a5c392180b
56 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
a5c392180b
|
Fix soundness issue and add more migration docs | ||
![]() |
e335244112
|
Rewrite required components | ||
![]() |
c182932618
|
Move recursion_check_stack parameter into ComponentsRegistrator | ||
![]() |
9e0c66bd65
|
Ecs derive docs (#19892)
# Objective Concise syntax docs on `Component`/`Event` derives. Partial fix for #19537. ## Solution Only document syntax. The doc tests are set to ignore because the macro relies on the presence of `bevy_ecs`. |
||
![]() |
c6ba3d31cf
|
EntityEvent derive: Fix silent error (#19894)
# Objective The `EntityEvent` derive macro only parsed the first `entity_event` attr, resulting in the following event having auto propagation silently turned off: ```rust #[derive(Event, EntityEvent)] #[entity_event(traversal = &'static ChildOf)] #[entity_event(auto_propagate)] struct MyEvent; ``` This should either fail to compile or be parsed correctly. ## Solution Parse all `entity_event`. ## Testing Cargo expand the snippet above. I haven't added an extra test for this. |
||
![]() |
da83232fa8
|
Let Component::map_entities defer to MapEntities (#19414)
# Objective The objective of this PR is to enable Components to use their `MapEntities` implementation for `Component::map_entities`. With the improvements to the entity mapping system, there is definitely a huge reduction in boilerplate. However, especially since `(Entity)HashMap<..>` doesn't implement `MapEntities` (I presume because the lack of specialization in rust makes `HashMap<Entity|X, Entity|X>` complicated), when somebody has types that contain these hashmaps they can't use this approach. More so, we can't even depend on the previous implementation, since `Component::map_entities` is used instead of `MapEntities::map_entities`. Outside of implementing `Component `and `Component::map_entities` on these types directly, the only path forward is to create a custom type to wrap the hashmaps and implement map entities on that, or split these components into a wrapper type that implement `Component`, and an inner type that implements `MapEntities`. ## Current Solution The solution was to allow adding `#[component(map_entities)]` on the component. By default this will defer to the `MapEntities` implementation. ```rust #[derive(Component)] #[component(map_entities)] struct Inventory { items: HashMap<Entity, usize> } impl MapEntities for Inventory { fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) { self.items = self.items .drain() .map(|(id, count)|(entity_mapper.get_mapped(id), count)) .collect(); } } ``` You can use `#[component(map_entities = <function path>)]` instead to substitute other code in for components. This function can also include generics, but sso far I haven't been able to find a case where they are needed. ```rust #[derive(Component)] #[component(map_entities = map_the_map)] // Also works #[component(map_entities = map_the_map::<T,_>)] struct Inventory<T> { items: HashMap<Entity, T> } fn map_the_map<T, M: EntityMapper>(inv: &mut Inventory<T>, entity_mapper: &mut M) { inv.items = inv.items .drain() .map(|(id, count)|(entity_mapper.get_mapped(id), count)) .collect(); } ``` The idea is that with the previous changes to MapEntities, MapEntities is implemented more for entity collections than for Components. If you have a component that makes sense as both, `#[component(map_entities)]` would work great, while otherwise a component can use `#[component(map_entities = <function>)]` to change the behavior of `Component::map_entities` without opening up the component type to be included in other components. ## (Original Solution if you want to follow the PR) The solution was to allow adding `#[component(entities)]` on the component itself to defer to the `MapEntities` implementation ```rust #[derive(Component)] #[component(entities)] struct Inventory { items: HashMap<Entity, usize> } impl MapEntities for Inventory { fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) { self.items = self.items .drain() .map(|(id, count)|(entity_mapper.get_mapped(id), count)) .collect(); } } ``` ## Testing I tested this by patching my local changes into my own bevy project. I had a system that loads a scene file and executes some logic with a Component that contains a `HashMap<Entity, UVec2>`, and it panics when Entity is not found from another query. Since the 0.16 update this system has reliably panicked upon attempting to the load the scene. After patching my code in, I added `#[component(entities)]` to this component, and I was able to successfully load the scene. Additionally, I wrote a doc test. ## Call-outs ### Relationships This overrules the default mapping of relationship fields. Anything else seemed more problematic, as you'd have inconsistent behavior between `MapEntities` and `Component`. |
||
![]() |
c6ae964709
|
EntityWorldMut methods do not automatically overwrite Relationship components (#19601)
# Objective Some methods and commands carelessly overwrite `Relationship` components. This may overwrite additional data stored at them which is undesired. Part of #19589 ## Solution A new private method will be used instead of insert: `modify_or_insert_relation_with_relationship_hook_mode`. This method behaves different to `insert` if `Relationship` is a larger type than `Entity` and already contains this component. It will then use the `modify_component` API and a new `Relationship::set_risky` method to set the related entity, keeping all other data untouched. For the `replace_related`(`_with_difference`) methods this also required a `InsertHookMode` parameter for efficient modifications of multiple children. The changes here are limited to the non-public methods. I would appreciate feedback if this is all good. # Testing Added tests of all methods that previously could reset `Relationship` data. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
38c3423693
|
Event Split: Event , EntityEvent , and BufferedEvent (#19647)
# Objective Closes #19564. The current `Event` trait looks like this: ```rust pub trait Event: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` The `Event` trait is used by both buffered events (`EventReader`/`EventWriter`) and observer events. If they are observer events, they can optionally be targeted at specific `Entity`s or `ComponentId`s, and can even be propagated to other entities. However, there has long been a desire to split the trait semantically for a variety of reasons, see #14843, #14272, and #16031 for discussion. Some reasons include: - It's very uncommon to use a single event type as both a buffered event and targeted observer event. They are used differently and tend to have distinct semantics. - A common footgun is using buffered events with observers or event readers with observer events, as there is no type-level error that prevents this kind of misuse. - #19440 made `Trigger::target` return an `Option<Entity>`. This *seriously* hurts ergonomics for the general case of entity observers, as you need to `.unwrap()` each time. If we could statically determine whether the event is expected to have an entity target, this would be unnecessary. There's really two main ways that we can categorize events: push vs. pull (i.e. "observer event" vs. "buffered event") and global vs. targeted: | | Push | Pull | | ------------ | --------------- | --------------------------- | | **Global** | Global observer | `EventReader`/`EventWriter` | | **Targeted** | Entity observer | - | There are many ways to approach this, each with their tradeoffs. Ultimately, we kind of want to split events both ways: - A type-level distinction between observer events and buffered events, to prevent people from using the wrong kind of event in APIs - A statically designated entity target for observer events to avoid accidentally using untargeted events for targeted APIs This PR achieves these goals by splitting event traits into `Event`, `EntityEvent`, and `BufferedEvent`, with `Event` being the shared trait implemented by all events. ## `Event`, `EntityEvent`, and `BufferedEvent` `Event` is now a very simple trait shared by all events. ```rust pub trait Event: Send + Sync + 'static { // Required for observer APIs fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` You can call `trigger` for *any* event, and use a global observer for listening to the event. ```rust #[derive(Event)] struct Speak { message: String, } // ... app.add_observer(|trigger: On<Speak>| { println!("{}", trigger.message); }); // ... commands.trigger(Speak { message: "Y'all like these reworked events?".to_string(), }); ``` To allow an event to be targeted at entities and even propagated further, you can additionally implement the `EntityEvent` trait: ```rust pub trait EntityEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This lets you call `trigger_targets`, and to use targeted observer APIs like `EntityCommands::observe`: ```rust #[derive(Event, EntityEvent)] #[entity_event(traversal = &'static ChildOf, auto_propagate)] struct Damage { amount: f32, } // ... let enemy = commands.spawn((Enemy, Health(100.0))).id(); // Spawn some armor as a child of the enemy entity. // When the armor takes damage, it will bubble the event up to the enemy. let armor_piece = commands .spawn((ArmorPiece, Health(25.0), ChildOf(enemy))) .observe(|trigger: On<Damage>, mut query: Query<&mut Health>| { // Note: `On::target` only exists because this is an `EntityEvent`. let mut health = query.get(trigger.target()).unwrap(); health.0 -= trigger.amount(); }); commands.trigger_targets(Damage { amount: 10.0 }, armor_piece); ``` > [!NOTE] > You *can* still also trigger an `EntityEvent` without targets using `trigger`. We probably *could* make this an either-or thing, but I'm not sure that's actually desirable. To allow an event to be used with the buffered API, you can implement `BufferedEvent`: ```rust pub trait BufferedEvent: Event {} ``` The event can then be used with `EventReader`/`EventWriter`: ```rust #[derive(Event, BufferedEvent)] struct Message(String); fn write_hello(mut writer: EventWriter<Message>) { writer.write(Message("I hope these examples are alright".to_string())); } fn read_messages(mut reader: EventReader<Message>) { // Process all buffered events of type `Message`. for Message(message) in reader.read() { println!("{message}"); } } ``` In summary: - Need a basic event you can trigger and observe? Derive `Event`! - Need the event to be targeted at an entity? Derive `EntityEvent`! - Need the event to be buffered and support the `EventReader`/`EventWriter` API? Derive `BufferedEvent`! ## Alternatives I'll now cover some of the alternative approaches I have considered and briefly explored. I made this section collapsible since it ended up being quite long :P <details> <summary>Expand this to see alternatives</summary> ### 1. Unified `Event` Trait One option is not to have *three* separate traits (`Event`, `EntityEvent`, `BufferedEvent`), and to instead just use associated constants on `Event` to determine whether an event supports targeting and buffering or not: ```rust pub trait Event: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; const TARGETED: bool = false; const BUFFERED: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` Methods can then use bounds like `where E: Event<TARGETED = true>` or `where E: Event<BUFFERED = true>` to limit APIs to specific kinds of events. This would keep everything under one `Event` trait, but I don't think it's necessarily a good idea. It makes APIs harder to read, and docs can't easily refer to specific types of events. You can also create weird invariants: what if you specify `TARGETED = false`, but have `Traversal` and/or `AUTO_PROPAGATE` enabled? ### 2. `Event` and `Trigger` Another option is to only split the traits between buffered events and observer events, since that is the main thing people have been asking for, and they have the largest API difference. If we did this, I think we would need to make the terms *clearly* separate. We can't really use `Event` and `BufferedEvent` as the names, since it would be strange that `BufferedEvent` doesn't implement `Event`. Something like `ObserverEvent` and `BufferedEvent` could work, but it'd be more verbose. For this approach, I would instead keep `Event` for the current `EventReader`/`EventWriter` API, and call the observer event a `Trigger`, since the "trigger" terminology is already used in the observer context within Bevy (both as a noun and a verb). This is also what a long [bikeshed on Discord](https://discord.com/channels/691052431525675048/749335865876021248/1298057661878898791) seemed to land on at the end of last year. ```rust // For `EventReader`/`EventWriter` pub trait Event: Send + Sync + 'static {} // For observers pub trait Trigger: Send + Sync + 'static { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; const TARGETED: bool = false; fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } ``` The problem is that "event" is just a really good term for something that "happens". Observers are rapidly becoming the more prominent API, so it'd be weird to give them the `Trigger` name and leave the good `Event` name for the less common API. So, even though a split like this seems neat on the surface, I think it ultimately wouldn't really work. We want to keep the `Event` name for observer events, and there is no good alternative for the buffered variant. (`Message` was suggested, but saying stuff like "sends a collision message" is weird.) ### 3. `GlobalEvent` + `TargetedEvent` What if instead of focusing on the buffered vs. observed split, we *only* make a distinction between global and targeted events? ```rust // A shared event trait to allow global observers to work pub trait Event: Send + Sync + 'static { fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } // For buffered events and non-targeted observer events pub trait GlobalEvent: Event {} // For targeted observer events pub trait TargetedEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This is actually the first approach I implemented, and it has the neat characteristic that you can only use non-targeted APIs like `trigger` with a `GlobalEvent` and targeted APIs like `trigger_targets` with a `TargetedEvent`. You have full control over whether the entity should or should not have a target, as they are fully distinct at the type-level. However, there's a few problems: - There is no type-level indication of whether a `GlobalEvent` supports buffered events or just non-targeted observer events - An `Event` on its own does literally nothing, it's just a shared trait required to make global observers accept both non-targeted and targeted events - If an event is both a `GlobalEvent` and `TargetedEvent`, global observers again have ambiguity on whether an event has a target or not, undermining some of the benefits - The names are not ideal ### 4. `Event` and `EntityEvent` We can fix some of the problems of Alternative 3 by accepting that targeted events can also be used in non-targeted contexts, and simply having the `Event` and `EntityEvent` traits: ```rust // For buffered events and non-targeted observer events pub trait Event: Send + Sync + 'static { fn register_component_id(world: &mut World) -> ComponentId { ... } fn component_id(world: &World) -> Option<ComponentId> { ... } } // For targeted observer events pub trait EntityEvent: Event { type Traversal: Traversal<Self>; const AUTO_PROPAGATE: bool = false; } ``` This is essentially identical to this PR, just without a dedicated `BufferedEvent`. The remaining major "problem" is that there is still zero type-level indication of whether an `Event` event *actually* supports the buffered API. This leads us to the solution proposed in this PR, using `Event`, `EntityEvent`, and `BufferedEvent`. </details> ## Conclusion The `Event` + `EntityEvent` + `BufferedEvent` split proposed in this PR aims to solve all the common problems with Bevy's current event model while keeping the "weirdness" factor minimal. It splits in terms of both the push vs. pull *and* global vs. targeted aspects, while maintaining a shared concept for an "event". ### Why I Like This - The term "event" remains as a single concept for all the different kinds of events in Bevy. - Despite all event types being "events", they use fundamentally different APIs. Instead of assuming that you can use an event type with any pattern (when only one is typically supported), you explicitly opt in to each one with dedicated traits. - Using separate traits for each type of event helps with documentation and clearer function signatures. - I can safely make assumptions on expected usage. - If I see that an event is an `EntityEvent`, I can assume that I can use `observe` on it and get targeted events. - If I see that an event is a `BufferedEvent`, I can assume that I can use `EventReader` to read events. - If I see both `EntityEvent` and `BufferedEvent`, I can assume that both APIs are supported. In summary: This allows for a unified concept for events, while limiting the different ways to use them with opt-in traits. No more guess-work involved when using APIs. ### Problems? - Because `BufferedEvent` implements `Event` (for more consistent semantics etc.), you can still use all buffered events for non-targeted observers. I think this is fine/good. The important part is that if you see that an event implements `BufferedEvent`, you know that the `EventReader`/`EventWriter` API should be supported. Whether it *also* supports other APIs is secondary. - I currently only support `trigger_targets` for an `EntityEvent`. However, you can technically target components too, without targeting any entities. I consider that such a niche and advanced use case that it's not a huge problem to only support it for `EntityEvent`s, but we could also split `trigger_targets` into `trigger_entities` and `trigger_components` if we wanted to (or implement components as entities :P). - You can still trigger an `EntityEvent` *without* targets. I consider this correct, since `Event` implements the non-targeted behavior, and it'd be weird if implementing another trait *removed* behavior. However, it does mean that global observers for entity events can technically return `Entity::PLACEHOLDER` again (since I got rid of the `Option<Entity>` added in #19440 for ergonomics). I think that's enough of an edge case that it's not a huge problem, but it is worth keeping in mind. - ~~Deriving both `EntityEvent` and `BufferedEvent` for the same type currently duplicates the `Event` implementation, so you instead need to manually implement one of them.~~ Changed to always requiring `Event` to be derived. ## Related Work There are plans to implement multi-event support for observers, especially for UI contexts. [Cart's example](https://github.com/bevyengine/bevy/issues/14649#issuecomment-2960402508) API looked like this: ```rust // Truncated for brevity trigger: Trigger<( OnAdd<Pressed>, OnRemove<Pressed>, OnAdd<InteractionDisabled>, OnRemove<InteractionDisabled>, OnInsert<Hovered>, )>, ``` I believe this shouldn't be in conflict with this PR. If anything, this PR might *help* achieve the multi-event pattern for entity observers with fewer footguns: by statically enforcing that all of these events are `EntityEvent`s in the context of `EntityCommands::observe`, we can avoid misuse or weird cases where *some* events inside the trigger are targeted while others are not. |
||
![]() |
6ddd0f16a8
|
Component lifecycle reorganization and documentation (#19543)
# Objective I set out with one simple goal: clearly document the differences between each of the component lifecycle events via module docs. Unfortunately, no such module existed: the various lifecycle code was scattered to the wind. Without a unified module, it's very hard to discover the related types, and there's nowhere good to put my shiny new documentation. ## Solution 1. Unify the assorted types into a single `bevy_ecs::component_lifecycle` module. 2. Write docs. 3. Write a migration guide. ## Testing Thanks CI! ## Follow-up 1. The lifecycle event names are pretty confusing, especially `OnReplace`. We should consider renaming those. No bikeshedding in my PR though! 2. Observers need real module docs too :( 3. Any additional functional changes should be done elsewhere; this is a simple docs and re-org PR. --------- Co-authored-by: theotherphil <phil.j.ellison@gmail.com> |
||
![]() |
a266e7e642
|
More uninlined_format_args fixes (#19396)
# Objective There are several uninlined format args (seems to be in more formatting macros and in more crates) that are not detected on stable, but are on nightly. ## Solution Fix them. |
||
![]() |
60cdefd128
|
Derive clone_behavior for Components (#18811)
Allow Derive(Component) to specify a clone_behavior ```rust #[derive(Component)] #[component(clone_behavior = Ignore)] MyComponent; ``` |
||
![]() |
e02c3662fb
|
Code quality cleanup pass for #[require] (#18621)
#18555 improved syntax for required components. However some code was a bit redundant after the new parsing and struct initializing would not give proper errors. This PR fixes that. --------- Co-authored-by: Tim Overbeek <oorbecktim@Tims-MacBook-Pro.local> |
||
![]() |
83ffc90c6c
|
Fix relationship macro for multiple named members fields (#18530)
# Objective Fixes #18466 ## Solution Updated the macro generation pattern to place the comma in the correct place in the pattern. ## Testing - Tried named and unnamed fields in combination, and used rust expand macro tooling to see the generated code and verify its correctness (see screenshots in example below) --- ## Showcase Screenshot showing expanded macro with multiple named fields  Screenshot showing expanded macro with single unnamed field  ## Migration Guide n/a |
||
![]() |
1ba9da0812
|
Required Components: pass through all tokens in {} and () syntax (#18578)
# Objective #18555 added improved require syntax, but inline structs didn't support `..Default::default()` syntax (for technical reasons we can't parse the struct directly, so there is manual logic that missed this case). ## Solution When a `{}` or `()` section is encountered for a required component, rather than trying to parse the fields directly, just pass _all_ of the tokens through. This ensures no tokens are dropped, protects us against any future syntax changes, and optimizes our parsing logic (as we're dropping the field parsing logic entirely). |
||
![]() |
538afe2330
|
Improved Require Syntax (#18555)
# Objective Requires are currently more verbose than they need to be. People would like to define inline component values. Additionally, the current `#[require(Foo(custom_constructor))]` and `#[require(Foo(|| Foo(10))]` syntax doesn't really make sense within the context of the Rust type system. #18309 was an attempt to improve ergonomics for some cases, but it came at the cost of even more weirdness / unintuitive behavior. Our approach as a whole needs a rethink. ## Solution Rework the `#[require()]` syntax to make more sense. This is a breaking change, but I think it will make the system easier to learn, while also improving ergonomics substantially: ```rust #[derive(Component)] #[require( A, // this will use A::default() B(1), // inline tuple-struct value C { value: 1 }, // inline named-struct value D::Variant, // inline enum variant E::SOME_CONST, // inline associated const F::new(1), // inline constructor G = returns_g(), // an expression that returns G H = SomethingElse::new(), // expression returns SomethingElse, where SomethingElse: Into<H> )] struct Foo; ``` ## Migration Guide Custom-constructor requires should use the new expression-style syntax: ```rust // before #[derive(Component)] #[require(A(returns_a))] struct Foo; // after #[derive(Component)] #[require(A = returns_a())] struct Foo; ``` Inline-closure-constructor requires should use the inline value syntax where possible: ```rust // before #[derive(Component)] #[require(A(|| A(10))] struct Foo; // after #[derive(Component)] #[require(A(10)] struct Foo; ``` In cases where that is not possible, use the expression-style syntax: ```rust // before #[derive(Component)] #[require(A(|| A(10))] struct Foo; // after #[derive(Component)] #[require(A = A(10)] struct Foo; ``` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: François Mockers <mockersf@gmail.com> |
||
![]() |
a033f1b206
|
Replace VisitEntities with MapEntities (#18432)
# Objective There are currently too many disparate ways to handle entity mapping, especially after #17687. We now have MapEntities, VisitEntities, VisitEntitiesMut, Component::visit_entities, Component::visit_entities_mut. Our only known use case at the moment for these is entity mapping. This means we have significant consolidation potential. Additionally, VisitEntitiesMut cannot be implemented for map-style collections like HashSets, as you cant "just" mutate a `&mut Entity`. Our current approach to Component mapping requires VisitEntitiesMut, meaning this category of entity collection isn't mappable. `MapEntities` is more generally applicable. Additionally, the _existence_ of the blanket From impl on VisitEntitiesMut blocks us from implementing MapEntities for HashSets (or any types we don't own), because the owner could always add a conflicting impl in the future. ## Solution Use `MapEntities` everywhere and remove all "visit entities" usages. * Add `Component::map_entities` * Remove `Component::visit_entities`, `Component::visit_entities_mut`, `VisitEntities`, and `VisitEntitiesMut` * Support deriving `Component::map_entities` in `#[derive(Coomponent)]` * Add `#[derive(MapEntities)]`, and share logic with the `Component::map_entities` derive. * Add `ComponentCloneCtx::queue_deferred`, which is command-like logic that runs immediately after normal clones. Reframe `FromWorld` fallback logic in the "reflect clone" impl to use it. This cuts out a lot of unnecessary work and I think justifies the existence of a pseudo-command interface (given how niche, yet performance sensitive this is). Note that we no longer auto-impl entity mapping for ` IntoIterator<Item = &'a Entity>` types, as this would block our ability to implement cases like `HashMap`. This means the onus is on us (or type authors) to add explicit support for types that should be mappable. Also note that the Component-related changes do not require a migration guide as there hasn't been a release with them yet. ## Migration Guide If you were previously implementing `VisitEntities` or `VisitEntitiesMut` (likely via a derive), instead use `MapEntities`. Those were almost certainly used in the context of Bevy Scenes or reflection via `ReflectMapEntities`. If you have a case that uses `VisitEntities` or `VisitEntitiesMut` directly, where `MapEntities` is not a viable replacement, please let us know! ```rust // before #[derive(VisitEntities, VisitEntitiesMut)] struct Inventory { items: Vec<Entity>, #[visit_entities(ignore)] label: String, } // after #[derive(MapEntities)] struct Inventory { #[entities] items: Vec<Entity>, label: String, } ``` |
||
![]() |
55fd10502c
|
Required components accept const values (#16720) (#18309)
# Objective Const values should be more ergonomic to insert, since this is too verbose ``` rust #[derive(Component)] #[require( LockedAxes(||LockedAxes::ROTATION_LOCKED), )] pub struct CharacterController; ``` instead, users can now abbreviate that nonsense like this ``` rust #[derive(Component)] #[require( LockedAxes = ROTATION_LOCKED), )] pub struct CharacterController; ``` it also works for enum labels. I chose to omit the type, since were trying to reduce typing here. The alternative would have been this: ```rust #[require( LockedAxes = LockedAxes::ROTATION_LOCKED), )] ``` This of course has its disadvantages, since the const has to be associated, but the old closure method is still possible, so I dont think its a problem. - Fixes #16720 ## Testing I added one new test in the docs, which also explain the new change. I also saw that the docs for the required components on line 165 was missing an assertion, so I added it back in --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
246ce590e5
|
Queued component registration (#18173)
# Objective This is an alternative to #17871 and #17701 for tracking issue #18155. This thanks to @maniwani for help with this design. The goal is to enable component ids to be reserved from multiple threads concurrently and with only `&World`. This contributes to assets as entities, read-only query and system parameter initialization, etc. ## What's wrong with #17871 ? In #17871, I used my proposed staging utilities to allow *fully* registering components from any thread concurrently with only `&Components`. However, if we want to pursue components as entities (which is desirable for a great many reasons. See [here](https://discord.com/channels/691052431525675048/692572690833473578/1346499196655505534) on discord), this staging isn't going to work. After all, if registering a component requires spawning an entity, and spawning an entity requires `&mut World`, it is impossible to register a component fully with only `&World`. ## Solution But what if we don't have to register it all the way? What if it's enough to just know the `ComponentId` it will have once it is registered and to queue it to be registered at a later time? Spoiler alert: That is all we need for these features. Here's the basic design: Queue a registration: 1. Check if it has already been registered. 2. Check if it has already been queued. 3. Reserve a `ComponentId`. 4. Queue the registration at that id. Direct (normal) registration: 1. Check if this registration has been queued. 2. If it has, use the queued registration instead. 3. Otherwise, proceed like normal. Appllying the queue: 1. Pop queued items off one by one. 2. Register them directly. One other change: The whole point of this design over #17871 is to facilitate coupling component registration with the World. To ensure that this would fully work with that, I went ahead and moved the `ComponentId` generator onto the world itself. That stemmed a couple of minor organizational changes (see migration guide). As we do components as entities, we will replace this generator with `Entities`, which lives on `World` too. Doing this move early let me verify the design and will reduce migration headaches in the future. If components as entities is as close as I think it is, I don't think splitting this up into different PRs is worth it. If it is not as close as it is, it might make sense to still do #17871 in the meantime (see the risks section). I'll leave it up to y'all what we end up doing though. ## Risks and Testing The biggest downside of this compared to #17871 is that now we have to deal with correct but invalid `ComponentId`s. They are invalid because the component still isn't registered, but they are correct because, once registered, the component will have exactly that id. However, the only time this becomes a problem is if some code violates safety rules by queuing a registration and using the returned id as if it was valid. As this is a new feature though, nothing in Bevy does this, so no new tests were added for it. When we do use it, I left detailed docs to help mitigate issues here, and we can test those usages. Ex: we will want some tests on using queries initialized from queued registrations. ## Migration Guide Component registration can now be queued with only `&World`. To facilitate this, a few APIs needed to be moved around. The following functions have moved from `Components` to `ComponentsRegistrator`: - `register_component` - `register_component_with_descriptor` - `register_resource_with_descriptor` - `register_non_send` - `register_resource` - `register_required_components_manual` Accordingly, functions in `Bundle` and `Component` now take `ComponentsRegistrator` instead of `Components`. You can obtain `ComponentsRegistrator` from the new `World::components_registrator`. You can obtain `ComponentsQueuedRegistrator` from the new `World::components_queue`, and use it to stage component registration if desired. # Open Question Can we verify that it is enough to queue registration with `&World`? I don't think it would be too difficult to package this up into a `Arc<MyComponentsManager>` type thing if we need to, but keeping this on `&World` certainly simplifies things. If we do need the `Arc`, we'll need to look into partitioning `Entities` for components as entities, so we can keep most of the allocation fast on `World` and only keep a smaller partition in the `Arc`. I'd love an SME on assets as entities to shed some light on this. --------- Co-authored-by: andriyDev <andriydzikh@gmail.com> |
||
![]() |
664000f848
|
Improve derive(Event) and simplify macro code (#18083)
# Objective simplify some code and improve Event macro Closes https://github.com/bevyengine/bevy/issues/14336, # Showcase you can now write derive Events like so ```rust #[derive(event)] #[event(auto_propagate, traversal = MyType)] struct MyEvent; ``` |
||
![]() |
a85a3a2a15
|
allow Call and Closure expressions in hook macro attributes (#18017)
# Objective This PR adds: - function call hook attributes `#[component(on_add = func(42))]` - main feature of this commit - closure hook attributes `#[component(on_add = |w, ctx| { /* ... */ })]` - maybe too verbose - but was easy to add - was suggested on discord This allows to reuse common functionality without replicating a lot of boilerplate. A small example is a hook which just adds different default sprites. The sprite loading code would be the same for every component. Unfortunately we can't use the required components feature, since we need at least an `AssetServer` or other `Resource`s or `Component`s to load the sprite. ```rs fn load_sprite(path: &str) -> impl Fn(DeferredWorld, HookContext) { |mut world, ctx| { // ... use world to load sprite } } #[derive(Component)] #[component(on_add = load_sprite("knight.png"))] struct Knight; #[derive(Component)] #[component(on_add = load_sprite("monster.png"))] struct Monster; ``` --- The commit also reorders the logic of the derive macro a bit. It's probably a bit less lazy now, but the functionality shouldn't be performance critical and is executed at compile time anyways. ## Solution - Introduce `HookKind` enum in the component proc macro module - extend parsing to allow more cases of expressions ## Testing I have some code laying around. I'm not sure where to put it yet though. Also is there a way to check compilation failures? Anyways, here it is: ```rs use bevy::prelude::*; #[derive(Component)] #[component( on_add = fooing_and_baring, on_insert = fooing_and_baring, on_replace = fooing_and_baring, on_despawn = fooing_and_baring, on_remove = fooing_and_baring )] pub struct FooPath; fn fooing_and_baring( world: bevy::ecs::world::DeferredWorld, ctx: bevy::ecs::component::HookContext, ) { } #[derive(Component)] #[component( on_add = baring_and_bazzing("foo"), on_insert = baring_and_bazzing("foo"), on_replace = baring_and_bazzing("foo"), on_despawn = baring_and_bazzing("foo"), on_remove = baring_and_bazzing("foo") )] pub struct FooCall; fn baring_and_bazzing( path: &str, ) -> impl Fn(bevy::ecs::world::DeferredWorld, bevy::ecs::component::HookContext) { |world, ctx| {} } #[derive(Component)] #[component( on_add = |w,ctx| {}, on_insert = |w,ctx| {}, on_replace = |w,ctx| {}, on_despawn = |w,ctx| {}, on_remove = |w,ctx| {} )] pub struct FooClosure; #[derive(Component, Debug)] #[relationship(relationship_target = FooTargets)] #[component( on_add = baring_and_bazzing("foo"), // on_insert = baring_and_bazzing("foo"), // on_replace = baring_and_bazzing("foo"), on_despawn = baring_and_bazzing("foo"), on_remove = baring_and_bazzing("foo") )] pub struct FooTargetOf(Entity); #[derive(Component, Debug)] #[relationship_target(relationship = FooTargetOf)] #[component( on_add = |w,ctx| {}, on_insert = |w,ctx| {}, // on_replace = |w,ctx| {}, // on_despawn = |w,ctx| {}, on_remove = |w,ctx| {} )] pub struct FooTargets(Vec<Entity>); // MSG: mismatched types expected fn pointer `for<'w> fn(bevy::bevy_ecs::world::DeferredWorld<'w>, bevy::bevy_ecs::component::HookContext)` found struct `Bar` // // pub struct Bar; // #[derive(Component)] // #[component( // on_add = Bar, // )] // pub struct FooWrongPath; // MSG: this function takes 1 argument but 2 arguements were supplied // // #[derive(Component)] // #[component( // on_add = wrong_bazzing("foo"), // )] // pub struct FooWrongCall; // // fn wrong_bazzing(path: &str) -> impl Fn(bevy::ecs::world::DeferredWorld) { // |world| {} // } // MSG: expected 1 argument, found 2 // // #[derive(Component)] // #[component( // on_add = |w| {}, // )] // pub struct FooWrongCall; ``` --- ## Showcase I'll try to continue to work on this to have a small section in the release notes. |
||
![]() |
06cb5c5fd9
|
Fix Component require() IDE integration (#18165)
# Objective Component `require()` IDE integration is fully broken, as of #16575. ## Solution This reverts us back to the previous "put the docs on Component trait" impl. This _does_ reduce the accessibility of the required components in rust docs, but the complete erasure of "required component IDE experience" is not worth the price of slightly increased prominence of requires in docs. Additionally, Rust Analyzer has recently started including derive attributes in suggestions, so we aren't losing that benefit of the proc_macro attribute impl. |
||
![]() |
a530c07bc5
|
Preserve spawned RelationshipTarget order and other improvements (#17858)
Fixes #17720 ## Objective Spawning RelationshipTargets from scenes currently fails to preserve RelationshipTarget ordering (ex: `Children` has an arbitrary order). This is because it uses the normal hook flow to set up the collection, which means we are pushing onto the collection in _spawn order_ (which is currently in archetype order, which will often produce mismatched orderings). We need to preserve the ordering in the original RelationshipTarget collection. Ideally without expensive checking / fixups. ## Solution One solution would be to spawn in hierarchy-order. However this gets complicated as there can be multiple hierarchies, and it also means we can't spawn in more cache-friendly orders (ex: the current per-archetype spawning, or future even-smarter per-table spawning). Additionally, same-world cloning has _slightly_ more nuanced needs (ex: recursively clone linked relationships, while maintaining _original_ relationships outside of the tree via normal hooks). The preferred approach is to directly spawn the remapped RelationshipTarget collection, as this trivially preserves the ordering. Unfortunately we can't _just_ do that, as when we spawn the children with their Relationships (ex: `ChildOf`), that will insert a duplicate. We could "fixup" the collection retroactively by just removing the back half of duplicates, but this requires another pass / more lookups / allocating twice as much space. Additionally, it becomes complicated because observers could insert additional children, making it harder (aka more expensive) to determine which children are dupes and which are not. The path I chose is to support "opting out" of the relationship target hook in the contexts that need that, as this allows us to just cheaply clone the mapped collection. The relationship hook can look for this configuration when it runs and skip its logic when that happens. A "simple" / small-amount-of-code way to do this would be to add a "skip relationship spawn" flag to World. Sadly, any hook / observer that runs _as the result of an insert_ would also read this flag. We really need a way to scope this setting to a _specific_ insert. Therefore I opted to add a new `RelationshipInsertHookMode` enum and an `entity.insert_with_relationship_insert_hook_mode` variant. Obviously this is verbose and ugly. And nobody wants _more_ insert variants. But sadly this was the best I could come up with from a performance and capability perspective. If you have alternatives let me know! There are three variants: 1. `RelationshipInsertHookMode::Run`: always run relationship insert hooks (this is the default) 2. `RelationshipInsertHookMode::Skip`: do not run any relationship insert hooks for this insert (this is used by spawner code) 3. `RelationshipInsertHookMode::RunIfNotLinked`: only run hooks for _unlinked_ relationships (this is used in same-world recursive entity cloning to preserve relationships outside of the deep-cloned tree) Note that I have intentionally only added "insert with relationship hook mode" variants to the cases we absolutely need (everything else uses the default `Run` mode), just to keep the code size in check. I do not think we should add more without real _very necessary_ use cases. I also made some other minor tweaks: 1. I split out `SourceComponent` from `ComponentCloneCtx`. Reading the source component no longer needlessly blocks mutable access to `ComponentCloneCtx`. 2. Thanks to (1), I've removed the `RefCell` wrapper over the cloned component queue. 3. (1) also allowed me to write to the EntityMapper while queuing up clones, meaning we can reserve entities during the component clone and write them to the mapper _before_ inserting the component, meaning cloned collections can be mapped on insert. 4. I've removed the closure from `write_target_component_ptr` to simplify the API / make it compatible with the split `SourceComponent` approach. 5. I've renamed `EntityCloner::recursive` to `EntityCloner::linked_cloning` to connect that feature more directly with `RelationshipTarget::LINKED_SPAWN` 6. I've removed `EntityCloneBehavior::RelationshipTarget`. This was always intended to be temporary, and this new behavior removes the need for it. --------- Co-authored-by: Viktor Gustavsson <villor94@gmail.com> |
||
![]() |
173680944f
|
fix generics for relationships (#18136)
# Objective Allow Relationship to be derived for structs with generics. fixes #18133 ## Solution "X" inside #[relationship_target(relationship = X)] was previously parsed as Idents, now they are parsed as syn::Type ## Testing ```rust #[derive(Component)] #[relationship(relationship_target = Attachments<T>)] pub struct AttachedTo<T: Send + Sync + 'static> { #[relationship] pub entity: Entity, pub marker: PhantomData<T>, } #[derive(Component)] #[relationship_target(relationship = AttachedTo<T>)] pub struct Attachments<T: Send + Sync + 'static> { #[relationship] entities: Vec<Entity>, pub marker: PhantomData<T>, } ``` This now compiles! |
||
![]() |
ccb7069e7f
|
Change ChildOf to Childof { parent: Entity} and support deriving Relationship and RelationshipTarget with named structs (#17905)
# Objective fixes #17896 ## Solution Change ChildOf ( Entity ) to ChildOf { parent: Entity } by doing this we also allow users to use named structs for relationship derives, When you have more than 1 field in a struct with named fields the macro will look for a field with the attribute #[relationship] and all of the other fields should implement the Default trait. Unnamed fields are still supported. When u have a unnamed struct with more than one field the macro will fail. Do we want to support something like this ? ```rust #[derive(Component)] #[relationship_target(relationship = ChildOf)] pub struct Children (#[relationship] Entity, u8); ``` I could add this, it but doesn't seem nice. ## Testing crates/bevy_ecs - cargo test ## Showcase ```rust use bevy_ecs::component::Component; use bevy_ecs::entity::Entity; #[derive(Component)] #[relationship(relationship_target = Children)] pub struct ChildOf { #[relationship] pub parent: Entity, internal: u8, }; #[derive(Component)] #[relationship_target(relationship = ChildOf)] pub struct Children { children: Vec<Entity> }; ``` --------- Co-authored-by: Tim Overbeek <oorbecktim@Tims-MacBook-Pro.local> Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-042.client.nl.eduvpn.org> Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-059.client.nl.eduvpn.org> Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-054.client.nl.eduvpn.org> Co-authored-by: Tim Overbeek <oorbecktim@c-001-001-027.client.nl.eduvpn.org> |
||
![]() |
5241e09671
|
Upgrade to Rust Edition 2024 (#17967)
# Objective - Fixes #17960 ## Solution - Followed the [edition upgrade guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html) ## Testing - CI --- ## Summary of Changes ### Documentation Indentation When using lists in documentation, proper indentation is now linted for. This means subsequent lines within the same list item must start at the same indentation level as the item. ```rust /* Valid */ /// - Item 1 /// Run-on sentence. /// - Item 2 struct Foo; /* Invalid */ /// - Item 1 /// Run-on sentence. /// - Item 2 struct Foo; ``` ### Implicit `!` to `()` Conversion `!` (the never return type, returned by `panic!`, etc.) no longer implicitly converts to `()`. This is particularly painful for systems with `todo!` or `panic!` statements, as they will no longer be functions returning `()` (or `Result<()>`), making them invalid systems for functions like `add_systems`. The ideal fix would be to accept functions returning `!` (or rather, _not_ returning), but this is blocked on the [stabilisation of the `!` type itself](https://doc.rust-lang.org/std/primitive.never.html), which is not done. The "simple" fix would be to add an explicit `-> ()` to system signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`). However, this is _also_ banned, as there is an existing lint which (IMO, incorrectly) marks this as an unnecessary annotation. So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ... }` closuers into variables and give the variable an explicit type (e.g., `fn()`). ```rust // Valid let system: fn() = || todo!("Not implemented yet!"); app.add_systems(..., system); // Invalid app.add_systems(..., || todo!("Not implemented yet!")); ``` ### Temporary Variable Lifetimes The order in which temporary variables are dropped has changed. The simple fix here is _usually_ to just assign temporaries to a named variable before use. ### `gen` is a keyword We can no longer use the name `gen` as it is reserved for a future generator syntax. This involved replacing uses of the name `gen` with `r#gen` (the raw-identifier syntax). ### Formatting has changed Use statements have had the order of imports changed, causing a substantial +/-3,000 diff when applied. For now, I have opted-out of this change by amending `rustfmt.toml` ```toml style_edition = "2021" ``` This preserves the original formatting for now, reducing the size of this PR. It would be a simple followup to update this to 2024 and run `cargo fmt`. ### New `use<>` Opt-Out Syntax Lifetimes are now implicitly included in RPIT types. There was a handful of instances where it needed to be added to satisfy the borrow checker, but there may be more cases where it _should_ be added to avoid breakages in user code. ### `MyUnitStruct { .. }` is an invalid pattern Previously, you could match against unit structs (and unit enum variants) with a `{ .. }` destructuring. This is no longer valid. ### Pretty much every use of `ref` and `mut` are gone Pattern binding has changed to the point where these terms are largely unused now. They still serve a purpose, but it is far more niche now. ### `iter::repeat(...).take(...)` is bad New lint recommends using the more explicit `iter::repeat_n(..., ...)` instead. ## Migration Guide The lifetimes of functions using return-position impl-trait (RPIT) are likely _more_ conservative than they had been previously. If you encounter lifetime issues with such a function, please create an issue to investigate the addition of `+ use<...>`. ## Notes - Check the individual commits for a clearer breakdown for what _actually_ changed. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com> |
||
![]() |
3c8fae2390
|
Improved Entity Mapping and Cloning (#17687)
Fixes #17535 Bevy's approach to handling "entity mapping" during spawning and cloning needs some work. The addition of [Relations](https://github.com/bevyengine/bevy/pull/17398) both [introduced a new "duplicate entities" bug when spawning scenes in the scene system](#17535) and made the weaknesses of the current mapping system exceedingly clear: 1. Entity mapping requires _a ton_ of boilerplate (implement or derive VisitEntities and VisitEntitesMut, then register / reflect MapEntities). Knowing the incantation is challenging and if you forget to do it in part or in whole, spawning subtly breaks. 2. Entity mapping a spawned component in scenes incurs unnecessary overhead: look up ReflectMapEntities, create a _brand new temporary instance_ of the component using FromReflect, map the entities in that instance, and then apply that on top of the actual component using reflection. We can do much better. Additionally, while our new [Entity cloning system](https://github.com/bevyengine/bevy/pull/16132) is already pretty great, it has some areas we can make better: * It doesn't expose semantic info about the clone (ex: ignore or "clone empty"), meaning we can't key off of that in places where it would be useful, such as scene spawning. Rather than duplicating this info across contexts, I think it makes more sense to add that info to the clone system, especially given that we'd like to use cloning code in some of our spawning scenarios. * EntityCloner is currently built in a way that prioritizes a single entity clone * EntityCloner's recursive cloning is built to be done "inside out" in a parallel context (queue commands that each have a clone of EntityCloner). By making EntityCloner the orchestrator of the clone we can remove internal arcs, improve the clarity of the code, make EntityCloner mutable again, and simplify the builder code. * EntityCloner does not currently take into account entity mapping. This is necessary to do true "bullet proof" cloning, would allow us to unify the per-component scene spawning and cloning UX, and ultimately would allow us to use EntityCloner in place of raw reflection for scenes like `Scene(World)` (which would give us a nice performance boost: fewer archetype moves, less reflection overhead). ## Solution ### Improved Entity Mapping First, components now have first-class "entity visiting and mapping" behavior: ```rust #[derive(Component, Reflect)] #[reflect(Component)] struct Inventory { size: usize, #[entities] items: Vec<Entity>, } ``` Any field with the `#[entities]` annotation will be viewable and mappable when cloning and spawning scenes. Compare that to what was required before! ```rust #[derive(Component, Reflect, VisitEntities, VisitEntitiesMut)] #[reflect(Component, MapEntities)] struct Inventory { #[visit_entities(ignore)] size: usize, items: Vec<Entity>, } ``` Additionally, for relationships `#[entities]` is implied, meaning this "just works" in scenes and cloning: ```rust #[derive(Component, Reflect)] #[relationship(relationship_target = Children)] #[reflect(Component)] struct ChildOf(pub Entity); ``` Note that Component _does not_ implement `VisitEntities` directly. Instead, it has `Component::visit_entities` and `Component::visit_entities_mut` methods. This is for a few reasons: 1. We cannot implement `VisitEntities for C: Component` because that would conflict with our impl of VisitEntities for anything that implements `IntoIterator<Item=Entity>`. Preserving that impl is more important from a UX perspective. 2. We should not implement `Component: VisitEntities` VisitEntities in the Component derive, as that would increase the burden of manual Component trait implementors. 3. Making VisitEntitiesMut directly callable for components would make it easy to invalidate invariants defined by a component author. By putting it in the `Component` impl, we can make it harder to call naturally / unavailable to autocomplete using `fn visit_entities_mut(this: &mut Self, ...)`. `ReflectComponent::apply_or_insert` is now `ReflectComponent::apply_or_insert_mapped`. By moving mapping inside this impl, we remove the need to go through the reflection system to do entity mapping, meaning we no longer need to create a clone of the target component, map the entities in that component, and patch those values on top. This will make spawning mapped entities _much_ faster (The default `Component::visit_entities_mut` impl is an inlined empty function, so it will incur no overhead for unmapped entities). ### The Bug Fix To solve #17535, spawning code now skips entities with the new `ComponentCloneBehavior::Ignore` and `ComponentCloneBehavior::RelationshipTarget` variants (note RelationshipTarget is a temporary "workaround" variant that allows scenes to skip these components. This is a temporary workaround that can be removed as these cases should _really_ be using EntityCloner logic, which should be done in a followup PR. When that is done, `ComponentCloneBehavior::RelationshipTarget` can be merged into the normal `ComponentCloneBehavior::Custom`). ### Improved Cloning * `Option<ComponentCloneHandler>` has been replaced by `ComponentCloneBehavior`, which encodes additional intent and context (ex: `Default`, `Ignore`, `Custom`, `RelationshipTarget` (this last one is temporary)). * Global per-world entity cloning configuration has been removed. This felt overly complicated, increased our API surface, and felt too generic. Each clone context can have different requirements (ex: what a user wants in a specific system, what a scene spawner wants, etc). I'd prefer to see how far context-specific EntityCloners get us first. * EntityCloner's internals have been reworked to remove Arcs and make it mutable. * EntityCloner is now directly stored on EntityClonerBuilder, simplifying the code somewhat * EntityCloner's "bundle scratch" pattern has been moved into the new BundleScratch type, improving its usability and making it usable in other contexts (such as future cross-world cloning code). Currently this is still private, but with some higher level safe APIs it could be used externally for making dynamic bundles * EntityCloner's recursive cloning behavior has been "externalized". It is now responsible for orchestrating recursive clones, meaning it no longer needs to be sharable/clone-able across threads / read-only. * EntityCloner now does entity mapping during clones, like scenes do. This gives behavior parity and also makes it more generically useful. * `RelatonshipTarget::RECURSIVE_SPAWN` is now `RelationshipTarget::LINKED_SPAWN`, and this field is used when cloning relationship targets to determine if cloning should happen recursively. The new `LINKED_SPAWN` term was picked to make it more generically applicable across spawning and cloning scenarios. ## Next Steps * I think we should adapt EntityCloner to support cross world cloning. I think this PR helps set the stage for that by making the internals slightly more generalized. We could have a CrossWorldEntityCloner that reuses a lot of this infrastructure. * Once we support cross world cloning, we should use EntityCloner to spawn `Scene(World)` scenes. This would yield significant performance benefits (no archetype moves, less reflection overhead). --------- Co-authored-by: eugineerd <70062110+eugineerd@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
1b2cf7d6cd
|
Isolate component registration (#17671)
# Objective Progresses #17569. The end goal here is to synchronize component registration. See the other PR for details for the motivation behind that. For this PR specifically, the objective is to decouple `Components` from `Storages`. What components are registered etc should have nothing to do with what Storages looks like. Storages should only care about what entity archetypes have been spawned. ## Solution Previously, this was used to create sparse sets for relevant components when those components were registered. Now, we do that when the component is inserted/spawned. This PR proposes doing that in `BundleInfo::new`, but there may be a better place. ## Testing In theory, this shouldn't have changed any functionality, so no new tests were created. I'm not aware of any examples that make heavy use of sparse set components either. ## Migration Guide - Remove storages from functions where it is no longer needed. - Note that SparseSets are no longer present for all registered sparse set components, only those that have been spawned. --------- Co-authored-by: SpecificProtagonist <vincentjunge@posteo.net> Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com> |
||
![]() |
d0c0bad7b4
|
Split Component::register_component_hooks into individual methods (#17685)
# Objective - Fixes #17411 ## Solution - Deprecated `Component::register_component_hooks` - Added individual methods for each hook which return `None` if the hook is unused. ## Testing - CI --- ## Migration Guide `Component::register_component_hooks` is now deprecated and will be removed in a future release. When implementing `Component` manually, also implement the respective hook methods on `Component`. ```rust // Before impl Component for Foo { // snip fn register_component_hooks(hooks: &mut ComponentHooks) { hooks.on_add(foo_on_add); } } // After impl Component for Foo { // snip fn on_add() -> Option<ComponentHook> { Some(foo_on_add) } } ``` ## Notes I've chosen to deprecate `Component::register_component_hooks` rather than outright remove it to ease the migration guide. While it is in a state of deprecation, it must be used by `Components::register_component_internal` to ensure users who haven't migrated to the new hook definition scheme aren't left behind. For users of the new scheme, a default implementation of `Component::register_component_hooks` is provided which forwards the new individual hook implementations. Personally, I think this is a cleaner API to work with, and would allow the documentation for hooks to exist on the respective `Component` methods (e.g., documentation for `OnAdd` can exist on `Component::on_add`). Ideally, `Component::on_add` would be the hook itself rather than a getter for the hook, but it is the only way to early-out for a no-op hook, which is important for performance. ## Migration Guide `Component::register_component_hooks` has been deprecated. If you are manually implementing the `Component` trait and registering hooks there, use the individual methods such as `on_add` instead for increased clarity. |
||
![]() |
44ad3bf62b
|
Move Resource trait to its own file (#17469)
# Objective `bevy_ecs`'s `system` module is something of a grab bag, and *very* large. This is particularly true for the `system_param` module, which is more than 2k lines long! While it could be defensible to put `Res` and `ResMut` there (lol no they're in change_detection.rs, obviously), it doesn't make any sense to put the `Resource` trait there. This is confusing to navigate (and painful to work on and review). ## Solution - Create a root level `bevy_ecs/resource.rs` module to mirror `bevy_ecs/component.rs` - move the `Resource` trait to that module - move the `Resource` derive macro to that module as well (Rust really likes when you pun on the names of the derive macro and trait and put them in the same path) - fix all of the imports ## Notes to reviewers - We could probably move more stuff into here, but I wanted to keep this PR as small as possible given the absurd level of import changes. - This PR is ground work for my upcoming attempts to store resource data on components (resources-as-entities). Splitting this code out will make the work and review a bit easier, and is the sort of overdue refactor that's good to do as part of more meaningful work. ## Testing cargo build works! ## Migration Guide `bevy_ecs::system::Resource` has been moved to `bevy_ecs::resource::Resource`. |
||
![]() |
21f1e3045c
|
Relationships (non-fragmenting, one-to-many) (#17398)
This adds support for one-to-many non-fragmenting relationships (with planned paths for fragmenting and non-fragmenting many-to-many relationships). "Non-fragmenting" means that entities with the same relationship type, but different relationship targets, are not forced into separate tables (which would cause "table fragmentation"). Functionally, this fills a similar niche as the current Parent/Children system. The biggest differences are: 1. Relationships have simpler internals and significantly improved performance and UX. Commands and specialized APIs are no longer necessary to keep everything in sync. Just spawn entities with the relationship components you want and everything "just works". 2. Relationships are generalized. Bevy can provide additional built in relationships, and users can define their own. **REQUEST TO REVIEWERS**: _please don't leave top level comments and instead comment on specific lines of code. That way we can take advantage of threaded discussions. Also dont leave comments simply pointing out CI failures as I can read those just fine._ ## Built on top of what we have Relationships are implemented on top of the Bevy ECS features we already have: components, immutability, and hooks. This makes them immediately compatible with all of our existing (and future) APIs for querying, spawning, removing, scenes, reflection, etc. The fewer specialized APIs we need to build, maintain, and teach, the better. ## Why focus on one-to-many non-fragmenting first? 1. This allows us to improve Parent/Children relationships immediately, in a way that is reasonably uncontroversial. Switching our hierarchy to fragmenting relationships would have significant performance implications. ~~Flecs is heavily considering a switch to non-fragmenting relations after careful considerations of the performance tradeoffs.~~ _(Correction from @SanderMertens: Flecs is implementing non-fragmenting storage specialized for asset hierarchies, where asset hierarchies are many instances of small trees that have a well defined structure)_ 2. Adding generalized one-to-many relationships is currently a priority for the [Next Generation Scene / UI effort](https://github.com/bevyengine/bevy/discussions/14437). Specifically, we're interested in building reactions and observers on top. ## The changes This PR does the following: 1. Adds a generic one-to-many Relationship system 3. Ports the existing Parent/Children system to Relationships, which now lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been removed. 4. Adds on_despawn component hooks 5. Relationships can opt-in to "despawn descendants" behavior, meaning that the entire relationship hierarchy is despawned when `entity.despawn()` is called. The built in Parent/Children hierarchies enable this behavior, and `entity.despawn_recursive()` has been removed. 6. `world.spawn` now applies commands after spawning. This ensures that relationship bookkeeping happens immediately and removes the need to manually flush. This is in line with the equivalent behaviors recently added to the other APIs (ex: insert). 7. Removes the ValidParentCheckPlugin (system-driven / poll based) in favor of a `validate_parent_has_component` hook. ## Using Relationships The `Relationship` trait looks like this: ```rust pub trait Relationship: Component + Sized { type RelationshipSources: RelationshipSources<Relationship = Self>; fn get(&self) -> Entity; fn from(entity: Entity) -> Self; } ``` A relationship is a component that: 1. Is a simple wrapper over a "target" Entity. 2. Has a corresponding `RelationshipSources` component, which is a simple wrapper over a collection of entities. Every "target entity" targeted by a "source entity" with a `Relationship` has a `RelationshipSources` component, which contains every "source entity" that targets it. For example, the `Parent` component (as it currently exists in Bevy) is the `Relationship` component and the entity containing the Parent is the "source entity". The entity _inside_ the `Parent(Entity)` component is the "target entity". And that target entity has a `Children` component (which implements `RelationshipSources`). In practice, the Parent/Children relationship looks like this: ```rust #[derive(Relationship)] #[relationship(relationship_sources = Children)] pub struct Parent(pub Entity); #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent)] pub struct Children(Vec<Entity>); ``` The Relationship and RelationshipSources derives automatically implement Component with the relevant configuration (namely, the hooks necessary to keep everything in sync). The most direct way to add relationships is to spawn entities with relationship components: ```rust let a = world.spawn_empty().id(); let b = world.spawn(Parent(a)).id(); assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]); ``` There are also convenience APIs for spawning more than one entity with the same relationship: ```rust world.spawn_empty().with_related::<Children>(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` The existing `with_children` API is now a simpler wrapper over `with_related`. This makes this change largely non-breaking for existing spawn patterns. ```rust world.spawn_empty().with_children(|s| { s.spawn_empty(); s.spawn_empty(); }) ``` There are also other relationship APIs, such as `add_related` and `despawn_related`. ## Automatic recursive despawn via the new on_despawn hook `RelationshipSources` can opt-in to "despawn descendants" behavior, which will despawn all related entities in the relationship hierarchy: ```rust #[derive(RelationshipSources)] #[relationship_sources(relationship = Parent, despawn_descendants)] pub struct Children(Vec<Entity>); ``` This means that `entity.despawn_recursive()` is no longer required. Instead, just use `entity.despawn()` and the relevant related entities will also be despawned. To despawn an entity _without_ despawning its parent/child descendants, you should remove the `Children` component first, which will also remove the related `Parent` components: ```rust entity .remove::<Children>() .despawn() ``` This builds on the on_despawn hook introduced in this PR, which is fired when an entity is despawned (before other hooks). ## Relationships are the source of truth `Relationship` is the _single_ source of truth component. `RelationshipSources` is merely a reflection of what all the `Relationship` components say. By embracing this, we are able to significantly improve the performance of the system as a whole. We can rely on component lifecycles to protect us against duplicates, rather than needing to scan at runtime to ensure entities don't already exist (which results in quadratic runtime). A single source of truth gives us constant-time inserts. This does mean that we cannot directly spawn populated `Children` components (or directly add or remove entities from those components). I personally think this is a worthwhile tradeoff, both because it makes the performance much better _and_ because it means theres exactly one way to do things (which is a philosophy we try to employ for Bevy APIs). As an aside: treating both sides of the relationship as "equivalent source of truth relations" does enable building simple and flexible many-to-many relationships. But this introduces an _inherent_ need to scan (or hash) to protect against duplicates. [`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations) has a very nice implementation of the "symmetrical many-to-many" approach. Unfortunately I think the performance issues inherent to that approach make it a poor choice for Bevy's default relationship system. ## Followup Work * Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in this PR to keep the diff reasonable, but I'm personally biased toward this change (and using that naming pattern generally for relationships). * [Improved spawning ergonomics](https://github.com/bevyengine/bevy/discussions/16920) * Consider adding relationship observers/triggers for "relationship targets" whenever a source is added or removed. This would replace the current "hierarchy events" system, which is unused upstream but may have existing users downstream. I think triggers are the better fit for this than a buffered event queue, and would prefer not to add that back. * Fragmenting relations: My current idea hinges on the introduction of "value components" (aka: components whose type _and_ value determines their ComponentId, via something like Hashing / PartialEq). By labeling a Relationship component such as `ChildOf(Entity)` as a "value component", `ChildOf(e1)` and `ChildOf(e2)` would be considered "different components". This makes the transition between fragmenting and non-fragmenting a single flag, and everything else continues to work as expected. * Many-to-many support * Non-fragmenting: We can expand Relationship to be a list of entities instead of a single entity. I have largely already written the code for this. * Fragmenting: With the "value component" impl mentioned above, we get many-to-many support "for free", as it would allow inserting multiple copies of a Relationship component with different target entities. Fixes #3742 (If this PR is merged, I think we should open more targeted followup issues for the work above, with a fresh tracking issue free of the large amount of less-directed historical context) Fixes #17301 Fixes #12235 Fixes #15299 Fixes #15308 ## Migration Guide * Replace `ChildBuilder` with `ChildSpawnerCommands`. * Replace calls to `.set_parent(parent_id)` with `.insert(Parent(parent_id))`. * Replace calls to `.replace_children()` with `.remove::<Children>()` followed by `.add_children()`. Note that you'll need to manually despawn any children that are not carried over. * Replace calls to `.despawn_recursive()` with `.despawn()`. * Replace calls to `.despawn_descendants()` with `.despawn_related::<Children>()`. * If you have any calls to `.despawn()` which depend on the children being preserved, you'll need to remove the `Children` component first. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
237c6b207e
|
Remove Event: Component trait bound using a wrapper type which impls Component (#17380)
# Objective As raised in https://github.com/bevyengine/bevy/pull/17317, the `Event: Component` trait bound is confusing to users. In general, a type `E` (like `AppExit`) which implements `Event` should not: - be stored as a component on an entity - be a valid option for `Query<&AppExit>` - require the storage type and other component metadata to be specified Events are not components (even if they one day use some of the same internal mechanisms), and this trait bound is confusing to users. We're also automatically generating `Component` impls with our derive macro, which should be avoided when possible to improve explicitness and avoid conflicts with user impls. Closes #17317, closes #17333 ## Solution - We only care that each unique event type gets a unique `ComponentId` - dynamic events need their own tools for getting identifiers anyways - This avoids complicating the internals of `ComponentId` generation. - Clearly document why this cludge-y solution exists. In the medium term, I think that either a) properly generalizing `ComponentId` (and moving it into `bevy_reflect?) or b) using a new-typed `Entity` as the key for events is more correct. This change is stupid simple though, and removes the offending trait bound in a way that doesn't introduce complex tech debt and does not risk changes to the internals. This change does not: - restrict our ability to implement dynamic buffered events (the main improvement over #17317) - there's still a fair bit of work to do, but this is a step in the right direction - limit our ability to store event metadata on entities in the future - make it harder for users to work with types that are both events and components (just add the derive / trait bound) ## Migration Guide The `Event` trait no longer requires the `Component` trait. If you were relying on this behavior, change your trait bounds from `Event` to `Event + Component`. If you also want your `Event` type to implement `Component`, add a derive. --------- Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com> |
||
![]() |
1f2d0e6308
|
Add no_std support to bevy_ecs (#16758)
# Objective - Contributes to #15460 ## Solution - Added the following features: - `std` (default) - `async_executor` (default) - `edge_executor` - `critical-section` - `portable-atomic` - Gated `tracing` in `bevy_utils` to allow compilation on certain platforms - Switched from `tracing` to `log` for simple message logging within `bevy_ecs`. Note that `tracing` supports capturing from `log` so this should be an uncontroversial change. - Fixed imports and added feature gates as required - Made `bevy_tasks` optional within `bevy_ecs`. Turns out it's only needed for parallel operations which are already gated behind `multi_threaded` anyway. ## Testing - Added to `compile-check-no-std` CI command - `cargo check -p bevy_ecs --no-default-features --features edge_executor,critical-section,portable-atomic --target thumbv6m-none-eabi` - `cargo check -p bevy_ecs --no-default-features --features edge_executor,critical-section` - `cargo check -p bevy_ecs --no-default-features` ## Draft Release Notes Bevy's core ECS now supports `no_std` platforms. In prior versions of Bevy, it was not possible to work with embedded or niche platforms due to our reliance on the standard library, `std`. This has blocked a number of novel use-cases for Bevy, such as an embedded database for IoT devices, or for creating games on retro consoles. With this release, `bevy_ecs` no longer requires `std`. To use Bevy on a `no_std` platform, you must disable default features and enable the new `edge_executor` and `critical-section` features. You may also need to enable `portable-atomic` and `critical-section` if your platform does not natively support all atomic types and operations used by Bevy. ```toml [dependencies] bevy_ecs = { version = "0.16", default-features = false, features = [ # Required for platforms with incomplete atomics (e.g., Raspberry Pi Pico) "portable-atomic", "critical-section", # Optional "bevy_reflect", "serialize", "bevy_debug_stepping", "edge_executor" ] } ``` Currently, this has been tested on bare-metal x86 and the Raspberry Pi Pico. If you have trouble using `bevy_ecs` on a particular platform, please reach out either through a GitHub issue or in the `no_std` working group on the Bevy Discord server. Keep an eye out for future `no_std` updates as we continue to improve the parity between `std` and `no_std`. We look forward to seeing what kinds of applications are now possible with Bevy! ## Notes - Creating PR in draft to ensure CI is passing before requesting reviews. - This implementation has no support for multithreading in `no_std`, especially due to `NonSend` being unsound if allowed in multithreading. The reason is we cannot check the `ThreadId` in `no_std`, so we have no mechanism to at-runtime determine if access is sound. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Vic <59878206+Victoronz@users.noreply.github.com> |
||
![]() |
5f1e114209
|
Descriptive error message for circular required components recursion (#16648)
# Objective Fixes #16645 ## Solution Keep track of components in callstack when registering required components. ## Testing Added a test checking that the error fires. --- ## Showcase ```rust #[derive(Component, Default)] #[require(B)] struct A; #[derive(Component, Default)] #[require(A)] struct B; World::new().spawn(A); ``` ``` thread 'main' panicked at /home/vj/workspace/rust/bevy/crates/bevy_ecs/src/component.rs:415:13: Recursive required components detected: A → B → A ``` --------- Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com> |
||
![]() |
99b6f1d330
|
Link to required components docs in component type docs (#16687)
# Objective #16575 moved required component docs from the `Component` impl to type docs. However, it doesn't actually link to what [required components](https://docs.rs/bevy/0.15.0/bevy/ecs/component/trait.Component.html#required-components) are and how they work. ## Solution Link to [required components](https://docs.rs/bevy/0.15.0/bevy/ecs/component/trait.Component.html#required-components)! ## Testing I tested the link for some components in different Bevy crates. I did not test in external third party crates, but I would assume that it should work there too. --- ## Showcase  Note: The tooltip doesn't show the `#required-components` anchor for some reason, but it is there. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: SpecificProtagonist <vincentjunge@posteo.net> |
||
![]() |
a35811d088
|
Add Immutable Component Support (#16372)
# Objective - Fixes #16208 ## Solution - Added an associated type to `Component`, `Mutability`, which flags whether a component is mutable, or immutable. If `Mutability= Mutable`, the component is mutable. If `Mutability= Immutable`, the component is immutable. - Updated `derive_component` to default to mutable unless an `#[component(immutable)]` attribute is added. - Updated `ReflectComponent` to check if a component is mutable and, if not, panic when attempting to mutate. ## Testing - CI - `immutable_components` example. --- ## Showcase Users can now mark a component as `#[component(immutable)]` to prevent safe mutation of a component while it is attached to an entity: ```rust #[derive(Component)] #[component(immutable)] struct Foo { // ... } ``` This prevents creating an exclusive reference to the component while it is attached to an entity. This is particularly powerful when combined with component hooks, as you can now fully track a component's value, ensuring whatever invariants you desire are upheld. Before this would be done my making a component private, and manually creating a `QueryData` implementation which only permitted read access. <details> <summary>Using immutable components as an index</summary> ```rust /// This is an example of a component like [`Name`](bevy::prelude::Name), but immutable. #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Component)] #[component( immutable, on_insert = on_insert_name, on_replace = on_replace_name, )] pub struct Name(pub &'static str); /// This index allows for O(1) lookups of an [`Entity`] by its [`Name`]. #[derive(Resource, Default)] struct NameIndex { name_to_entity: HashMap<Name, Entity>, } impl NameIndex { fn get_entity(&self, name: &'static str) -> Option<Entity> { self.name_to_entity.get(&Name(name)).copied() } } fn on_insert_name(mut world: DeferredWorld<'_>, entity: Entity, _component: ComponentId) { let Some(&name) = world.entity(entity).get::<Name>() else { unreachable!() }; let Some(mut index) = world.get_resource_mut::<NameIndex>() else { return; }; index.name_to_entity.insert(name, entity); } fn on_replace_name(mut world: DeferredWorld<'_>, entity: Entity, _component: ComponentId) { let Some(&name) = world.entity(entity).get::<Name>() else { unreachable!() }; let Some(mut index) = world.get_resource_mut::<NameIndex>() else { return; }; index.name_to_entity.remove(&name); } // Setup our name index world.init_resource::<NameIndex>(); // Spawn some entities! let alyssa = world.spawn(Name("Alyssa")).id(); let javier = world.spawn(Name("Javier")).id(); // Check our index let index = world.resource::<NameIndex>(); assert_eq!(index.get_entity("Alyssa"), Some(alyssa)); assert_eq!(index.get_entity("Javier"), Some(javier)); // Changing the name of an entity is also fully capture by our index world.entity_mut(javier).insert(Name("Steven")); // Javier changed their name to Steven let steven = javier; // Check our index let index = world.resource::<NameIndex>(); assert_eq!(index.get_entity("Javier"), None); assert_eq!(index.get_entity("Steven"), Some(steven)); ``` </details> Additionally, users can use `Component<Mutability = ...>` in trait bounds to enforce that a component _is_ mutable or _is_ immutable. When using `Component` as a trait bound without specifying `Mutability`, any component is applicable. However, methods which only work on mutable or immutable components are unavailable, since the compiler must be pessimistic about the type. ## Migration Guide - When implementing `Component` manually, you must now provide a type for `Mutability`. The type `Mutable` provides equivalent behaviour to earlier versions of `Component`: ```rust impl Component for Foo { type Mutability = Mutable; // ... } ``` - When working with generic components, you may need to specify that your generic parameter implements `Component<Mutability = Mutable>` rather than `Component` if you require mutable access to said component. - The entity entry API has had to have some changes made to minimise friction when working with immutable components. Methods which previously returned a `Mut<T>` will now typically return an `OccupiedEntry<T>` instead, requiring you to add an `into_mut()` to get the `Mut<T>` item again. ## Draft Release Notes Components can now be made immutable while stored within the ECS. Components are the fundamental unit of data within an ECS, and Bevy provides a number of ways to work with them that align with Rust's rules around ownership and borrowing. One part of this is hooks, which allow for defining custom behavior at key points in a component's lifecycle, such as addition and removal. However, there is currently no way to respond to _mutation_ of a component using hooks. The reasons for this are quite technical, but to summarize, their addition poses a significant challenge to Bevy's core promises around performance. Without mutation hooks, it's relatively trivial to modify a component in such a way that breaks invariants it intends to uphold. For example, you can use `core::mem::swap` to swap the components of two entities, bypassing the insertion and removal hooks. This means the only way to react to this modification is via change detection in a system, which then begs the question of what happens _between_ that alteration and the next run of that system? Alternatively, you could make your component private to prevent mutation, but now you need to provide commands and a custom `QueryData` implementation to allow users to interact with your component at all. Immutable components solve this problem by preventing the creation of an exclusive reference to the component entirely. Without an exclusive reference, the only way to modify an immutable component is via removal or replacement, which is fully captured by component hooks. To make a component immutable, simply add `#[component(immutable)]`: ```rust #[derive(Component)] #[component(immutable)] struct Foo { // ... } ``` When implementing `Component` manually, there is an associated type `Mutability` which controls this behavior: ```rust impl Component for Foo { type Mutability = Mutable; // ... } ``` Note that this means when working with generic components, you may need to specify that a component is mutable to gain access to certain methods: ```rust // Before fn bar<C: Component>() { // ... } // After fn bar<C: Component<Mutability = Mutable>>() { // ... } ``` With this new tool, creating index components, or caching data on an entity should be more user friendly, allowing libraries to provide APIs relying on components and hooks to uphold their invariants. ## Notes - ~~I've done my best to implement this feature, but I'm not happy with how reflection has turned out. If any reflection SMEs know a way to improve this situation I'd greatly appreciate it.~~ There is an outstanding issue around the fallibility of mutable methods on `ReflectComponent`, but the DX is largely unchanged from `main` now. - I've attempted to prevent all safe mutable access to a component that does not implement `Component<Mutability = Mutable>`, but there may still be some methods I have missed. Please indicate so and I will address them, as they are bugs. - Unsafe is an escape hatch I am _not_ attempting to prevent. Whatever you do with unsafe is between you and your compiler. - I am marking this PR as ready, but I suspect it will undergo fairly major revisions based on SME feedback. - I've marked this PR as _Uncontroversial_ based on the feature, not the implementation. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com> Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: Nuutti Kotivuori <naked@iki.fi> |
||
![]() |
d92fc1e456
|
Move required components doc to type doc (#16575)
# Objective Make documentation of a component's required components more visible by moving it to the type's docs ## Solution Change `#[require]` from a derive macro helper to an attribute macro. Disadvantages: - this silences any unused code warnings on the component, as it is used by the macro! - need to import `require` if not using the ecs prelude (I have not included this in the migration guilde as Rust tooling already suggests the fix) --- ## Showcase  --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: JMS55 <47158642+JMS55@users.noreply.github.com> |
||
![]() |
2e267bba5a
|
Entity cloning (#16132)
## Objective Fixes #1515 This PR implements a flexible entity cloning system. The primary use case for it is to clone dynamically-generated entities. Example: ```rs #[derive(Component, Clone)] pub struct Projectile; #[derive(Component, Clone)] pub struct Damage { value: f32, } fn player_input( mut commands: Commands, projectiles: Query<Entity, With<Projectile>>, input: Res<ButtonInput<KeyCode>>, ) { // Fire a projectile if input.just_pressed(KeyCode::KeyF) { commands.spawn((Projectile, Damage { value: 10.0 })); } // Triplicate all active projectiles if input.just_pressed(KeyCode::KeyT) { for projectile in projectiles.iter() { // To triplicate a projectile we need to create 2 more clones for _ in 0..2{ commands.clone_entity(projectile) } } } } ``` ## Solution ### Commands Add a `clone_entity` command to create a clone of an entity with all components that can be cloned. Components that can't be cloned will be ignored. ```rs commands.clone_entity(entity) ``` If there is a need to configure the cloning process (like set to clone recursively), there is a second command: ```rs commands.clone_entity_with(entity, |builder| { builder.recursive(true) }); ``` Both of these commands return `EntityCommands` of the cloned entity, so the copy can be modified afterwards. ### Builder All these commands use `EntityCloneBuilder` internally. If there is a need to clone an entity using `World` instead, it is also possible: ```rs let entity = world.spawn(Component).id(); let entity_clone = world.spawn_empty().id(); EntityCloneBuilder::new(&mut world).clone_entity(entity, entity_clone); ``` Builder has methods to `allow` or `deny` certain components during cloning if required and can be extended by implementing traits on it. This PR includes two `EntityCloneBuilder` extensions: `CloneEntityWithObserversExt` to configure adding cloned entity to observers of the original entity, and `CloneEntityRecursiveExt` to configure cloning an entity recursively. ### Clone implementations By default, all components that implement either `Clone` or `Reflect` will be cloned (with `Clone`-based implementation preferred in case component implements both). This can be overriden on a per-component basis: ```rs impl Component for SomeComponent { const STORAGE_TYPE: StorageType = StorageType::Table; fn get_component_clone_handler() -> ComponentCloneHandler { // Don't clone this component ComponentCloneHandler::Ignore } } ``` ### `ComponentCloneHandlers` Clone implementation specified in `get_component_clone_handler` will get registered in `ComponentCloneHandlers` (stored in `bevy_ecs::component::Components`) at component registration time. The clone handler implementation provided by a component can be overriden after registration like so: ```rs let component_id = world.components().component_id::<Component>().unwrap() world.get_component_clone_handlers_mut() .set_component_handler(component_id, ComponentCloneHandler::Custom(component_clone_custom)) ``` The default clone handler for all components that do not explicitly define one (or don't derive `Component`) is `component_clone_via_reflect` if `bevy_reflect` feature is enabled, and `component_clone_ignore` (noop) otherwise. Default handler can be overriden using `ComponentCloneHandlers::set_default_handler` ### Handlers Component clone handlers can be used to modify component cloning behavior. The general signature for a handler that can be used in `ComponentCloneHandler::Custom` is as follows: ```rs pub fn component_clone_custom( world: &mut DeferredWorld, entity_cloner: &EntityCloner, ) { // implementation } ``` The `EntityCloner` implementation (used internally by `EntityCloneBuilder`) assumes that after calling this custom handler, the `target` entity has the desired version of the component from the `source` entity. ### Builder handler overrides Besides component-defined and world-overriden handlers, `EntityCloneBuilder` also has a way to override handlers locally. It is mainly used to allow configuration methods like `recursive` and `add_observers`. ```rs // From observer clone handler implementation impl CloneEntityWithObserversExt for EntityCloneBuilder<'_> { fn add_observers(&mut self, add_observers: bool) -> &mut Self { if add_observers { self.override_component_clone_handler::<ObservedBy>(ComponentCloneHandler::Custom( component_clone_observed_by, )) } else { self.remove_component_clone_handler_override::<ObservedBy>() } } } ``` ## Testing Includes some basic functionality tests and doctests. Performance-wise this feature is the same as calling `clone` followed by `insert` for every entity component. There is also some inherent overhead due to every component clone handler having to access component data through `World`, but this can be reduced without breaking current public API in a later PR. |
||
![]() |
db1915a1f0
|
Use the fully qualified name for Component in the require attribute (#16378)
# Objective - Describe the objective or issue this PR addresses. Use the fully qualified name for `Component` in the `require` attribute - If you're fixing a specific issue, say "Fixes #X". Fixes #16377 ## Solution - Describe the solution used to achieve the objective above. Use the fully qualified name for `Component` in the `require` attribute, i.e.,`<#ident as #bevy_ecs_path::component::Component>` ## Testing - Did you test these changes? If so, how? `cargo run -p ci -- lints` `cargo run -p ci -- compile` `cargo run -p ci -- test` - Are there any parts that need more testing? no - How can other people (reviewers) test your changes? Is there anything specific they need to know? try to compile ```rust #[derive(::bevy::ecs::component::Component, Default)] pub struct A; #[derive(::bevy::ecs::component::Component)] #[require(A)] pub struct B; ``` - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? Mac only --- </details> ## Migration Guide > This section is optional. If there are no breaking changes, you can delete this section. - If this PR is a breaking change (relative to the last release of Bevy), describe how a user might need to migrate their code to support these changes - Simply adding new functionality is not a breaking change. - Fixing behavior that was definitely a bug, rather than a questionable design choice is not a breaking change. Co-authored-by: Volodymyr Enhelhardt <volodymyr.enhelhardt@ambr.net> |
||
![]() |
f0704cffa4
|
Allow a closure to be used as a required component default (#15269)
# Objective Allow required component default values to be provided in-line. ```rust #[derive(Component)] #[require( FocusPolicy(block_focus_policy) )] struct SomeComponent; fn block_focus_policy() -> FocusPolicy { FocusPolicy::Block } ``` May now be expressed as: ```rust #[derive(Component)] #[require( FocusPolicy(|| FocusPolicy::Block) )] struct SomeComponent; ``` ## Solution Modified the #[require] proc macro to accept a closure. ## Testing Tested using my branch as a dependency, and switching between the inline closure syntax and function syntax for a bunch of different components. |
||
![]() |
f3e8ae03cd
|
Runtime required components (#15458)
# Objective Fixes #15367. Currently, required components can only be defined through the `require` macro attribute. While this should be used in most cases, there are also several instances where you may want to define requirements at runtime, commonly in plugins. Example use cases: - Require components only if the relevant optional plugins are enabled. For example, a `SleepTimer` component (for physics) is only relevant if the `SleepPlugin` is enabled. - Third party crates can define their own requirements for first party types. For example, "each `Handle<Mesh>` should require my custom rendering data components". This also gets around the orphan rule. - Generic plugins that add marker components based on the existence of other components, like a generic `ColliderPlugin<C: AnyCollider>` that wants to add a `ColliderMarker` component for all types of colliders. - This is currently relevant for the retained render world in #15320. The `ExtractComponentPlugin<C>` should add `SyncToRenderWorld` to all components that should be extracted. This is currently done with observers, which is more expensive than required components, and causes archetype moves. - Replace some built-in components with custom versions. For example, if `GlobalTransform` required `Transform` through `TransformPlugin`, but we wanted to use a `CustomTransform` type, we could replace `TransformPlugin` with our own plugin. (This specific example isn't good, but there are likely better use cases where this may be useful) See #15367 for more in-depth reasoning. ## Solution Add `register_required_components::<T, R>` and `register_required_components_with::<T, R>` methods for `Default` and custom constructors respectively. These methods exist on `App` and `World`. ```rust struct BirdPlugin; impl Plugin for BirdPlugin { fn plugin(app: &mut App) { // Make `Bird` require `Wings` with a `Default` constructor. app.register_required_components::<Bird, Wings>(); // Make `Wings` require `FlapSpeed` with a custom constructor. // Fun fact: Some hummingbirds can flutter their wings 80 times per second! app.register_required_components_with::<Wings, FlapSpeed>(|| FlapSpeed::from_duration(1.0 / 80.0)); } } ``` The custom constructor is a function pointer to match the `require` API, though it could take a raw value too. Requirement inheritance works similarly as with the `require` attribute. If `Bird` required `FlapSpeed` directly, it would take precedence over indirectly requiring it through `Wings`. The same logic applies to all levels of the inheritance tree. Note that registering the same component requirement more than once will panic, similarly to trying to add multiple component hooks of the same type to the same component. This avoids constructor conflicts and confusing ordering issues. ### Implementation Runtime requirements have two additional challenges in comparison to the `require` attribute. 1. The `require` attribute uses recursion and macros with clever ordering to populate hash maps of required components for each component type. The expected semantics are that "more specific" requirements override ones deeper in the inheritance tree. However, at runtime, there is no representation of how "specific" each requirement is. 2. If you first register the requirement `X -> Y`, and later register `Y -> Z`, then `X` should also indirectly require `Z`. However, `Y` itself doesn't know that it is required by `X`, so it's not aware that it should update the list of required components for `X`. My solutions to these problems are: 1. Store the depth in the inheritance tree for each entry of a given component's `RequiredComponents`. This is used to determine how "specific" each requirement is. For `require`-based registration, these depths are computed as part of the recursion. 2. Store and maintain a `required_by` list in each component's `ComponentInfo`, next to `required_components`. For `require`-based registration, these are also added after each registration, as part of the recursion. When calling `register_required_components`, it works as follows: 1. Get the required components of `Foo`, and check that `Bar` isn't already a *direct* requirement. 3. Register `Bar` as a required component for `Foo`, and add `Foo` to the `required_by` list for `Bar`. 4. Find and register all indirect requirements inherited from `Bar`, adding `Foo` to the `required_by` list for each component. 5. Iterate through components that require `Foo`, registering the new inherited requires for them as indirect requirements. The runtime registration is likely slightly more expensive than the `require` version, but it is a one-time cost, and quite negligible in practice, unless projects have hundreds or thousands of runtime requirements. I have not benchmarked this however. This does also add a small amount of extra cost to the `require` attribute for updating `required_by` lists, but I expect it to be very minor. ## Testing I added some tests that are copies of the `require` versions, as well as some tests that are more specific to the runtime implementation. I might add a few more tests though. ## Discussion - Is `register_required_components` a good name? Originally I went for `register_component_requirement` to be consistent with `register_component_hooks`, but the general feature is often referred to as "required components", which is why I changed it to `register_required_components`. - Should we *not* panic for duplicate requirements? If so, should they just be ignored, or should the latest registration overwrite earlier ones? - If we do want to panic for duplicate, conflicting registrations, should we at least not panic if the registrations are *exactly* the same, i.e. same component and same constructor? The current implementation panics for all duplicate direct registrations regardless of the constructor. ## Next Steps - Allow `register_required_components` to take a `Bundle` instead of a single required component. - I could also try to do it in this PR if that would be preferable. - Not directly related, but archetype invariants? |
||
![]() |
27bea6abf7
|
Bubbling observers traversal should use query data (#15385)
# Objective Fixes #14331 ## Solution - Make `Traversal` a subtrait of `ReadOnlyQueryData` - Update implementations and usages ## Testing - Updated unit tests ## Migration Guide Update implementations of `Traversal`. --------- Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com> |
||
![]() |
9cdb915809
|
Required Components (#14791)
## Introduction This is the first step in my [Next Generation Scene / UI Proposal](https://github.com/bevyengine/bevy/discussions/14437). Fixes https://github.com/bevyengine/bevy/issues/7272 #14800. Bevy's current Bundles as the "unit of construction" hamstring the UI user experience and have been a pain point in the Bevy ecosystem generally when composing scenes: * They are an additional _object defining_ concept, which must be learned separately from components. Notably, Bundles _are not present at runtime_, which is confusing and limiting. * They can completely erase the _defining component_ during Bundle init. For example, `ButtonBundle { style: Style::default(), ..default() }` _makes no mention_ of the `Button` component symbol, which is what makes the Entity a "button"! * They are not capable of representing "dependency inheritance" without completely non-viable / ergonomically crushing nested bundles. This limitation is especially painful in UI scenarios, but it applies to everything across the board. * They introduce a bunch of additional nesting when defining scenes, making them ugly to look at * They introduce component name "stutter": `SomeBundle { component_name: ComponentName::new() }` * They require copious sprinklings of `..default()` when spawning them in Rust code, due to the additional layer of nesting **Required Components** solve this by allowing you to define which components a given component needs, and how to construct those components when they aren't explicitly provided. This is what a `ButtonBundle` looks like with Bundles (the current approach): ```rust #[derive(Component, Default)] struct Button; #[derive(Bundle, Default)] struct ButtonBundle { pub button: Button, pub node: Node, pub style: Style, pub interaction: Interaction, pub focus_policy: FocusPolicy, pub border_color: BorderColor, pub border_radius: BorderRadius, pub image: UiImage, pub transform: Transform, pub global_transform: GlobalTransform, pub visibility: Visibility, pub inherited_visibility: InheritedVisibility, pub view_visibility: ViewVisibility, pub z_index: ZIndex, } commands.spawn(ButtonBundle { style: Style { width: Val::Px(100.0), height: Val::Px(50.0), ..default() }, focus_policy: FocusPolicy::Block, ..default() }) ``` And this is what it looks like with Required Components: ```rust #[derive(Component)] #[require(Node, UiImage)] struct Button; commands.spawn(( Button, Style { width: Val::Px(100.0), height: Val::Px(50.0), ..default() }, FocusPolicy::Block, )); ``` With Required Components, we mention only the most relevant components. Every component required by `Node` (ex: `Style`, `FocusPolicy`, etc) is automatically brought in! ### Efficiency 1. At insertion/spawn time, Required Components (including recursive required components) are initialized and inserted _as if they were manually inserted alongside the given components_. This means that this is maximally efficient: there are no archetype or table moves. 2. Required components are only initialized and inserted if they were not manually provided by the developer. For the code example in the previous section, because `Style` and `FocusPolicy` are inserted manually, they _will not_ be initialized and inserted as part of the required components system. Efficient! 3. The "missing required components _and_ constructors needed for an insertion" are cached in the "archetype graph edge", meaning they aren't computed per-insertion. When a component is inserted, the "missing required components" list is iterated (and that graph edge (AddBundle) is actually already looked up for us during insertion, because we need that for "normal" insert logic too). ### IDE Integration The `#[require(SomeComponent)]` macro has been written in such a way that Rust Analyzer can provide type-inspection-on-hover and `F12` / go-to-definition for required components. ### Custom Constructors The `require` syntax expects a `Default` constructor by default, but it can be overridden with a custom constructor: ```rust #[derive(Component)] #[require( Node, Style(button_style), UiImage )] struct Button; fn button_style() -> Style { Style { width: Val::Px(100.0), ..default() } } ``` ### Multiple Inheritance You may have noticed by now that this behaves a bit like "multiple inheritance". One of the problems that this presents is that it is possible to have duplicate requires for a given type at different levels of the inheritance tree: ```rust #[derive(Component) struct X(usize); #[derive(Component)] #[require(X(x1)) struct Y; fn x1() -> X { X(1) } #[derive(Component)] #[require( Y, X(x2), )] struct Z; fn x2() -> X { X(2) } // What version of X is inserted for Z? commands.spawn(Z); ``` This is allowed (and encouraged), although this doesn't appear to occur much in practice. First: only one version of `X` is initialized and inserted for `Z`. In the case above, I think we can all probably agree that it makes the most sense to use the `x2` constructor for `X`, because `Y`'s `x1` constructor exists "beneath" `Z` in the inheritance hierarchy; `Z`'s constructor is "more specific". The algorithm is simple and predictable: 1. Use all of the constructors (including default constructors) directly defined in the spawned component's require list 2. In the order the requires are defined in `#[require()]`, recursively visit the require list of each of the components in the list (this is a depth Depth First Search). When a constructor is found, it will only be used if one has not already been found. From a user perspective, just think about this as the following: 1. Specifying a required component constructor for `Foo` directly on a spawned component `Bar` will result in that constructor being used (and overriding existing constructors lower in the inheritance tree). This is the classic "inheritance override" behavior people expect. 2. For cases where "multiple inheritance" results in constructor clashes, Components should be listed in "importance order". List a component earlier in the requirement list to initialize its inheritance tree earlier. Required Components _does_ generally result in a model where component values are decoupled from each other at construction time. Notably, some existing Bundle patterns use bundle constructors to initialize multiple components with shared state. I think (in general) moving away from this is necessary: 1. It allows Required Components (and the Scene system more generally) to operate according to simple rules 2. The "do arbitrary init value sharing in Bundle constructors" approach _already_ causes data consistency problems, and those problems would be exacerbated in the context of a Scene/UI system. For cases where shared state is truly necessary, I think we are better served by observers / hooks. 3. If a situation _truly_ needs shared state constructors (which should be rare / generally discouraged), Bundles are still there if they are needed. ## Next Steps * **Require Construct-ed Components**: I have already implemented this (as defined in the [Next Generation Scene / UI Proposal](https://github.com/bevyengine/bevy/discussions/14437). However I've removed `Construct` support from this PR, as that has not landed yet. Adding this back in requires relatively minimal changes to the current impl, and can be done as part of a future Construct pr. * **Port Built-in Bundles to Required Components**: This isn't something we should do right away. It will require rethinking our public interfaces, which IMO should be done holistically after the rest of Next Generation Scene / UI lands. I think we should merge this PR first and let people experiment _inside their own code with their own Components_ while we wait for the rest of the new scene system to land. * **_Consider_ Automatic Required Component Removal**: We should evaluate _if_ automatic Required Component removal should be done. Ex: if all components that explicitly require a component are removed, automatically remove that component. This issue has been explicitly deferred in this PR, as I consider the insertion behavior to be desirable on its own (and viable on its own). I am also doubtful that we can find a design that has behavior we actually want. Aka: can we _really_ distinguish between a component that is "only there because it was automatically inserted" and "a component that was necessary / should be kept". See my [discussion response here](https://github.com/bevyengine/bevy/discussions/14437#discussioncomment-10268668) for more details. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com> Co-authored-by: Pascal Hertleif <killercup@gmail.com> |
||
![]() |
0f7c548a4a
|
Component Lifecycle Hook & Observer Trigger for replaced values (#14212)
# Objective Fixes #14202 ## Solution Add `on_replaced` component hook and `OnReplaced` observer trigger ## Testing - Did you test these changes? If so, how? - Updated & added unit tests --- ## Changelog - Added new `on_replaced` component hook and `OnReplaced` observer trigger for performing cleanup on component values when they are overwritten with `.insert()` |
||
![]() |
ed2b8e0f35
|
Minimal Bubbling Observers (#13991)
# Objective Add basic bubbling to observers, modeled off `bevy_eventlistener`. ## Solution - Introduce a new `Traversal` trait for components which point to other entities. - Provide a default `TraverseNone: Traversal` component which cannot be constructed. - Implement `Traversal` for `Parent`. - The `Event` trait now has an associated `Traversal` which defaults to `TraverseNone`. - Added a field `bubbling: &mut bool` to `Trigger` which can be used to instruct the runner to bubble the event to the entity specified by the event's traversal type. - Added an associated constant `SHOULD_BUBBLE` to `Event` which configures the default bubbling state. - Added logic to wire this all up correctly. Introducing the new associated information directly on `Event` (instead of a new `BubblingEvent` trait) lets us dispatch both bubbling and non-bubbling events through the same api. ## Testing I have added several unit tests to cover the common bugs I identified during development. Running the unit tests should be enough to validate correctness. The changes effect unsafe portions of the code, but should not change any of the safety assertions. ## Changelog Observers can now bubble up the entity hierarchy! To create a bubbling event, change your `Derive(Event)` to something like the following: ```rust #[derive(Component)] struct MyEvent; impl Event for MyEvent { type Traverse = Parent; // This event will propagate up from child to parent. const AUTO_PROPAGATE: bool = true; // This event will propagate by default. } ``` You can dispatch a bubbling event using the normal `world.trigger_targets(MyEvent, entity)`. Halting an event mid-bubble can be done using `trigger.propagate(false)`. Events with `AUTO_PROPAGATE = false` will not propagate by default, but you can enable it using `trigger.propagate(true)`. If there are multiple observers attached to a target, they will all be triggered by bubbling. They all share a bubbling state, which can be accessed mutably using `trigger.propagation_mut()` (`trigger.propagate` is just sugar for this). You can choose to implement `Traversal` for your own types, if you want to bubble along a different structure than provided by `bevy_hierarchy`. Implementers must be careful never to produce loops, because this will cause bevy to hang. ## Migration Guide + Manual implementations of `Event` should add associated type `Traverse = TraverseNone` and associated constant `AUTO_PROPAGATE = false`; + `Trigger::new` has new field `propagation: &mut Propagation` which provides the bubbling state. + `ObserverRunner` now takes the same `&mut Propagation` as a final parameter. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Torstein Grindvik <52322338+torsteingrindvik@users.noreply.github.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
330911f1bf
|
Component Hook functions as attributes for Component derive macro (#14005)
# Objective Fixes https://github.com/bevyengine/bevy/issues/13972 ## Solution Added 3 new attributes to the `Component` macro. ## Testing Added `component_hook_order_spawn_despawn_with_macro_hooks`, that makes the same as `component_hook_order_spawn_despawn` but uses a struct, that defines it's hooks with the `Component` macro. --- --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> |
||
![]() |
eb3c81374a
|
Generalised ECS reactivity with Observers (#10839)
# Objective - Provide an expressive way to register dynamic behavior in response to ECS changes that is consistent with existing bevy types and traits as to provide a smooth user experience. - Provide a mechanism for immediate changes in response to events during command application in order to facilitate improved query caching on the path to relations. ## Solution - A new fundamental ECS construct, the `Observer`; inspired by flec's observers but adapted to better fit bevy's access patterns and rust's type system. --- ## Examples There are 3 main ways to register observers. The first is a "component observer" that looks like this: ```rust world.observe(|trigger: Trigger<OnAdd, Transform>, query: Query<&Transform>| { let transform = query.get(trigger.entity()).unwrap(); }); ``` The above code will spawn a new entity representing the observer that will run it's callback whenever the `Transform` component is added to an entity. This is a system-like function that supports dependency injection for all the standard bevy types: `Query`, `Res`, `Commands` etc. It also has a `Trigger` parameter that provides information about the trigger such as the target entity, and the event being triggered. Importantly these systems run during command application which is key for their future use to keep ECS internals up to date. There are similar events for `OnInsert` and `OnRemove`, and this will be expanded with things such as `ArchetypeCreated`, `TableEmpty` etc. in follow up PRs. Another way to register an observer is an "entity observer" that looks like this: ```rust world.entity_mut(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Entity observers run whenever an event of their type is triggered targeting that specific entity. This type of observer will de-spawn itself if the entity (or entities) it is observing is ever de-spawned so as to not leave dangling observers. Entity observers can also be spawned from deferred contexts such as other observers, systems, or hooks using commands: ```rust commands.entity(entity).observe(|trigger: Trigger<Resize>| { // ... }); ``` Observers are not limited to in built event types, they can be used with any type that implements `Event` (which has been extended to implement Component). This means events can also carry data: ```rust #[derive(Event)] struct Resize { x: u32, y: u32 } commands.entity(entity).observe(|trigger: Trigger<Resize>, query: Query<&mut Size>| { let event = trigger.event(); // ... }); // Will trigger the observer when commands are applied. commands.trigger_targets(Resize { x: 10, y: 10 }, entity); ``` You can also trigger events that target more than one entity at a time: ```rust commands.trigger_targets(Resize { x: 10, y: 10 }, [e1, e2]); ``` Additionally, Observers don't _need_ entity targets: ```rust app.observe(|trigger: Trigger<Quit>| { }) commands.trigger(Quit); ``` In these cases, `trigger.entity()` will be a placeholder. Observers are actually just normal entities with an `ObserverState` and `Observer` component! The `observe()` functions above are just shorthand for: ```rust world.spawn(Observer::new(|trigger: Trigger<Resize>| {}); ``` This will spawn the `Observer` system and use an `on_add` hook to add the `ObserverState` component. Dynamic components and trigger types are also fully supported allowing for runtime defined trigger types. ## Possible Follow-ups 1. Deprecate `RemovedComponents`, observers should fulfill all use cases while being more flexible and performant. 2. Queries as entities: Swap queries to entities and begin using observers listening to archetype creation triggers to keep their caches in sync, this allows unification of `ObserverState` and `QueryState` as well as unlocking several API improvements for `Query` and the management of `QueryState`. 3. Trigger bubbling: For some UI use cases in particular users are likely to want some form of bubbling for entity observers, this is trivial to implement naively but ideally this includes an acceleration structure to cache hierarchy traversals. 4. All kinds of other in-built trigger types. 5. Optimization; in order to not bloat the complexity of the PR I have kept the implementation straightforward, there are several areas where performance can be improved. The focus for this PR is to get the behavior implemented and not incur a performance cost for users who don't use observers. I am leaving each of these to follow up PR's in order to keep each of them reviewable as this already includes significant changes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: MiniaczQ <xnetroidpl@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
dc40cd134f
|
Remove ComponentStorage and associated types (#12311)
# Objective When doing a final pass for #3362, it appeared that `ComponentStorage` as a trait, the two types implementing it, and the associated type on `Component` aren't really necessary anymore. This likely was due to an earlier constraint on the use of consts in traits, but that definitely doesn't seem to be a problem in Rust 1.76. ## Solution Remove them. --- ## Changelog Changed: `Component::Storage` has been replaced with `Component::STORAGE_TYPE` as a const. Removed: `bevy::ecs::component::ComponentStorage` trait Removed: `bevy::ecs::component::TableStorage` struct Removed: `bevy::ecs::component::SparseSetStorage` struct ## Migration Guide If you were manually implementing `Component` instead of using the derive macro, replace the associated `Storage` associated type with the `STORAGE_TYPE` const: ```rust // in Bevy 0.13 impl Component for MyComponent { type Storage = TableStorage; } // in Bevy 0.14 impl Component for MyComponent { const STORAGE_TYPE: StorageType = StorageType::Table; } ``` Component is no longer object safe. If you were relying on `&dyn Component`, `Box<dyn Component>`, etc. please [file an issue ](https://github.com/bevyengine/bevy/issues) to get [this change](https://github.com/bevyengine/bevy/pull/12311) reverted. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
ffc572728f
|
Fix typos throughout the project (#9090)
# Objective
Fix typos throughout the project.
## Solution
[`typos`](https://github.com/crate-ci/typos) project was used for
scanning, but no automatic corrections were applied. I checked
everything by hand before fixing.
Most of the changes are documentation/comments corrections. Also, there
are few trivial changes to code (variable name, pub(crate) function name
and a few error/panic messages).
## Unsolved
`bevy_reflect_derive` has
[typo](
|
||
![]() |
89cbc78d3d
|
Require #[derive(Event)] on all Events (#7086)
# Objective Be consistent with `Resource`s and `Components` and have `Event` types be more self-documenting. Although not susceptible to accidentally using a function instead of a value due to `Event`s only being initialized by their type, much of the same reasoning for removing the blanket impl on `Resource` also applies here. * Not immediately obvious if a type is intended to be an event * Prevent invisible conflicts if the same third-party or primitive types are used as events * Allows for further extensions (e.g. opt-in warning for missed events) ## Solution Remove the blanket impl for the `Event` trait. Add a derive macro for it. --- ## Changelog - `Event` is no longer implemented for all applicable types. Add the `#[derive(Event)]` macro for events. ## Migration Guide * Add the `#[derive(Event)]` macro for events. Third-party types used as events should be wrapped in a newtype. |
||
![]() |
0736195a1e
|
update syn, encase, glam and hexasphere (#8573)
# Objective - Fixes #8282 - Update `syn` to 2.0, `encase` to 0.6, `glam` to 0.24 and `hexasphere` to 9.0 Blocked ~~on https://github.com/teoxoy/encase/pull/42~~ and ~~on https://github.com/OptimisticPeach/hexasphere/pull/17~~ --------- Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> Co-authored-by: JoJoJet <21144246+JoJoJet@users.noreply.github.com> |