively provides the "material data in arrays" feature. |
||
![]() |
28441337bb
|
Use global binding arrays for bindless resources. (#17898)
Currently, Bevy's implementation of bindless resources is rather unusual: every binding in an object that implements `AsBindGroup` (most commonly, a material) becomes its own separate binding array in the shader. This is inefficient for two reasons: 1. If multiple materials reference the same texture or other resource, the reference to that resource will be duplicated many times. This increases `wgpu` validation overhead. 2. It creates many unused binding array slots. This increases `wgpu` and driver overhead and makes it easier to hit limits on APIs that `wgpu` currently imposes tight resource limits on, like Metal. This PR fixes these issues by switching Bevy to use the standard approach in GPU-driven renderers, in which resources are de-duplicated and passed as global arrays, one for each type of resource. Along the way, this patch introduces per-platform resource limits and bumps them from 16 resources per binding array to 64 resources per bind group on Metal and 2048 resources per bind group on other platforms. (Note that the number of resources per *binding array* isn't the same as the number of resources per *bind group*; as it currently stands, if all the PBR features are turned on, Bevy could pack as many as 496 resources into a single slab.) The limits have been increased because `wgpu` now has universal support for partially-bound binding arrays, which mean that we no longer need to fill the binding arrays with fallback resources on Direct3D 12. The `#[bindless(LIMIT)]` declaration when deriving `AsBindGroup` can now simply be written `#[bindless]` in order to have Bevy choose a default limit size for the current platform. Custom limits are still available with the new `#[bindless(limit(LIMIT))]` syntax: e.g. `#[bindless(limit(8))]`. The material bind group allocator has been completely rewritten. Now there are two allocators: one for bindless materials and one for non-bindless materials. The new non-bindless material allocator simply maintains a 1:1 mapping from material to bind group. The new bindless material allocator maintains a list of slabs and allocates materials into slabs on a first-fit basis. This unfortunately makes its performance O(number of resources per object * number of slabs), but the number of slabs is likely to be low, and it's planned to become even lower in the future with `wgpu` improvements. Resources are de-duplicated with in a slab and reference counted. So, for instance, if multiple materials refer to the same texture, that texture will exist only once in the appropriate binding array. To support these new features, this patch adds the concept of a *bindless descriptor* to the `AsBindGroup` trait. The bindless descriptor allows the material bind group allocator to probe the layout of the material, now that an array of `BindGroupLayoutEntry` records is insufficient to describe the group. The `#[derive(AsBindGroup)]` has been heavily modified to support the new features. The most important user-facing change to that macro is that the struct-level `uniform` attribute, `#[uniform(BINDING_NUMBER, StandardMaterial)]`, now reads `#[uniform(BINDLESS_INDEX, MATERIAL_UNIFORM_TYPE, binding_array(BINDING_NUMBER)]`, allowing the material to specify the binding number for the binding array that holds the uniform data. To make this patch simpler, I removed support for bindless `ExtendedMaterial`s, as well as field-level bindless uniform and storage buffers. I intend to add back support for these as a follow-up. Because they aren't in any released Bevy version yet, I figured this was OK. Finally, this patch updates `StandardMaterial` for the new bindless changes. Generally, code throughout the PBR shaders that looked like `base_color_texture[slot]` now looks like `bindless_2d_textures[material_indices[slot].base_color_texture]`. This patch fixes a system hang that I experienced on the [Caldera test] when running with `caldera --random-materials --texture-count 100`. The time per frame is around 19.75 ms, down from 154.2 ms in Bevy 0.14: a 7.8× speedup. [Caldera test]: https://github.com/DGriffin91/bevy_caldera_scene |
||
![]() |
1c765c9ae7
|
Add support for specular tints and maps per the KHR_materials_specular glTF extension. (#14069)
This commit allows specular highlights to be tinted with a color and for the reflectance and color tint values to vary across a model via a pair of maps. The implementation follows the [`KHR_materials_specular`] glTF extension. In order to reduce the number of samplers and textures in the default `StandardMaterial` configuration, the maps are gated behind the `pbr_specular_textures` Cargo feature. Specular tinting is currently unsupported in the deferred renderer, because I didn't want to bloat the deferred G-buffers. A possible fix for this in the future would be to make the G-buffer layout more configurable, so that specular tints could be supported on an opt-in basis. As an alternative, Bevy could force meshes with specular tints to render in forward mode. Both of these solutions require some more design, so I consider them out of scope for now. Note that the map is a *specular* map, not a *reflectance* map. In Bevy and Filament terms, the reflectance values in the specular map range from [0.0, 0.5], rather than [0.0, 1.0]. This is an unfortunate [`KHR_materials_specular`] specification requirement that stems from the fact that glTF is specified in terms of a specular strength model, not the reflectance model that Filament and Bevy use. A workaround, which is noted in the `StandardMaterial` documentation, is to set the `reflectance` value to 2.0, which spreads the specular map range from [0.0, 1.0] as normal. The glTF loader has been updated to parse the [`KHR_materials_specular`] extension. Note that, unless the non-default `pbr_specular_textures` is supplied, the maps are ignored. The `specularFactor` value is applied as usual. Note that, as with the specular map, the glTF `specularFactor` is twice Bevy's `reflectance` value. This PR adds a new example, `specular_tint`, which demonstrates the specular tint and map features. Note that this example requires the [`KHR_materials_specular`] Cargo feature. [`KHR_materials_specular`]: https://github.com/KhronosGroup/glTF/tree/main/extensions/2.0/Khronos/KHR_materials_specular ## Changelog ### Added * Specular highlights can now be tinted with the `specular_tint` field in `StandardMaterial`. * Specular maps are now available in `StandardMaterial`, gated behind the `pbr_specular_textures` Cargo feature. * The `KHR_materials_specular` glTF extension is now supported, allowing for customization of specular reflectance and specular maps. Note that the latter are gated behind the `pbr_specular_textures` Cargo feature. |
||
![]() |
7ed1f327d9
|
Make StandardMaterial bindless. (#16644)
This commit makes `StandardMaterial` use bindless textures, as implemented in PR #16368. Non-bindless mode, as used for example in Metal and WebGL 2, remains fully supported via a plethora of `#ifdef BINDLESS` preprocessor definitions. Unfortunately, this PR introduces quite a bit of unsightliness into the PBR shaders. This is a result of the fact that WGSL supports neither passing binding arrays to functions nor passing individual *elements* of binding arrays to functions, except directly to texture sample functions. Thus we're unable to use the `sample_texture` abstraction that helped abstract over the meshlet and non-meshlet paths. I don't think there's anything we can do to help this other than to suggest improvements to upstream Naga. |
||
![]() |
a47b91cccc
|
Added feature switch to default Standard Material's new anisotropy texture to off (#14048)
# Objective - Standard Material is starting to run out of samplers (currently uses 13 with no additional features off, I think in 0.13 it was 12). - This change adds a new feature switch, modelled on the other ones which add features to Standard Material, to turn off the new anisotropy feature by default. ## Solution - feature + texture define ## Testing - Anisotropy example still works fine - Other samples work fine - Standard Material now takes 12 samplers by default on my Mac instead of 13 ## Migration Guide - Add feature pbr_anisotropy_texture if you are using that texture in any standard materials. --------- Co-authored-by: John Payne <20407779+johngpayne@users.noreply.github.com> |
||
![]() |
df8ccb8735
|
Implement PBR anisotropy per KHR_materials_anisotropy . (#13450)
This commit implements support for physically-based anisotropy in Bevy's `StandardMaterial`, following the specification for the [`KHR_materials_anisotropy`] glTF extension. [*Anisotropy*] (not to be confused with [anisotropic filtering]) is a PBR feature that allows roughness to vary along the tangent and bitangent directions of a mesh. In effect, this causes the specular light to stretch out into lines instead of a round lobe. This is useful for modeling brushed metal, hair, and similar surfaces. Support for anisotropy is a common feature in major game and graphics engines; Unity, Unreal, Godot, three.js, and Blender all support it to varying degrees. Two new parameters have been added to `StandardMaterial`: `anisotropy_strength` and `anisotropy_rotation`. Anisotropy strength, which ranges from 0 to 1, represents how much the roughness differs between the tangent and the bitangent of the mesh. In effect, it controls how stretched the specular highlight is. Anisotropy rotation allows the roughness direction to differ from the tangent of the model. In addition to these two fixed parameters, an *anisotropy texture* can be supplied. Such a texture should be a 3-channel RGB texture, where the red and green values specify a direction vector using the same conventions as a normal map ([0, 1] color values map to [-1, 1] vector values), and the the blue value represents the strength. This matches the format that the [`KHR_materials_anisotropy`] specification requires. Such textures should be loaded as linear and not sRGB. Note that this texture does consume one additional texture binding in the standard material shader. The glTF loader has been updated to properly parse the `KHR_materials_anisotropy` extension. A new example, `anisotropy`, has been added. This example loads and displays the barn lamp example from the [`glTF-Sample-Assets`] repository. Note that the textures were rather large, so I shrunk them down and converted them to a mixture of JPEG and KTX2 format, in the interests of saving space in the Bevy repository. [*Anisotropy*]: https://google.github.io/filament/Filament.md.html#materialsystem/anisotropicmodel [anisotropic filtering]: https://en.wikipedia.org/wiki/Anisotropic_filtering [`KHR_materials_anisotropy`]: https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_anisotropy/README.md [`glTF-Sample-Assets`]: https://github.com/KhronosGroup/glTF-Sample-Assets/ ## Changelog ### Added * Physically-based anisotropy is now available for materials, which enhances the look of surfaces such as brushed metal or hair. glTF scenes can use the new feature with the `KHR_materials_anisotropy` extension. ## Screenshots With anisotropy:  Without anisotropy:  |
||
![]() |
77ed72bc16
|
Implement clearcoat per the Filament and the KHR_materials_clearcoat specifications. (#13031)
Clearcoat is a separate material layer that represents a thin translucent layer of a material. Examples include (from the [Filament spec]) car paint, soda cans, and lacquered wood. This commit implements support for clearcoat following the Filament and Khronos specifications, marking the beginnings of support for multiple PBR layers in Bevy. The [`KHR_materials_clearcoat`] specification describes the clearcoat support in glTF. In Blender, applying a clearcoat to the Principled BSDF node causes the clearcoat settings to be exported via this extension. As of this commit, Bevy parses and reads the extension data when present in glTF. Note that the `gltf` crate has no support for `KHR_materials_clearcoat`; this patch therefore implements the JSON semantics manually. Clearcoat is integrated with `StandardMaterial`, but the code is behind a series of `#ifdef`s that only activate when clearcoat is present. Additionally, the `pbr_feature_layer_material_textures` Cargo feature must be active in order to enable support for clearcoat factor maps, clearcoat roughness maps, and clearcoat normal maps. This approach mirrors the same pattern used by the existing transmission feature and exists to avoid running out of texture bindings on platforms like WebGL and WebGPU. Note that constant clearcoat factors and roughness values *are* supported in the browser; only the relatively-less-common maps are disabled on those platforms. This patch refactors the lighting code in `StandardMaterial` significantly in order to better support multiple layers in a natural way. That code was due for a refactor in any case, so this is a nice improvement. A new demo, `clearcoat`, has been added. It's based on [the corresponding three.js demo], but all the assets (aside from the skybox and environment map) are my original work. [Filament spec]: https://google.github.io/filament/Filament.html#materialsystem/clearcoatmodel [`KHR_materials_clearcoat`]: https://github.com/KhronosGroup/glTF/blob/main/extensions/2.0/Khronos/KHR_materials_clearcoat/README.md [the corresponding three.js demo]: https://threejs.org/examples/webgl_materials_physical_clearcoat.html   ## Changelog ### Added * `StandardMaterial` now supports a clearcoat layer, which represents a thin translucent layer over an underlying material. * The glTF loader now supports the `KHR_materials_clearcoat` extension, representing materials with clearcoat layers. ## Migration Guide * The lighting functions in the `pbr_lighting` WGSL module now have clearcoat parameters, if `STANDARD_MATERIAL_CLEARCOAT` is defined. * The `R` reflection vector parameter has been removed from some lighting functions, as it was unused. |
||
![]() |
4bf20e7d27
|
Swap material and mesh bind groups (#10485)
# Objective - Materials should be a more frequent rebind then meshes (due to being able to use a single vertex buffer, such as in #10164) and therefore should be in a higher bind group. --- ## Changelog - For 2d and 3d mesh/material setups (but not UI materials, or other rendering setups such as gizmos, sprites, or text), mesh data is now in bind group 1, and material data is now in bind group 2, which is swapped from how they were before. ## Migration Guide - Custom 2d and 3d mesh/material shaders should now use bind group 2 `@group(2) @binding(x)` for their bound resources, instead of bind group 1. - Many internal pieces of rendering code have changed so that mesh data is now in bind group 1, and material data is now in bind group 2. Semi-custom rendering setups (that don't use the Material or Material2d APIs) should adapt to these changes. |
||
![]() |
44928e0df4
|
StandardMaterial Light Transmission (#8015)
# Objective
<img width="1920" alt="Screenshot 2023-04-26 at 01 07 34"
src="https://user-images.githubusercontent.com/418473/234467578-0f34187b-5863-4ea1-88e9-7a6bb8ce8da3.png">
This PR adds both diffuse and specular light transmission capabilities
to the `StandardMaterial`, with support for screen space refractions.
This enables realistically representing a wide range of real-world
materials, such as:
- Glass; (Including frosted glass)
- Transparent and translucent plastics;
- Various liquids and gels;
- Gemstones;
- Marble;
- Wax;
- Paper;
- Leaves;
- Porcelain.
Unlike existing support for transparency, light transmission does not
rely on fixed function alpha blending, and therefore works with both
`AlphaMode::Opaque` and `AlphaMode::Mask` materials.
## Solution
- Introduces a number of transmission related fields in the
`StandardMaterial`;
- For specular transmission:
- Adds logic to take a view main texture snapshot after the opaque
phase; (in order to perform screen space refractions)
- Introduces a new `Transmissive3d` phase to the renderer, to which all
meshes with `transmission > 0.0` materials are sent.
- Calculates a light exit point (of the approximate mesh volume) using
`ior` and `thickness` properties
- Samples the snapshot texture with an adaptive number of taps across a
`roughness`-controlled radius enabling “blurry” refractions
- For diffuse transmission:
- Approximates transmitted diffuse light by using a second, flipped +
displaced, diffuse-only Lambertian lobe for each light source.
## To Do
- [x] Figure out where `fresnel_mix()` is taking place, if at all, and
where `dielectric_specular` is being calculated, if at all, and update
them to use the `ior` value (Not a blocker, just a nice-to-have for more
correct BSDF)
- To the _best of my knowledge, this is now taking place, after
|
||
![]() |
61bad4eb57
|
update shader imports (#10180)
# Objective - bump naga_oil to 0.10 - update shader imports to use rusty syntax ## Migration Guide naga_oil 0.10 reworks the import mechanism to support more syntax to make it more rusty, and test for item use before importing to determine which imports are modules and which are items, which allows: - use rust-style imports ``` #import bevy_pbr::{ pbr_functions::{alpha_discard as discard, apply_pbr_lighting}, mesh_bindings, } ``` - import partial paths: ``` #import part::of::path ... path::remainder::function(); ``` which will call to `part::of::path::remainder::function` - use fully qualified paths without importing: ``` // #import bevy_pbr::pbr_functions bevy_pbr::pbr_functions::pbr() ``` - use imported items without qualifying ``` #import bevy_pbr::pbr_functions::pbr // for backwards compatibility the old style is still supported: // #import bevy_pbr::pbr_functions pbr ... pbr() ``` - allows most imported items to end with `_` and numbers (naga_oil#30). still doesn't allow struct members to end with `_` or numbers but it's progress. - the vast majority of existing shader code will work without changes, but will emit "deprecated" warnings for old-style imports. these can be suppressed with the `allow-deprecated` feature. - partly breaks overrides (as far as i'm aware nobody uses these yet) - now overrides will only be applied if the overriding module is added as an additional import in the arguments to `Composer::make_naga_module` or `Composer::add_composable_module`. this is necessary to support determining whether imports are modules or items. |
||
![]() |
7163aabf29
|
Use a single line for of large binding lists (#9849)
# Objective - When adding/removing bindings in large binding lists, git would generate very difficult-to-read diffs ## Solution - Move the `@group(X) @binding(Y)` into the same line as the binding type declaration |
||
![]() |
10f5c92068
|
improve shader import model (#5703)
# Objective operate on naga IR directly to improve handling of shader modules. - give codespan reporting into imported modules - allow glsl to be used from wgsl and vice-versa the ultimate objective is to make it possible to - provide user hooks for core shader functions (to modify light behaviour within the standard pbr pipeline, for example) - make automatic binding slot allocation possible but ... since this is already big, adds some value and (i think) is at feature parity with the existing code, i wanted to push this now. ## Solution i made a crate called naga_oil (https://github.com/robtfm/naga_oil - unpublished for now, could be part of bevy) which manages modules by - building each module independantly to naga IR - creating "header" files for each supported language, which are used to build dependent modules/shaders - make final shaders by combining the shader IR with the IR for imported modules then integrated this into bevy, replacing some of the existing shader processing stuff. also reworked examples to reflect this. ## Migration Guide shaders that don't use `#import` directives should work without changes. the most notable user-facing difference is that imported functions/variables/etc need to be qualified at point of use, and there's no "leakage" of visible stuff into your shader scope from the imports of your imports, so if you used things imported by your imports, you now need to import them directly and qualify them. the current strategy of including/'spreading' `mesh_vertex_output` directly into a struct doesn't work any more, so these need to be modified as per the examples (e.g. color_material.wgsl, or many others). mesh data is assumed to be in bindgroup 2 by default, if mesh data is bound into bindgroup 1 instead then the shader def `MESH_BINDGROUP_1` needs to be added to the pipeline shader_defs. |
||
![]() |
8df014fbaf
|
Add parallax mapping to bevy PBR (#5928)
# Objective Add a [parallax mapping] shader to bevy. Please note that this is a 3d technique, NOT a 2d sidescroller feature. ## Solution - Add related fields to `StandardMaterial` - update the pbr shader - Add an example taking advantage of parallax mapping A pre-existing implementation exists at: https://github.com/nicopap/bevy_mod_paramap/ The implementation is derived from: https://web.archive.org/web/20150419215321/http://sunandblackcat.com/tipFullView.php?l=eng&topicid=28 Further discussion on literature is found in the `bevy_mod_paramap` README. ### Limitations - The mesh silhouette isn't affected by the depth map. - The depth of the pixel does not reflect its visual position, resulting in artifacts for depth-dependent features such as fog or SSAO - GLTF does not define a height map texture, so somehow the user will always need to work around this limitation, though [an extension is in the works][gltf] ### Future work - It's possible to update the depth in the depth buffer to follow the parallaxed texture. This would enable interop with depth-based visual effects, it also allows `discard`ing pixels of materials when computed depth is higher than the one in depth buffer - Cheap lower quality single-sample method using [offset limiting] - Add distance fading, to disable parallaxing (relatively expensive) on distant objects - GLTF extension to allow defining height maps. Or a workaround implemented through a blender plugin to the GLTF exporter that uses the `extras` field to add height map. - [Quadratic surface vertex attributes][oliveira_3] to enable parallax mapping on bending surfaces and allow clean silhouetting. - noise based sampling, to limit the pancake artifacts. - Cone mapping ([GPU gems], [Simcity (2013)][simcity]). Requires preprocessing, increase depth map size, reduces sample count greatly. - [Quadtree parallax mapping][qpm] (also requires preprocessing) - Self-shadowing of parallax-mapped surfaces by modifying the shadow map - Generate depth map from normal map [link to slides], [blender question] https://user-images.githubusercontent.com/26321040/223563792-dffcc6ab-70e8-4ff9-90d1-b36c338695ad.mp4 [blender question]: https://blender.stackexchange.com/questions/89278/how-to-get-a-smooth-curvature-map-from-a-normal-map [link to slides]: https://developer.download.nvidia.com/assets/gamedev/docs/nmap2displacement.pdf [oliveira_3]: https://www.inf.ufrgs.br/~oliveira/pubs_files/Oliveira_Policarpo_RP-351_Jan_2005.pdf [GPU gems]: https://developer.nvidia.com/gpugems/gpugems3/part-iii-rendering/chapter-18-relaxed-cone-stepping-relief-mapping [simcity]: https://community.simtropolis.com/omnibus/other-games/building-and-rendering-simcity-2013-r247/ [offset limiting]: https://raw.githubusercontent.com/marcusstenbeck/tncg14-parallax-mapping/master/documents/Parallax%20Mapping%20with%20Offset%20Limiting%20-%20A%20Per-Pixel%20Approximation%20of%20Uneven%20Surfaces.pdf [gltf]: https://github.com/KhronosGroup/glTF/pull/2196 [qpm]: https://www.gamedevs.org/uploads/quadtree-displacement-mapping-with-height-blending.pdf --- ## Changelog - Add a `depth_map` field to the `StandardMaterial`, it is a grayscale image where white represents bottom and black the top. If `depth_map` is set, bevy's pbr shader will use it to do [parallax mapping] to give an increased feel of depth to the material. This is similar to a displacement map, but with infinite precision at fairly low cost. - The fields `parallax_mapping_method`, `parallax_depth_scale` and `max_parallax_layer_count` allow finer grained control over the behavior of the parallax shader. - Add the `parallax_mapping` example to show off the effect. [parallax mapping]: https://en.wikipedia.org/wiki/Parallax_mapping --------- Co-authored-by: Robert Swain <robert.swain@gmail.com> |
||
![]() |
814f8d1635 |
update wgpu to 0.13 (#5168)
# Objective - Update wgpu to 0.13 - ~~Wait, is wgpu 0.13 released? No, but I had most of the changes already ready since playing with webgpu~~ well it has been released now - Also update parking_lot to 0.12 and naga to 0.9 ## Solution - Update syntax for wgsl shaders https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#wgsl-syntax - Add a few options, remove some references: https://github.com/gfx-rs/wgpu/blob/master/CHANGELOG.md#other-breaking-changes - fragment inputs should now exactly match vertex outputs for locations, so I added exports for those to be able to reuse them https://github.com/gfx-rs/wgpu/pull/2704 |
||
![]() |
cc4062ec43 |
Split mesh shader files (#4867)
# Objective - Split PBR and 2D mesh shaders into types and bindings to prepare the shaders to be more reusable. - See #3969 for details. I'm doing this in multiple steps to make review easier. --- ## Changelog - Changed: 2D and PBR mesh shaders are now split into types and bindings, the following shader imports are available: `bevy_pbr::mesh_view_types`, `bevy_pbr::mesh_view_bindings`, `bevy_pbr::mesh_types`, `bevy_pbr::mesh_bindings`, `bevy_sprite::mesh2d_view_types`, `bevy_sprite::mesh2d_view_bindings`, `bevy_sprite::mesh2d_types`, `bevy_sprite::mesh2d_bindings` ## Migration Guide - In shaders for 3D meshes: - `#import bevy_pbr::mesh_view_bind_group` -> `#import bevy_pbr::mesh_view_bindings` - `#import bevy_pbr::mesh_struct` -> `#import bevy_pbr::mesh_types` - NOTE: If you are using the mesh bind group at bind group index 2, you can remove those binding statements in your shader and just use `#import bevy_pbr::mesh_bindings` which itself imports the mesh types needed for the bindings. - In shaders for 2D meshes: - `#import bevy_sprite::mesh2d_view_bind_group` -> `#import bevy_sprite::mesh2d_view_bindings` - `#import bevy_sprite::mesh2d_struct` -> `#import bevy_sprite::mesh2d_types` - NOTE: If you are using the mesh2d bind group at bind group index 2, you can remove those binding statements in your shader and just use `#import bevy_sprite::mesh2d_bindings` which itself imports the mesh2d types needed for the bindings. |