9b2ef6c1c0
45 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
bf765e61b5
|
Add no_std support to bevy_reflect (#16256)
# Objective - Contributes to #15460 ## Solution - Added `std` feature (enabled by default) ## Testing - CI - `cargo check -p bevy_reflect --no-default-features --target "x86_64-unknown-none"` - UEFI demo application runs with this branch of `bevy_reflect`, allowing `derive(Reflect)` ## Notes - The [`spin`](https://crates.io/crates/spin) crate has been included to provide `RwLock` and `Once` (as an alternative to `OnceLock`) when the `std` feature is not enabled. Another alternative may be more desirable, please provide feedback if you have a strong opinion here! - Certain items (`Box`, `String`, `ToString`) provided by `alloc` have been added to `__macro_exports` as a way to avoid `alloc` vs `std` namespacing. I'm personally quite annoyed that we can't rely on `alloc` as a crate name in `std` environments within macros. I'd love an alternative to my approach here, but I suspect it's the least-bad option. - I would've liked to have an `alloc` feature (for allocation-free `bevy_reflect`), unfortunately, `erased_serde` unconditionally requires access to `Box`. Maybe one day we could design around this, but for now it just means `bevy_reflect` requires `alloc`. --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
9f5f5d3d41
|
bevy_reflect: get_represented_kind_info APIs for reflected kinds (#14380)
# Objective Fixes #14378 --------- Signed-off-by: Torstein Grindvik <torstein.grindvik@muybridge.com> Co-authored-by: Torstein Grindvik <torstein.grindvik@muybridge.com> Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
397f20e835
|
bevy_reflect: Generic parameter info (#15475)
# Objective Currently, reflecting a generic type provides no information about the generic parameters. This means that you can't get access to the type of `T` in `Foo<T>` without creating custom type data (we do this for [`ReflectHandle`](https://docs.rs/bevy/0.14.2/bevy/asset/struct.ReflectHandle.html#method.asset_type_id)). ## Solution This PR makes it so that generic type parameters and generic const parameters are tracked in a `Generics` struct stored on the `TypeInfo` for a type. For example, `struct Foo<T, const N: usize>` will store `T` and `N` as a `TypeParamInfo` and `ConstParamInfo`, respectively. The stored information includes: - The name of the generic parameter (i.e. `T`, `N`, etc.) - The type of the generic parameter (remember that we're dealing with monomorphized types, so this will actually be a concrete type) - The default type/value, if any (e.g. `f32` in `T = f32` or `10` in `const N: usize = 10`) ### Caveats The only requirement for this to work is that the user does not opt-out of the automatic `TypePath` derive with `#[reflect(type_path = false)]`. Doing so prevents the macro code from 100% knowing that the generic type implements `TypePath`. This in turn means the generated `Typed` impl can't add generics to the type. There are two solutions for this—both of which I think we should explore in a future PR: 1. We could just not use `TypePath`. This would mean that we can't store the `Type` of the generic, but we can at least store the `TypeId`. 2. We could provide a way to opt out of the automatic `Typed` derive with a `#[reflect(typed = false)]` attribute. This would allow users to manually implement `Typed` to add whatever generic information they need (e.g. skipping a parameter that can't implement `TypePath` while the rest can). I originally thought about making `Generics` an enum with `Generic`, `NonGeneric`, and `Unavailable` variants to signify whether there are generics, no generics, or generics that cannot be added due to opting out of `TypePath`. I ultimately decided against this as I think it adds a bit too much complexity for such an uncommon problem. Additionally, user's don't necessarily _have_ to know the generics of a type, so just skipping them should generally be fine for now. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect ``` --- ## Showcase You can now access generic parameters via `TypeInfo`! ```rust #[derive(Reflect)] struct MyStruct<T, const N: usize>([T; N]); let generics = MyStruct::<f32, 10>::type_info().generics(); // Get by index: let t = generics.get(0).unwrap(); assert_eq!(t.name(), "T"); assert!(t.ty().is::<f32>()); assert!(!t.is_const()); // Or by name: let n = generics.get_named("N").unwrap(); assert_eq!(n.name(), "N"); assert!(n.ty().is::<usize>()); assert!(n.is_const()); ``` You can even access parameter defaults: ```rust #[derive(Reflect)] struct MyStruct<T = String, const N: usize = 10>([T; N]); let generics = MyStruct::<f32, 5>::type_info().generics(); let GenericInfo::Type(info) = generics.get_named("T").unwrap() else { panic!("expected a type parameter"); }; let default = info.default().unwrap(); assert!(default.is::<String>()); let GenericInfo::Const(info) = generics.get_named("N").unwrap() else { panic!("expected a const parameter"); }; let default = info.default().unwrap(); assert_eq!(default.downcast_ref::<usize>().unwrap(), &10); ``` |
||
![]() |
d70595b667
|
Add core and alloc over std Lints (#15281)
# Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com> |
||
![]() |
efda7f3f9c
|
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this comment: https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300 See #15375 for more reasoning/motivation. ## Rebasing (rerunning) ```rust git switch simpler-lint-fixes git reset --hard main cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "rustfmt" cargo clippy --workspace --all-targets --all-features --fix cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "clippy" git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887 ``` |
||
![]() |
4d0961cc8a
|
bevy_reflect: Add ReflectRef /ReflectMut /ReflectOwned convenience casting methods (#15235)
# Objective #13320 added convenience methods for casting a `TypeInfo` into its respective variant: ```rust let info: &TypeInfo = <Vec<i32> as Typed>::type_info(); // We know `info` contains a `ListInfo`, so we can simply cast it: let list_info: &ListInfo = info.as_list().unwrap(); ``` This is especially helpful when you have already verified a type is a certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or `ReflectKind`. As mentioned in that PR, though, it would be useful to add similar convenience methods to those types as well. ## Solution Added convenience casting methods to `ReflectRef`, `ReflectMut`, and `ReflectOwned`. With these methods, I was able to reduce our nesting in certain places throughout the crate. Additionally, I took this opportunity to move these types (and `ReflectKind`) to their own module to help clean up the `reflect` module. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect --all-features ``` --- ## Showcase Convenience methods for casting `ReflectRef`, `ReflectMut`, and `ReflectOwned` into their respective variants has been added! This allows you to write cleaner code if you already know the kind of your reflected data: ```rust // BEFORE let ReflectRef::List(list) = list.reflect_ref() else { panic!("expected list"); }; // AFTER let list = list.reflect_ref().as_list().unwrap(); ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com> |
||
![]() |
661ab1ab41
|
Fix warnings triggered by elided_named_lifetimes lint (#15328)
# Objective Eliminate some warnings introduced by the new rust lint [elided_named_lifetimes](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/builtin/static.ELIDED_NAMED_LIFETIMES.html), fix #15326. ## Solution - Add or remove lifetime markers to not trigger the lint. ## Testing - When the lint comes to stable, the CI will fail and this PR could fix that. |
||
![]() |
3892adcb47
|
bevy_reflect: Add Type type (#14838)
# Objective Closes #7622. I was working on adding support for reflecting generic functions and found that I wanted to use an argument's `TypeId` for hashing and comparison, but its `TypePath` for debugging and error messaging. While I could just keep them separate, place them in a tuple or a local struct or something, I think I see an opportunity to make a dedicate type for this. Additionally, we can use this type to clean up some duplication amongst the type info structs in a manner similar to #7622. ## Solution Added the `Type` type. This should be seen as the most basic representation of a type apart from `TypeId`. It stores both the `TypeId` of the type as well as its `TypePathTable`. The `Hash` and `PartialEq` implementations rely on the `TypeId`, while the `Debug` implementation relies on the `TypePath`. This makes it especially useful as a key in a `HashMap` since we get the speed of the `TypeId` hashing/comparisons with the readability of `TypePath`. With this type, we're able to reduce the duplication across the type info structs by removing individual fields for `TypeId` and `TypePathTable`, replacing them with a single `Type` field. Similarly, we can remove many duplicate methods and replace it with a macro that delegates to the stored `Type`. ### Caveats It should be noted that this type is currently 3x larger than `TypeId`. On my machine, it's 48 bytes compared to `TypeId`'s 16. While this doesn't matter for `TypeInfo` since it would contain that data regardless, it is something to keep in mind when using elsewhere. ## Testing All tests should pass as normal: ``` cargo test --package bevy_reflect ``` --- ## Showcase `bevy_reflect` now exports a `Type` struct. This type contains both the `TypeId` and the `TypePathTable` of the given type, allowing it to be used like `TypeId` but have the debuggability of `TypePath`. ```rust // We can create this for any type implementing `TypePath`: let ty = Type::of::<String>(); // It has `Hash` and `Eq` impls powered by `TypeId`, making it useful for maps: let mut map = HashMap::<Type, i32>::new(); map.insert(ty, 25); // And it has a human-readable `Debug` representation: let debug = format!("{:?}", map); assert_eq!(debug, "{alloc::string::String: 25}"); ``` ## Migration Guide Certain type info structs now only return their item types as `Type` instead of exposing direct methods on them. The following methods have been removed: - `ArrayInfo::item_type_path_table` - `ArrayInfo::item_type_id` - `ArrayInfo::item_is` - `ListInfo::item_type_path_table` - `ListInfo::item_type_id` - `ListInfo::item_is` - `SetInfo::value_type_path_table` - `SetInfo::value_type_id` - `SetInfo::value_is` - `MapInfo::key_type_path_table` - `MapInfo::key_type_id` - `MapInfo::key_is` - `MapInfo::value_type_path_table` - `MapInfo::value_type_id` - `MapInfo::value_is` Instead, access the `Type` directly using one of the new methods: - `ArrayInfo::item_ty` - `ListInfo::item_ty` - `SetInfo::value_ty` - `MapInfo::key_ty` - `MapInfo::value_ty` For example: ```rust // BEFORE let type_id = array_info.item_type_id(); // AFTER let type_id = array_info.item_ty().id(); ``` |
||
![]() |
938d810766
|
Apply unused_qualifications lint (#14828)
# Objective Fixes #14782 ## Solution Enable the lint and fix all upcoming hints (`--fix`). Also tried to figure out the false-positive (see review comment). Maybe split this PR up into multiple parts where only the last one enables the lint, so some can already be merged resulting in less many files touched / less potential for merge conflicts? Currently, there are some cases where it might be easier to read the code with the qualifier, so perhaps remove the import of it and adapt its cases? In the current stage it's just a plain adoption of the suggestions in order to have a base to discuss. ## Testing `cargo clippy` and `cargo run -p ci` are happy. |
||
![]() |
6ab8767d3b
|
reflect: implement the unique reflect rfc (#7207)
# Objective
- Implements the [Unique Reflect
RFC](https://github.com/nicopap/rfcs/blob/bevy-reflect-api/rfcs/56-better-reflect.md).
## Solution
- Implements the RFC.
- This implementation differs in some ways from the RFC:
- In the RFC, it was suggested `Reflect: Any` but `PartialReflect:
?Any`. During initial implementation I tried this, but we assume the
`PartialReflect: 'static` in a lot of places and the changes required
crept out of the scope of this PR.
- `PartialReflect::try_into_reflect` originally returned `Option<Box<dyn
Reflect>>` but i changed this to `Result<Box<dyn Reflect>, Box<dyn
PartialReflect>>` since the method takes by value and otherwise there
would be no way to recover the type. `as_full` and `as_full_mut` both
still return `Option<&(mut) dyn Reflect>`.
---
## Changelog
- Added `PartialReflect`.
- `Reflect` is now a subtrait of `PartialReflect`.
- Moved most methods on `Reflect` to the new `PartialReflect`.
- Added `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect}`.
- Added `PartialReflect::{try_as_reflect, try_as_reflect_mut,
try_into_reflect}`.
- Added `<dyn PartialReflect>::{try_downcast_ref, try_downcast_mut,
try_downcast, try_take}` supplementing the methods on `dyn Reflect`.
## Migration Guide
- Most instances of `dyn Reflect` should be changed to `dyn
PartialReflect` which is less restrictive, however trait bounds should
generally stay as `T: Reflect`.
- The new `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect, try_as_reflect, try_as_reflect_mut,
try_into_reflect}` methods as well as `Reflect::{as_reflect,
as_reflect_mut, into_reflect}` will need to be implemented for manual
implementors of `Reflect`.
## Future Work
- This PR is designed to be followed up by another "Unique Reflect Phase
2" that addresses the following points:
- Investigate making serialization revolve around `Reflect` instead of
`PartialReflect`.
- [Remove the `try_*` methods on `dyn PartialReflect` since they are
stop
gaps](https://github.com/bevyengine/bevy/pull/7207#discussion_r1083476050).
- Investigate usages like `ReflectComponent`. In the places they
currently use `PartialReflect`, should they be changed to use `Reflect`?
- Merging this opens the door to lots of reflection features we haven't
been able to implement.
- We could re-add [the `Reflectable`
trait](
|
||
![]() |
ab255aefc6
|
Implement FromIterator/IntoIterator for dynamic types (#14250)
# Objective Implement FromIterator/IntoIterator for dynamic types where missing Note: - can't impl `IntoIterator` for `&Array` & co because of orphan rules - `into_iter().collect()` is a no-op for `Vec`s because of specialization --- ## Migration Guide - Change `DynamicArray::from_vec` to `DynamicArray::from_iter` |
||
![]() |
aa241672e1
|
bevy_reflect: Nested TypeInfo getters (#13321)
# Objective Right now, `TypeInfo` can be accessed directly from a type using either `Typed::type_info` or `Reflect::get_represented_type_info`. However, once that `TypeInfo` is accessed, any nested types must be accessed via the `TypeRegistry`. ```rust #[derive(Reflect)] struct Foo { bar: usize } let registry = TypeRegistry::default(); let TypeInfo::Struct(type_info) = Foo::type_info() else { panic!("expected struct info"); }; let field = type_info.field("bar").unwrap(); let field_info = registry.get_type_info(field.type_id()).unwrap(); assert!(field_info.is::<usize>());; ``` ## Solution Enable nested types within a `TypeInfo` to be retrieved directly. ```rust #[derive(Reflect)] struct Foo { bar: usize } let TypeInfo::Struct(type_info) = Foo::type_info() else { panic!("expected struct info"); }; let field = type_info.field("bar").unwrap(); let field_info = field.type_info().unwrap(); assert!(field_info.is::<usize>());; ``` The particular implementation was chosen for two reasons. Firstly, we can't just store `TypeInfo` inside another `TypeInfo` directly. This is because some types are recursive and would result in a deadlock when trying to create the `TypeInfo` (i.e. it has to create the `TypeInfo` before it can use it, but it also needs the `TypeInfo` before it can create it). Therefore, we must instead store the function so it can be retrieved lazily. I had considered also using a `OnceLock` or something to lazily cache the info, but I figured we can look into optimizations later. The API should remain the same with or without the `OnceLock`. Secondly, a new wrapper trait had to be introduced: `MaybeTyped`. Like `RegisterForReflection`, this trait is `#[doc(hidden)]` and only exists so that we can properly handle dynamic type fields without requiring them to implement `Typed`. We don't want dynamic types to implement `Typed` due to the fact that it would make the return type `Option<&'static TypeInfo>` for all types even though only the dynamic types ever need to return `None` (see #6971 for details). Users should never have to interact with this trait as it has a blanket impl for all `Typed` types. And `Typed` is automatically implemented when deriving `Reflect` (as it is required). The one downside is we do need to return `Option<&'static TypeInfo>` from all these new methods so that we can handle the dynamic cases. If we didn't have to, we'd be able to get rid of the `Option` entirely. But I think that's an okay tradeoff for this one part of the API, and keeps the other APIs intact. ## Testing This PR contains tests to verify everything works as expected. You can test locally by running: ``` cargo test --package bevy_reflect ``` --- ## Changelog ### Public Changes - Added `ArrayInfo::item_info` method - Added `NamedField::type_info` method - Added `UnnamedField::type_info` method - Added `ListInfo::item_info` method - Added `MapInfo::key_info` method - Added `MapInfo::value_info` method - All active fields now have a `Typed` bound (remember that this is automatically satisfied for all types that derive `Reflect`) ### Internal Changes - Added `MaybeTyped` trait ## Migration Guide All active fields for reflected types (including lists, maps, tuples, etc.), must implement `Typed`. For the majority of users this won't have any visible impact. However, users implementing `Reflect` manually may need to update their types to implement `Typed` if they weren't already. Additionally, custom dynamic types will need to implement the new hidden `MaybeTyped` trait. |
||
![]() |
99c9218b56
|
bevy_reflect: Feature-gate function reflection (#14174)
# Objective Function reflection requires a lot of macro code generation in the form of several `all_tuples!` invocations, as well as impls generated in the `Reflect` derive macro. Seeing as function reflection is currently a bit more niche, it makes sense to gate it all behind a feature. ## Solution Add a `functions` feature to `bevy_reflect`, which can be enabled in Bevy using the `reflect_functions` feature. ## Testing You can test locally by running: ``` cargo test --package bevy_reflect ``` That should ensure that everything still works with the feature disabled. To test with the feature on, you can run: ``` cargo test --package bevy_reflect --features functions ``` --- ## Changelog - Moved function reflection behind a Cargo feature (`bevy/reflect_functions` and `bevy_reflect/functions`) - Add `IntoFunction` export in `bevy_reflect::prelude` ## Internal Migration Guide > [!important] > Function reflection was introduced as part of the 0.15 dev cycle. This migration guide was written for developers relying on `main` during this cycle, and is not a breaking change coming from 0.14. Function reflection is now gated behind a feature. To use function reflection, enable the feature: - If using `bevy_reflect` directly, enable the `functions` feature - If using `bevy`, enable the `reflect_functions` feature |
||
![]() |
856b39d821
|
Apply Clippy lints regarding lazy evaluation and closures (#14015)
# Objective - Lazily evaluate [default](https://rust-lang.github.io/rust-clippy/master/index.html#/unwrap_or_default)~~/[or](https://rust-lang.github.io/rust-clippy/master/index.html#/or_fun_call)~~ values where it makes sense - ~~`unwrap_or(foo())` -> `unwrap_or_else(|| foo())`~~ - `unwrap_or(Default::default())` -> `unwrap_or_default()` - etc. - Avoid creating [redundant closures](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure), even for [method calls](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure_for_method_calls) - `map(|something| something.into())` -> `map(Into:into)` ## Solution - Apply Clippy lints: - ~~[or_fun_call](https://rust-lang.github.io/rust-clippy/master/index.html#/or_fun_call)~~ - [unwrap_or_default](https://rust-lang.github.io/rust-clippy/master/index.html#/unwrap_or_default) - [redundant_closure_for_method_calls](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure_for_method_calls) ([redundant closures](https://rust-lang.github.io/rust-clippy/master/index.html#/redundant_closure) is already enabled) ## Testing - Tested on Windows 11 (`stable-x86_64-pc-windows-gnu`, 1.79.0) - Bevy compiles without errors or warnings and examples seem to work as intended - `cargo clippy` ✅ - `cargo run -p ci -- compile` ✅ --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
276dd04001
|
bevy_reflect: Function reflection (#13152)
# Objective
We're able to reflect types sooooooo... why not functions?
The goal of this PR is to make functions callable within a dynamic
context, where type information is not readily available at compile
time.
For example, if we have a function:
```rust
fn add(left: i32, right: i32) -> i32 {
left + right
}
```
And two `Reflect` values we've already validated are `i32` types:
```rust
let left: Box<dyn Reflect> = Box::new(2_i32);
let right: Box<dyn Reflect> = Box::new(2_i32);
```
We should be able to call `add` with these values:
```rust
// ?????
let result: Box<dyn Reflect> = add.call_dynamic(left, right);
```
And ideally this wouldn't just work for functions, but methods and
closures too!
Right now, users have two options:
1. Manually parse the reflected data and call the function themselves
2. Rely on registered type data to handle the conversions for them
For a small function like `add`, this isn't too bad. But what about for
more complex functions? What about for many functions?
At worst, this process is error-prone. At best, it's simply tedious.
And this is assuming we know the function at compile time. What if we
want to accept a function dynamically and call it with our own
arguments?
It would be much nicer if `bevy_reflect` could alleviate some of the
problems here.
## Solution
Added function reflection!
This adds a `DynamicFunction` type to wrap a function dynamically. This
can be called with an `ArgList`, which is a dynamic list of
`Reflect`-containing `Arg` arguments. It returns a `FunctionResult`
which indicates whether or not the function call succeeded, returning a
`Reflect`-containing `Return` type if it did succeed.
Many functions can be converted into this `DynamicFunction` type thanks
to the `IntoFunction` trait.
Taking our previous `add` example, this might look something like
(explicit types added for readability):
```rust
fn add(left: i32, right: i32) -> i32 {
left + right
}
let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```
And it also works on closures:
```rust
let add = |left: i32, right: i32| left + right;
let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```
As well as methods:
```rust
#[derive(Reflect)]
struct Foo(i32);
impl Foo {
fn add(&mut self, value: i32) {
self.0 += value;
}
}
let mut foo = Foo(2);
let mut function: DynamicFunction = Foo::add.into_function();
let args: ArgList = ArgList::new().push_mut(&mut foo).push_owned(2_i32);
function.call(args).unwrap();
assert_eq!(foo.0, 4);
```
### Limitations
While this does cover many functions, it is far from a perfect system
and has quite a few limitations. Here are a few of the limitations when
using `IntoFunction`:
1. The lifetime of the return value is only tied to the lifetime of the
first argument (useful for methods). This means you can't have a
function like `(a: i32, b: &i32) -> &i32` without creating the
`DynamicFunction` manually.
2. Only 15 arguments are currently supported. If the first argument is a
(mutable) reference, this number increases to 16.
3. Manual implementations of `Reflect` will need to implement the new
`FromArg`, `GetOwnership`, and `IntoReturn` traits in order to be used
as arguments/return types.
And some limitations of `DynamicFunction` itself:
1. All arguments share the same lifetime, or rather, they will shrink to
the shortest lifetime.
2. Closures that capture their environment may need to have their
`DynamicFunction` dropped before accessing those variables again (there
is a `DynamicFunction::call_once` to make this a bit easier)
3. All arguments and return types must implement `Reflect`. While not a
big surprise coming from `bevy_reflect`, this implementation could
actually still work by swapping `Reflect` out with `Any`. Of course,
that makes working with the arguments and return values a bit harder.
4. Generic functions are not supported (unless they have been manually
monomorphized)
And general, reflection gotchas:
1. `&str` does not implement `Reflect`. Rather, `&'static str`
implements `Reflect` (the same is true for `&Path` and similar types).
This means that `&'static str` is considered an "owned" value for the
sake of generating arguments. Additionally, arguments and return types
containing `&str` will assume it's `&'static str`, which is almost never
the desired behavior. In these cases, the only solution (I believe) is
to use `&String` instead.
### Followup Work
This PR is the first of two PRs I intend to work on. The second PR will
aim to integrate this new function reflection system into the existing
reflection traits and `TypeInfo`. The goal would be to register and call
a reflected type's methods dynamically.
I chose not to do that in this PR since the diff is already quite large.
I also want the discussion for both PRs to be focused on their own
implementation.
Another followup I'd like to do is investigate allowing common container
types as a return type, such as `Option<&[mut] T>` and `Result<&[mut] T,
E>`. This would allow even more functions to opt into this system. I
chose to not include it in this one, though, for the same reasoning as
previously mentioned.
### Alternatives
One alternative I had considered was adding a macro to convert any
function into a reflection-based counterpart. The idea would be that a
struct that wraps the function would be created and users could specify
which arguments and return values should be `Reflect`. It could then be
called via a new `Function` trait.
I think that could still work, but it will be a fair bit more involved,
requiring some slightly more complex parsing. And it of course is a bit
more work for the user, since they need to create the type via macro
invocation.
It also makes registering these functions onto a type a bit more
complicated (depending on how it's implemented).
For now, I think this is a fairly simple, yet powerful solution that
provides the least amount of friction for users.
---
## Showcase
Bevy now adds support for storing and calling functions dynamically
using reflection!
```rust
// 1. Take a standard Rust function
fn add(left: i32, right: i32) -> i32 {
left + right
}
// 2. Convert it into a type-erased `DynamicFunction` using the `IntoFunction` trait
let mut function: DynamicFunction = add.into_function();
// 3. Define your arguments from reflected values
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
// 4. Call the function with your arguments
let result: Return = function.call(args).unwrap();
// 5. Extract the return value
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```
## Changelog
#### TL;DR
- Added support for function reflection
- Added a new `Function Reflection` example:
|
||
![]() |
278380394f
|
Avoid bevy_reflect::List::iter wrapping in release mode (#13271)
# Objective Fixes #13230 ## Solution Uses solution described in #13230 They mention a worry about adding a branch, but I'm not sure there is one. This code ```Rust #[no_mangle] pub fn next_if_some(num: i32, b: Option<bool>) -> i32 { num + b.is_some() as i32 } ``` produces this assembly with opt-level 3 ```asm next_if_some: xor eax, eax cmp sil, 2 setne al add eax, edi ret ``` ## Testing Added test from #13230, tagged it as ignore as it is only useful in release mode and very slow if you accidentally invoke it in debug mode. --- ## Changelog Iterationg of ListIter will no longer overflow and wrap around ## Migration Guide |
||
![]() |
9c4ac7c297
|
Finish the work on try_apply (#12646)
# Objective Finish the `try_apply` implementation started in #6770 by @feyokorenhof. Supersedes and closes #6770. Closes #6182 ## Solution Add `try_apply` to `Reflect` and implement it in all the places that implement `Reflect`. --- ## Changelog Added `try_apply` to `Reflect`. --------- Co-authored-by: Feyo Korenhof <feyokorenhof@gmail.com> Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> |
||
![]() |
054134fba2
|
Add ReflectKind (#11664)
# Objective Fix https://github.com/bevyengine/bevy/issues/11657 ## Solution Add a `ReflectKind` enum, add `Reflect::reflect_kind` which returns a `ReflectKind`, and add `kind` method implementions to `ReflectRef`, `ReflectMut`, and `ReflectOwned`, which returns a `ReflectKind`. I also changed `AccessError` to use this new struct instead of it's own `TypeKind` struct. --- ## Changelog - Added `ReflectKind`, an enumeration over the kinds of a reflected type without its data. - Added `Reflect::reflect_kind` (with default implementation) - Added implementation for the `kind` method on `ReflectRef`, `ReflectMut`, and `ReflectOwned` which gives their kind without any information, as a `ReflectKind` |
||
![]() |
1568d4a415
|
Reorder impl to be the same as the trait (#11076)
# Objective - Make the implementation order consistent between all sources to fit the order in the trait. ## Solution - Change the implementation order. |
||
![]() |
55402bdf2e
|
Fix debug printing for dynamic types (#10740)
# Objective Printing `DynamicStruct` with a debug format does not show the contained type anymore. For instance, in `examples/reflection/reflection.rs`, adding `dbg!(&reflect_value);` to line 96 will print: ```rust [examples/reflection/reflection.rs:96] &reflect_value = DynamicStruct(bevy_reflect::DynamicStruct { a: 4, nested: DynamicStruct(bevy_reflect::DynamicStruct { b: 8, }), }) ``` ## Solution Show the represented type instead (`reflection::Foo` and `reflection::Bar` in this case): ```rust [examples/reflection/reflection.rs:96] &reflect_value = DynamicStruct(reflection::Foo { a: 4, nested: DynamicStruct(reflection::Bar { b: 8, }), }) ``` --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> |
||
![]() |
fd308571c4
|
Remove unnecessary path prefixes (#10749)
# Objective - Shorten paths by removing unnecessary prefixes ## Solution - Remove the prefixes from many paths which do not need them. Finding the paths was done automatically using built-in refactoring tools in Jetbrains RustRover. |
||
![]() |
262846e702
|
reflect: TypePath part 2 (#8768)
# Objective
- Followup to #7184.
- ~Deprecate `TypeUuid` and remove its internal references.~ No longer
part of this PR.
- Use `TypePath` for the type registry, and (de)serialisation instead of
`std::any::type_name`.
- Allow accessing type path information behind proxies.
## Solution
- Introduce methods on `TypeInfo` and friends for dynamically querying
type path. These methods supersede the old `type_name` methods.
- Remove `Reflect::type_name` in favor of `DynamicTypePath::type_path`
and `TypeInfo::type_path_table`.
- Switch all uses of `std::any::type_name` in reflection, non-debugging
contexts to use `TypePath`.
---
## Changelog
- Added `TypePathTable` for dynamically accessing methods on `TypePath`
through `TypeInfo` and the type registry.
- Removed `type_name` from all `TypeInfo`-like structs.
- Added `type_path` and `type_path_table` methods to all `TypeInfo`-like
structs.
- Removed `Reflect::type_name` in favor of
`DynamicTypePath::reflect_type_path` and `TypeInfo::type_path`.
- Changed the signature of all `DynamicTypePath` methods to return
strings with a static lifetime.
## Migration Guide
- Rely on `TypePath` instead of `std::any::type_name` for all stability
guarantees and for use in all reflection contexts, this is used through
with one of the following APIs:
- `TypePath::type_path` if you have a concrete type and not a value.
- `DynamicTypePath::reflect_type_path` if you have an `dyn Reflect`
value without a concrete type.
- `TypeInfo::type_path` for use through the registry or if you want to
work with the represented type of a `DynamicFoo`.
- Remove `type_name` from manual `Reflect` implementations.
- Use `type_path` and `type_path_table` in place of `type_name` on
`TypeInfo`-like structs.
- Use `get_with_type_path(_mut)` over `get_with_type_name(_mut)`.
## Note to reviewers
I think if anything we were a little overzealous in merging #7184 and we
should take that extra care here.
In my mind, this is the "point of no return" for `TypePath` and while I
think we all agree on the design, we should carefully consider if the
finer details and current implementations are actually how we want them
moving forward.
For example [this incorrect `TypePath` implementation for
`String`](
|
||
![]() |
ffc572728f
|
Fix typos throughout the project (#9090)
# Objective
Fix typos throughout the project.
## Solution
[`typos`](https://github.com/crate-ci/typos) project was used for
scanning, but no automatic corrections were applied. I checked
everything by hand before fixing.
Most of the changes are documentation/comments corrections. Also, there
are few trivial changes to code (variable name, pub(crate) function name
and a few error/panic messages).
## Unsolved
`bevy_reflect_derive` has
[typo](
|
||
![]() |
8b9d88f4d0
|
Reflect now requires DynamicTypePath. Remove Reflect::get_type_path() (#8764)
Followup to #7184 This makes `Reflect: DynamicTypePath` which allows us to remove `Reflect::get_type_path`, reducing unnecessary codegen and simplifying `Reflect` implementations. |
||
![]() |
1efc762924
|
reflect: stable type path v2 (#7184)
# Objective
- Introduce a stable alternative to
[`std::any::type_name`](https://doc.rust-lang.org/std/any/fn.type_name.html).
- Rewrite of #5805 with heavy inspiration in design.
- On the path to #5830.
- Part of solving #3327.
## Solution
- Add a `TypePath` trait for static stable type path/name information.
- Add a `TypePath` derive macro.
- Add a `impl_type_path` macro for implementing internal and foreign
types in `bevy_reflect`.
---
## Changelog
- Added `TypePath` trait.
- Added `DynamicTypePath` trait and `get_type_path` method to `Reflect`.
- Added a `TypePath` derive macro.
- Added a `bevy_reflect::impl_type_path` for implementing `TypePath` on
internal and foreign types in `bevy_reflect`.
- Changed `bevy_reflect::utility::(Non)GenericTypeInfoCell` to
`(Non)GenericTypedCell<T>` which allows us to be generic over both
`TypeInfo` and `TypePath`.
- `TypePath` is now a supertrait of `Asset`, `Material` and
`Material2d`.
- `impl_reflect_struct` needs a `#[type_path = "..."]` attribute to be
specified.
- `impl_reflect_value` needs to either specify path starting with a
double colon (`::core::option::Option`) or an `in my_crate::foo`
declaration.
- Added `bevy_reflect_derive::ReflectTypePath`.
- Most uses of `Ident` in `bevy_reflect_derive` changed to use
`ReflectTypePath`.
## Migration Guide
- Implementors of `Asset`, `Material` and `Material2d` now also need to
derive `TypePath`.
- Manual implementors of `Reflect` will need to implement the new
`get_type_path` method.
## Open Questions
- [x] ~This PR currently does not migrate any usages of
`std::any::type_name` to use `bevy_reflect::TypePath` to ease the review
process. Should it?~ Migration will be left to a follow-up PR.
- [ ] This PR adds a lot of `#[derive(TypePath)]` and `T: TypePath` to
satisfy new bounds, mostly when deriving `TypeUuid`. Should we make
`TypePath` a supertrait of `TypeUuid`? [Should we remove `TypeUuid` in
favour of
`TypePath`?](
|
||
![]() |
75130bd5ec
|
bevy_reflect: Better proxies (#6971)
# Objective > This PR is based on discussion from #6601 The Dynamic types (e.g. `DynamicStruct`, `DynamicList`, etc.) act as both: 1. Dynamic containers which may hold any arbitrary data 2. Proxy types which may represent any other type Currently, the only way we can represent the proxy-ness of a Dynamic is by giving it a name. ```rust // This is just a dynamic container let mut data = DynamicStruct::default(); // This is a "proxy" data.set_name(std::any::type_name::<Foo>()); ``` This type name is the only way we check that the given Dynamic is a proxy of some other type. When we need to "assert the type" of a `dyn Reflect`, we call `Reflect::type_name` on it. However, because we're only using a string to denote the type, we run into a few gotchas and limitations. For example, hashing a Dynamic proxy may work differently than the type it proxies: ```rust #[derive(Reflect, Hash)] #[reflect(Hash)] struct Foo(i32); let concrete = Foo(123); let dynamic = concrete.clone_dynamic(); let concrete_hash = concrete.reflect_hash(); let dynamic_hash = dynamic.reflect_hash(); // The hashes are not equal because `concrete` uses its own `Hash` impl // while `dynamic` uses a reflection-based hashing algorithm assert_ne!(concrete_hash, dynamic_hash); ``` Because the Dynamic proxy only knows about the name of the type, it's unaware of any other information about it. This means it also differs on `Reflect::reflect_partial_eq`, and may include ignored or skipped fields in places the concrete type wouldn't. ## Solution Rather than having Dynamics pass along just the type name of proxied types, we can instead have them pass around the `TypeInfo`. Now all Dynamic types contain an `Option<&'static TypeInfo>` rather than a `String`: ```diff pub struct DynamicTupleStruct { - type_name: String, + represented_type: Option<&'static TypeInfo>, fields: Vec<Box<dyn Reflect>>, } ``` By changing `Reflect::get_type_info` to `Reflect::represented_type_info`, hopefully we make this behavior a little clearer. And to account for `None` values on these dynamic types, `Reflect::represented_type_info` now returns `Option<&'static TypeInfo>`. ```rust let mut data = DynamicTupleStruct::default(); // Not proxying any specific type assert!(dyn_tuple_struct.represented_type_info().is_none()); let type_info = <Foo as Typed>::type_info(); dyn_tuple_struct.set_represented_type(Some(type_info)); // Alternatively: // let dyn_tuple_struct = foo.clone_dynamic(); // Now we're proxying `Foo` assert!(dyn_tuple_struct.represented_type_info().is_some()); ``` This means that we can have full access to all the static type information for the proxied type. Future work would include transitioning more static type information (trait impls, attributes, etc.) over to the `TypeInfo` so it can actually be utilized by Dynamic proxies. ### Alternatives & Rationale > **Note** > These alternatives were written when this PR was first made using a `Proxy` trait. This trait has since been removed. <details> <summary>View</summary> #### Alternative: The `Proxy<T>` Approach I had considered adding something like a `Proxy<T>` type where `T` would be the Dynamic and would contain the proxied type information. This was nice in that it allows us to explicitly determine whether something is a proxy or not at a type level. `Proxy<DynamicStruct>` proxies a struct. Makes sense. The reason I didn't go with this approach is because (1) tuples, (2) complexity, and (3) `PartialReflect`. The `DynamicTuple` struct allows us to represent tuples at runtime. It also allows us to do something you normally can't with tuples: add new fields. Because of this, adding a field immediately invalidates the proxy (e.g. our info for `(i32, i32)` doesn't apply to `(i32, i32, NewField)`). By going with this PR's approach, we can just remove the type info on `DynamicTuple` when that happens. However, with the `Proxy<T>` approach, it becomes difficult to represent this behavior— we'd have to completely control how we access data for `T` for each `T`. Secondly, it introduces some added complexities (aside from the manual impls for each `T`). Does `Proxy<T>` impl `Reflect`? Likely yes, if we want to represent it as `dyn Reflect`. What `TypeInfo` do we give it? How would we forward reflection methods to the inner type (remember, we don't have specialization)? How do we separate this from Dynamic types? And finally, how do all this in a way that's both logical and intuitive for users? Lastly, introducing a `Proxy` trait rather than a `Proxy<T>` struct is actually more inline with the [Unique Reflect RFC](https://github.com/bevyengine/rfcs/pull/56). In a way, the `Proxy` trait is really one part of the `PartialReflect` trait introduced in that RFC (it's technically not in that RFC but it fits well with it), where the `PartialReflect` serves as a way for proxies to work _like_ concrete types without having full access to everything a concrete `Reflect` type can do. This would help bridge the gap between the current state of the crate and the implementation of that RFC. All that said, this is still a viable solution. If the community believes this is the better path forward, then we can do that instead. These were just my reasons for not initially going with it in this PR. #### Alternative: The Type Registry Approach The `Proxy` trait is great and all, but how does it solve the original problem? Well, it doesn't— yet! The goal would be to start moving information from the derive macro and its attributes to the generated `TypeInfo` since these are known statically and shouldn't change. For example, adding `ignored: bool` to `[Un]NamedField` or a list of impls. However, there is another way of storing this information. This is, of course, one of the uses of the `TypeRegistry`. If we're worried about Dynamic proxies not aligning with their concrete counterparts, we could move more type information to the registry and require its usage. For example, we could replace `Reflect::reflect_hash(&self)` with `Reflect::reflect_hash(&self, registry: &TypeRegistry)`. That's not the _worst_ thing in the world, but it is an ergonomics loss. Additionally, other attributes may have their own requirements, further restricting what's possible without the registry. The `Reflect::apply` method will require the registry as well now. Why? Well because the `map_apply` function used for the `Reflect::apply` impls on `Map` types depends on `Map::insert_boxed`, which (at least for `DynamicMap`) requires `Reflect::reflect_hash`. The same would apply when adding support for reflection-based diffing, which will require `Reflect::reflect_partial_eq`. Again, this is a totally viable alternative. I just chose not to go with it for the reasons above. If we want to go with it, then we can close this PR and we can pursue this alternative instead. #### Downsides Just to highlight a quick potential downside (likely needs more investigation): retrieving the `TypeInfo` requires acquiring a lock on the `GenericTypeInfoCell` used by the `Typed` impls for generic types (non-generic types use a `OnceBox which should be faster). I am not sure how much of a performance hit that is and will need to run some benchmarks to compare against. </details> ### Open Questions 1. Should we use `Cow<'static, TypeInfo>` instead? I think that might be easier for modding? Perhaps, in that case, we need to update `Typed::type_info` and friends as well? 2. Are the alternatives better than the approach this PR takes? Are there other alternatives? --- ## Changelog ### Changed - `Reflect::get_type_info` has been renamed to `Reflect::represented_type_info` - This method now returns `Option<&'static TypeInfo>` rather than just `&'static TypeInfo` ### Added - Added `Reflect::is_dynamic` method to indicate when a type is dynamic - Added a `set_represented_type` method on all dynamic types ### Removed - Removed `TypeInfo::Dynamic` (use `Reflect::is_dynamic` instead) - Removed `Typed` impls for all dynamic types ## Migration Guide - The Dynamic types no longer take a string type name. Instead, they require a static reference to `TypeInfo`: ```rust #[derive(Reflect)] struct MyTupleStruct(f32, f32); let mut dyn_tuple_struct = DynamicTupleStruct::default(); dyn_tuple_struct.insert(1.23_f32); dyn_tuple_struct.insert(3.21_f32); // BEFORE: let type_name = std::any::type_name::<MyTupleStruct>(); dyn_tuple_struct.set_name(type_name); // AFTER: let type_info = <MyTupleStruct as Typed>::type_info(); dyn_tuple_struct.set_represented_type(Some(type_info)); ``` - `Reflect::get_type_info` has been renamed to `Reflect::represented_type_info` and now also returns an `Option<&'static TypeInfo>` (instead of just `&'static TypeInfo`): ```rust // BEFORE: let info: &'static TypeInfo = value.get_type_info(); // AFTER: let info: &'static TypeInfo = value.represented_type_info().unwrap(); ``` - `TypeInfo::Dynamic` and `DynamicInfo` has been removed. Use `Reflect::is_dynamic` instead: ```rust // BEFORE: if matches!(value.get_type_info(), TypeInfo::Dynamic) { // ... } // AFTER: if value.is_dynamic() { // ... } ``` --------- Co-authored-by: radiish <cb.setho@gmail.com> |
||
![]() |
cd1737ecca |
bevy_reflect: Improved documentation (#7148)
# Objective
`bevy_reflect` can be a moderately complex crate to try and understand. It has many moving parts, a handful of gotchas, and a few subtle contracts that aren't immediately obvious to users and even other contributors.
The current README does an okay job demonstrating how the crate can be used. However, the crate's actual documentation should give a better overview of the crate, its inner-workings, and show some of its own examples.
## Solution
Added crate-level documentation that attempts to summarize the main parts of `bevy_reflect` into small sections.
This PR also updates the documentation for:
- `Reflect`
- `FromReflect`
- The reflection subtraits
- Other important types and traits
- The reflection macros (including the derive macros)
- Crate features
### Open Questions
1. ~~Should I update the docs for the Dynamic types? I was originally going to, but I'm getting a little concerned about the size of this PR 😅~~ Decided to not do this in this PR. It'll be better served from its own PR.
2. Should derive macro documentation be moved to the trait itself? This could improve visibility and allow for better doc links, but could also clutter up the trait's documentation (as well as not being on the actual derive macro's documentation).
### TODO
- [ ] ~~Document Dynamic types (?)~~ I think this should be done in a separate PR.
- [x] Document crate features
- [x] Update docs for `GetTypeRegistration`
- [x] Update docs for `TypeRegistration`
- [x] Update docs for `derive_from_reflect`
- [x] Document `reflect_trait`
- [x] Document `impl_reflect_value`
- [x] Document `impl_from_reflect_value`
---
## Changelog
- Updated documentation across the `bevy_reflect` crate
- Removed `#[module]` helper attribute for `Reflect` derives (this is not currently used)
## Migration Guide
- Removed `#[module]` helper attribute for `Reflect` derives. If your code is relying on this attribute, please replace it with either `#[reflect]` or `#[reflect_value]` (dependent on use-case).
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
|
||
![]() |
18cfb226db |
Use a fixed state hasher in bevy_reflect for deterministic Reflect::reflect_hash() across processes (#7583)
# Objective - bevy_ggrs uses `reflect_hash` in order to produce checksums for its world snapshots. These checksums are sent between clients in order to detect desyncronization. - However, since we currently use `async::AHasher` with the `std` feature, this means that hashes will always be different for different peers, even if the state is identical. - This means bevy_ggrs needs a way to get a deterministic (fixed) hash. ## Solution - ~~Add a feature to use `bevy_utils::FixedState` for the hasher used by bevy_reflect.~~ - Always use `bevy_utils::FixedState` for initializing the bevy_reflect hasher. --- ## Changelog - bevy_reflect now uses a fixed state for its hasher, which means the output of `Reflect::reflect_hash` is now deterministic across processes. |
||
![]() |
724b36289c |
bevy_reflect: Decouple List and Array traits (#7467)
# Objective Resolves #7121 ## Solution Decouples `List` and `Array` by removing `Array` as a supertrait of `List`. Additionally, similar methods from `Array` have been added to `List` so that their usages can remain largely unchanged. #### Possible Alternatives ##### `Sequence` My guess for why we originally made `List` a subtrait of `Array` is that they share a lot of common operations. We could potentially move these overlapping methods to a `Sequence` (name taken from #7059) trait and make that a supertrait of both. This would allow functions to contain logic that simply operates on a sequence rather than "list vs array". However, this means that we'd need to add methods for converting to a `dyn Sequence`. It also might be confusing since we wouldn't add a `ReflectRef::Sequence` or anything like that. Is such a trait worth adding (either in this PR or a followup one)? --- ## Changelog - Removed `Array` as supertrait of `List` - Added methods to `List` that were previously provided by `Array` ## Migration Guide The `List` trait is no longer dependent on `Array`. Implementors of `List` can remove the `Array` impl and move its methods into the `List` impl (with only a couple tweaks). ```rust // BEFORE impl Array for Foo { fn get(&self, index: usize) -> Option<&dyn Reflect> {/* ... */} fn get_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> {/* ... */} fn len(&self) -> usize {/* ... */} fn is_empty(&self) -> bool {/* ... */} fn iter(&self) -> ArrayIter {/* ... */} fn drain(self: Box<Self>) -> Vec<Box<dyn Reflect>> {/* ... */} fn clone_dynamic(&self) -> DynamicArray {/* ... */} } impl List for Foo { fn insert(&mut self, index: usize, element: Box<dyn Reflect>) {/* ... */} fn remove(&mut self, index: usize) -> Box<dyn Reflect> {/* ... */} fn push(&mut self, value: Box<dyn Reflect>) {/* ... */} fn pop(&mut self) -> Option<Box<dyn Reflect>> {/* ... */} fn clone_dynamic(&self) -> DynamicList {/* ... */} } // AFTER impl List for Foo { fn get(&self, index: usize) -> Option<&dyn Reflect> {/* ... */} fn get_mut(&mut self, index: usize) -> Option<&mut dyn Reflect> {/* ... */} fn insert(&mut self, index: usize, element: Box<dyn Reflect>) {/* ... */} fn remove(&mut self, index: usize) -> Box<dyn Reflect> {/* ... */} fn push(&mut self, value: Box<dyn Reflect>) {/* ... */} fn pop(&mut self) -> Option<Box<dyn Reflect>> {/* ... */} fn len(&self) -> usize {/* ... */} fn is_empty(&self) -> bool {/* ... */} fn iter(&self) -> ListIter {/* ... */} fn drain(self: Box<Self>) -> Vec<Box<dyn Reflect>> {/* ... */} fn clone_dynamic(&self) -> DynamicList {/* ... */} } ``` Some other small tweaks that will need to be made include: - Use `ListIter` for `List::iter` instead of `ArrayIter` (the return type from `Array::iter`) - Replace `array_hash` with `list_hash` in `Reflect::reflect_hash` for implementors of `List` |
||
![]() |
615d3d2157 |
Add constructor new to ArrayIter (#7449)
# Objective - Fixes #7430. ## Solution - Changed fields of `ArrayIter` to be private. - Add a constructor `new` to `ArrayIter`. - Replace normal struct creation with `new`. --- ## Changelog - Add a constructor `new` to `ArrayIter`. Co-authored-by: Elbert Ronnie <103196773+elbertronnie@users.noreply.github.com> |
||
![]() |
02fbf16c80 |
bevy_reflect: Add Reflect::into_reflect (#6502)
# Objective Using `Reflect` we can easily switch between a specific reflection trait object, such as a `dyn Struct`, to a `dyn Reflect` object via `Reflect::as_reflect` or `Reflect::as_reflect_mut`. ```rust fn do_something(value: &dyn Reflect) {/* ... */} let foo: Box<dyn Struct> = Box::new(Foo::default()); do_something(foo.as_reflect()); ``` However, there is no way to convert a _boxed_ reflection trait object to a `Box<dyn Reflect>`. ## Solution Add a `Reflect::into_reflect` method which allows converting a boxed reflection trait object back into a boxed `Reflect` trait object. ```rust fn do_something(value: Box<dyn Reflect>) {/* ... */} let foo: Box<dyn Struct> = Box::new(Foo::default()); do_something(foo.into_reflect()); ``` --- ## Changelog - Added `Reflect::into_reflect` |
||
![]() |
feebbc5ea9 |
Add reflect_owned (#6494)
# Objective There is no way to gen an owned value of `Reflect`. ## Solution Add it! This was originally a part of #6421, but @MrGVSV asked me to create a separate for it to implement reflect diffing. --- ## Changelog ### Added - `Reflect::reflect_owned` to get an owned version of `Reflect`. |
||
![]() |
a658bfef19 |
bevy_reflect: Reflect doc comments (#6234)
# Objective Resolves #6197 Make it so that doc comments can be retrieved via reflection. ## Solution Adds the new `documentation` feature to `bevy_reflect` (disabled by default). When enabled, documentation can be found using `TypeInfo::doc` for reflected types: ```rust /// Some struct. /// /// # Example /// /// ```ignore /// let some_struct = SomeStruct; /// ``` #[derive(Reflect)] struct SomeStruct; let info = <SomeStruct as Typed>::type_info(); assert_eq!( Some(" Some struct.\n\n # Example\n\n ```ignore\n let some_struct = SomeStruct;\n ```"), info.docs() ); ``` ### Notes for Reviewers The bulk of the files simply added the same 16 lines of code (with slightly different documentation). Most of the real changes occur in the `bevy_reflect_derive` files as well as in the added tests. --- ## Changelog * Added `documentation` feature to `bevy_reflect` * Added `TypeInfo::docs` method (and similar methods for all info types) |
||
![]() |
91a235e6d6 |
Implement Debug for dynamic types (#5948)
# Objective When trying derive `Debug` for type that has `DynamicEnum` it wasn't possible, since neither of `DynamicEnum`, `DynamicTuple`, `DynamicVariant` or `DynamicArray` implements `Debug`. ## Solution Implement Debug for those types, using `derive` macro --- ## Changelog - `DynamicEnum`, `DynamicTuple`, `DynamicVariant` and `DynamicArray` now implements `Debug` |
||
![]() |
ecc584ff23 |
bevy_reflect: Get owned fields (#5728)
# Objective Sometimes it's useful to be able to retrieve all the fields of a container type so that they may be processed separately. With reflection, however, we typically only have access to references. The only alternative is to "clone" the value using `Reflect::clone_value`. This, however, returns a Dynamic type in most cases. The solution there would be to use `FromReflect` instead, but this also has a problem in that it means we need to add `FromReflect` as an additional bound. ## Solution Add a `drain` method to all container traits. This returns a `Vec<Box<dyn Reflect>>` (except for `Map` which returns `Vec<(Box<dyn Reflect>, Box<dyn Reflect>)>`). This allows us to do things a lot simpler. For example, if we finished processing a struct and just need a particular value: ```rust // === OLD === // /// May or may not return a Dynamic*** value (even if `container` wasn't a `DynamicStruct`) fn get_output(container: Box<dyn Struct>, output_index: usize) -> Box<dyn Reflect> { container.field_at(output_index).unwrap().clone_value() } // === NEW === // /// Returns _exactly_ whatever was in the given struct fn get_output(container: Box<dyn Struct>, output_index: usize) -> Box<dyn Reflect> { container.drain().remove(output_index).unwrap() } ``` ### Discussion * Is `drain` the best method name? It makes sense that it "drains" all the fields and that it consumes the container in the process, but I'm open to alternatives. --- ## Changelog * Added a `drain` method to the following traits: * `Struct` * `TupleStruct` * `Tuple` * `Array` * `List` * `Map` * `Enum` |
||
![]() |
40982cd0a2 |
Make reflect_partial_eq return more accurate results (#5210)
# Objective Closes #5204 ## Solution - Followed @nicopap suggestion on https://github.com/bevyengine/bevy/pull/4761#discussion_r903982224 ## Changelog - [x] Updated [struct_trait]( |
||
![]() |
c27a3cff6d |
Make Reflect safe to implement (#5010)
# Objective Currently, `Reflect` is unsafe to implement because of a contract in which `any` and `any_mut` must return `self`, or `downcast` will cause UB. This PR makes `Reflect` safe, makes `downcast` not use unsafe, and eliminates this contract. ## Solution This PR adds a method to `Reflect`, `any`. It also renames the old `any` to `as_any`. `any` now takes a `Box<Self>` and returns a `Box<dyn Any>`. --- ## Changelog ### Added: - `any()` method - `represents()` method ### Changed: - `Reflect` is now a safe trait - `downcast()` is now safe - The old `any` is now called `as_any`, and `any_mut` is now `as_mut_any` ## Migration Guide - Reflect derives should not have to change anything - Manual reflect impls will need to remove the `unsafe` keyword, add `any()` implementations, and rename the old `any` and `any_mut` to `as_any` and `as_mut_any`. - Calls to `any`/`any_mut` must be changed to `as_any`/`as_mut_any` ## Points of discussion: - Should renaming `any` be avoided and instead name the new method `any_box`? - ~~Could there be a performance regression from avoiding the unsafe? I doubt it, but this change does seem to introduce redundant checks.~~ - ~~Could/should `is` and `type_id()` be implemented differently? For example, moving `is` onto `Reflect` as an `fn(&self, TypeId) -> bool`~~ Co-authored-by: PROMETHIA-27 <42193387+PROMETHIA-27@users.noreply.github.com> |
||
![]() |
218b0fd3b6 |
bevy_reflect : put serialize into external ReflectSerialize type (#4782)
builds on top of #4780 # Objective `Reflect` and `Serialize` are currently very tied together because `Reflect` has a `fn serialize(&self) -> Option<Serializable<'_>>` method. Because of that, we can either implement `Reflect` for types like `Option<T>` with `T: Serialize` and have `fn serialize` be implemented, or without the bound but having `fn serialize` return `None`. By separating `ReflectSerialize` into a separate type (like how it already is for `ReflectDeserialize`, `ReflectDefault`), we could separately `.register::<Option<T>>()` and `.register_data::<Option<T>, ReflectSerialize>()` only if the type `T: Serialize`. This PR does not change the registration but allows it to be changed in a future PR. ## Solution - add the type ```rust struct ReflectSerialize { .. } impl<T: Reflect + Serialize> FromType<T> for ReflectSerialize { .. } ``` - remove `#[reflect(Serialize)]` special casing. - when serializing reflect value types, look for `ReflectSerialize` in the `TypeRegistry` instead of calling `value.serialize()` |
||
![]() |
e6f34ba47f |
bevy_reflect: Add statically available type info for reflected types (#4042)
# Objective > Resolves #4504 It can be helpful to have access to type information without requiring an instance of that type. Especially for `Reflect`, a lot of the gathered type information is known at compile-time and should not necessarily require an instance. ## Solution Created a dedicated `TypeInfo` enum to store static type information. All types that derive `Reflect` now also implement the newly created `Typed` trait: ```rust pub trait Typed: Reflect { fn type_info() -> &'static TypeInfo; } ``` > Note: This trait was made separate from `Reflect` due to `Sized` restrictions. If you only have access to a `dyn Reflect`, just call `.get_type_info()` on it. This new trait method on `Reflect` should return the same value as if you had called it statically. If all you have is a `TypeId` or type name, you can get the `TypeInfo` directly from the registry using the `TypeRegistry::get_type_info` method (assuming it was registered). ### Usage Below is an example of working with `TypeInfo`. As you can see, we don't have to generate an instance of `MyTupleStruct` in order to get this information. ```rust #[derive(Reflect)] struct MyTupleStruct(usize, i32, MyStruct); let info = MyTupleStruct::type_info(); if let TypeInfo::TupleStruct(info) = info { assert!(info.is::<MyTupleStruct>()); assert_eq!(std::any::type_name::<MyTupleStruct>(), info.type_name()); assert!(info.field_at(1).unwrap().is::<i32>()); } else { panic!("Expected `TypeInfo::TupleStruct`"); } ``` ### Manual Implementations It's not recommended to manually implement `Typed` yourself, but if you must, you can use the `TypeInfoCell` to automatically create and manage the static `TypeInfo`s for you (which is very helpful for blanket/generic impls): ```rust use bevy_reflect::{Reflect, TupleStructInfo, TypeInfo, UnnamedField}; use bevy_reflect::utility::TypeInfoCell; struct Foo<T: Reflect>(T); impl<T: Reflect> Typed for Foo<T> { fn type_info() -> &'static TypeInfo { static CELL: TypeInfoCell = TypeInfoCell::generic(); CELL.get_or_insert::<Self, _>(|| { let fields = [UnnamedField:🆕:<T>()]; let info = TupleStructInfo:🆕:<Self>(&fields); TypeInfo::TupleStruct(info) }) } } ``` ## Benefits One major benefit is that this opens the door to other serialization methods. Since we can get all the type info at compile time, we can know how to properly deserialize something like: ```rust #[derive(Reflect)] struct MyType { foo: usize, bar: Vec<String> } // RON to be deserialized: ( type: "my_crate::MyType", // <- We now know how to deserialize the rest of this object value: { // "foo" is a value type matching "usize" "foo": 123, // "bar" is a list type matching "Vec<String>" with item type "String" "bar": ["a", "b", "c"] } ) ``` Not only is this more compact, but it has better compatibility (we can change the type of `"foo"` to `i32` without having to update our serialized data). Of course, serialization/deserialization strategies like this may need to be discussed and fully considered before possibly making a change. However, we will be better equipped to do that now that we can access type information right from the registry. ## Discussion Some items to discuss: 1. Duplication. There's a bit of overlap with the existing traits/structs since they require an instance of the type while the type info structs do not (for example, `Struct::field_at(&self, index: usize)` and `StructInfo::field_at(&self, index: usize)`, though only `StructInfo` is accessible without an instance object). Is this okay, or do we want to handle it in another way? 2. Should `TypeInfo::Dynamic` be removed? Since the dynamic types don't have type information available at runtime, we could consider them `TypeInfo::Value`s (or just even just `TypeInfo::Struct`). The intention with `TypeInfo::Dynamic` was to keep the distinction from these dynamic types and actual structs/values since users might incorrectly believe the methods of the dynamic type's info struct would map to some contained data (which isn't possible statically). 4. General usefulness of this change, including missing/unnecessary parts. 5. Possible changes to the scene format? (One possible issue with changing it like in the example above might be that we'd have to be careful when handling generic or trait object types.) ## Compile Tests I ran a few tests to compare compile times (as suggested [here](https://github.com/bevyengine/bevy/pull/4042#discussion_r876408143)). I toggled `Reflect` and `FromReflect` derive macros using `cfg_attr` for both this PR ( |
||
![]() |
f2b545049c |
Implement FusedIterator for eligible Iterator types (#4942)
# Objective Most of our `Iterator` impls satisfy the requirements of `std::iter::FusedIterator`, which has internal specialization that optimizes `Interator::fuse`. The std lib iterator combinators do have a few that rely on `fuse`, so this could optimize those use cases. I don't think we're using any of them in the engine itself, but beyond a light increase in compile time, it doesn't hurt to implement the trait. ## Solution Implement the trait for all eligible iterators in first party crates. Also add a missing `ExactSizeIterator` on an iterator that could use it. |
||
![]() |
f000c2b951 |
Clippy improvements (#4665)
# Objective Follow up to my previous MR #3718 to add new clippy warnings to bevy: - [x] [~~option_if_let_else~~](https://rust-lang.github.io/rust-clippy/master/#option_if_let_else) (reverted) - [x] [redundant_else](https://rust-lang.github.io/rust-clippy/master/#redundant_else) - [x] [match_same_arms](https://rust-lang.github.io/rust-clippy/master/#match_same_arms) - [x] [semicolon_if_nothing_returned](https://rust-lang.github.io/rust-clippy/master/#semicolon_if_nothing_returned) - [x] [explicit_iter_loop](https://rust-lang.github.io/rust-clippy/master/#explicit_iter_loop) - [x] [map_flatten](https://rust-lang.github.io/rust-clippy/master/#map_flatten) There is one commit per clippy warning, and the matching flags are added to the CI execution. To test the CI execution you may run `cargo run -p ci -- clippy` at the root. I choose the add the flags in the `ci` tool crate to avoid having them in every `lib.rs` but I guess it could become an issue with suprise warnings coming up after a commit/push Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
4b7f904cfc |
remove Serialize impl for dyn Array and friends (#4780)
# Objective `bevy_reflect` as different kinds of reflected types (each with their own trait), `trait Struct: Reflect`, `trait List: Reflect`, `trait Map: Reflect`, ... Types that don't fit either of those are called reflect value types, they are opaque and can't be deconstructed further. `bevy_reflect` can serialize `dyn Reflect` values. Any container types (struct, list, map) get deconstructed and their elements serialized separately, which can all happen without serde being involved ever (happens [here](https://github.com/bevyengine/bevy/blob/main/crates/bevy_reflect/src/serde/ser.rs#L50-L85=)). The only point at which we require types to be serde-serializable is for *value types* (happens [here](https://github.com/bevyengine/bevy/blob/main/crates/bevy_reflect/src/serde/ser.rs#L104=)). So reflect array serializing is solved, since arrays are container types which don't require serde. #1213 also introduced added the `serialize` method and `Serialize` impls for `dyn Array` and `DynamicArray` which use their element's `Reflect::serializable` function. This is 1. unnecessary, because it is not used for array serialization, and 2. annoying for removing the `Serialize` bound on container types, because these impls don't have access to the `TypeRegistry`, so we can't move the serialization code there. # Solution Remove these impls and `fn serialize`. It's not used and annoying for other changes. |
||
![]() |
2f5591ff8c |
bevy_reflect: Improve debug formatting for reflected types (#4218)
# Objective Debugging reflected types can be somewhat frustrating since all `dyn Reflect` trait objects return something like `Reflect(core::option::Option<alloc::string::String>)`. It would be much nicer to be able to see the actual value— or even use a custom `Debug` implementation. ## Solution Added `Reflect::debug` which allows users to customize the debug output. It sets defaults for all `ReflectRef` subtraits and falls back to `Reflect(type_name)` if no `Debug` implementation was registered. To register a custom `Debug` impl, users can add `#[reflect(Debug)]` like they can with other traits. ### Example Using the following structs: ```rust #[derive(Reflect)] pub struct Foo { a: usize, nested: Bar, #[reflect(ignore)] _ignored: NonReflectedValue, } #[derive(Reflect)] pub struct Bar { value: Vec2, tuple_value: (i32, String), list_value: Vec<usize>, // We can't determine debug formatting for Option<T> yet unknown_value: Option<String>, custom_debug: CustomDebug } #[derive(Reflect)] #[reflect(Debug)] struct CustomDebug; impl Debug for CustomDebug { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!(f, "This is a custom debug!") } } pub struct NonReflectedValue { _a: usize, } ``` We can do: ```rust let value = Foo { a: 1, _ignored: NonReflectedValue { _a: 10 }, nested: Bar { value: Vec2::new(1.23, 3.21), tuple_value: (123, String::from("Hello")), list_value: vec![1, 2, 3], unknown_value: Some(String::from("World")), custom_debug: CustomDebug }, }; let reflected_value: &dyn Reflect = &value; println!("{:#?}", reflected_value) ``` Which results in: ```rust Foo { a: 2, nested: Bar { value: Vec2( 1.23, 3.21, ), tuple_value: ( 123, "Hello", ), list_value: [ 1, 2, 3, ], unknown_value: Reflect(core::option::Option<alloc::string::String>), custom_debug: This is a custom debug!, }, } ``` Notice that neither `Foo` nor `Bar` implement `Debug`, yet we can still deduce it. This might be a concern if we're worried about leaking internal values. If it is, we might want to consider a way to exclude fields (possibly with a `#[reflect(hide)]` macro) or make it purely opt in (as opposed to the default implementation automatically handled by ReflectRef subtraits). Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> |
||
![]() |
dbd856de71 |
Nightly clippy fixes (#3491)
Fixes the following nightly clippy lints: - ~~[map_flatten](https://rust-lang.github.io/rust-clippy/master/index.html#map_flatten)~~ (Fixed on main) - ~~[needless_borrow](https://rust-lang.github.io/rust-clippy/master/index.html#needless_borrow)~~ (Fixed on main) - [return_self_not_must_use](https://rust-lang.github.io/rust-clippy/master/index.html#return_self_not_must_use) (Added in 1.59.0) - ~~[unnecessary_lazy_evaluations](https://rust-lang.github.io/rust-clippy/master/index.html#unnecessary_lazy_evaluations)~~ (Fixed on main) - [extra_unused_lifetimes](https://rust-lang.github.io/rust-clippy/master/index.html#extra_unused_lifetimes) outside of macros - [let_unit_value](https://rust-lang.github.io/rust-clippy/master/index.html#let_unit_value) |
||
![]() |
acbee7795d |
bevy_reflect: Reflect arrays (#4701)
# Objective > ℹ️ **Note**: This is a rebased version of #2383. A large portion of it has not been touched (only a few minor changes) so that any additional discussion may happen here. All credit should go to @NathanSWard for their work on the original PR. - Currently reflection is not supported for arrays. - Fixes #1213 ## Solution * Implement reflection for arrays via the `Array` trait. * Note, `Array` is different from `List` in the way that you cannot push elements onto an array as they are statically sized. * Now `List` is defined as a sub-trait of `Array`. --- ## Changelog * Added the `Array` reflection trait * Allows arrays up to length 32 to be reflected via the `Array` trait ## Migration Guide * The `List` trait now has the `Array` supertrait. This means that `clone_dynamic` will need to specify which version to use: ```rust // Before let cloned = my_list.clone_dynamic(); // After let cloned = List::clone_dynamic(&my_list); ``` * All implementers of `List` will now need to implement `Array` (this mostly involves moving the existing methods to the `Array` impl) Co-authored-by: NathanW <nathansward@comcast.net> Co-authored-by: MrGVSV <49806985+MrGVSV@users.noreply.github.com> |