## Objective
Fixes#1515
This PR implements a flexible entity cloning system. The primary use
case for it is to clone dynamically-generated entities.
Example:
```rs
#[derive(Component, Clone)]
pub struct Projectile;
#[derive(Component, Clone)]
pub struct Damage {
value: f32,
}
fn player_input(
mut commands: Commands,
projectiles: Query<Entity, With<Projectile>>,
input: Res<ButtonInput<KeyCode>>,
) {
// Fire a projectile
if input.just_pressed(KeyCode::KeyF) {
commands.spawn((Projectile, Damage { value: 10.0 }));
}
// Triplicate all active projectiles
if input.just_pressed(KeyCode::KeyT) {
for projectile in projectiles.iter() {
// To triplicate a projectile we need to create 2 more clones
for _ in 0..2{
commands.clone_entity(projectile)
}
}
}
}
```
## Solution
### Commands
Add a `clone_entity` command to create a clone of an entity with all
components that can be cloned. Components that can't be cloned will be
ignored.
```rs
commands.clone_entity(entity)
```
If there is a need to configure the cloning process (like set to clone
recursively), there is a second command:
```rs
commands.clone_entity_with(entity, |builder| {
builder.recursive(true)
});
```
Both of these commands return `EntityCommands` of the cloned entity, so
the copy can be modified afterwards.
### Builder
All these commands use `EntityCloneBuilder` internally. If there is a
need to clone an entity using `World` instead, it is also possible:
```rs
let entity = world.spawn(Component).id();
let entity_clone = world.spawn_empty().id();
EntityCloneBuilder::new(&mut world).clone_entity(entity, entity_clone);
```
Builder has methods to `allow` or `deny` certain components during
cloning if required and can be extended by implementing traits on it.
This PR includes two `EntityCloneBuilder` extensions:
`CloneEntityWithObserversExt` to configure adding cloned entity to
observers of the original entity, and `CloneEntityRecursiveExt` to
configure cloning an entity recursively.
### Clone implementations
By default, all components that implement either `Clone` or `Reflect`
will be cloned (with `Clone`-based implementation preferred in case
component implements both).
This can be overriden on a per-component basis:
```rs
impl Component for SomeComponent {
const STORAGE_TYPE: StorageType = StorageType::Table;
fn get_component_clone_handler() -> ComponentCloneHandler {
// Don't clone this component
ComponentCloneHandler::Ignore
}
}
```
### `ComponentCloneHandlers`
Clone implementation specified in `get_component_clone_handler` will get
registered in `ComponentCloneHandlers` (stored in
`bevy_ecs::component::Components`) at component registration time.
The clone handler implementation provided by a component can be
overriden after registration like so:
```rs
let component_id = world.components().component_id::<Component>().unwrap()
world.get_component_clone_handlers_mut()
.set_component_handler(component_id, ComponentCloneHandler::Custom(component_clone_custom))
```
The default clone handler for all components that do not explicitly
define one (or don't derive `Component`) is
`component_clone_via_reflect` if `bevy_reflect` feature is enabled, and
`component_clone_ignore` (noop) otherwise.
Default handler can be overriden using
`ComponentCloneHandlers::set_default_handler`
### Handlers
Component clone handlers can be used to modify component cloning
behavior. The general signature for a handler that can be used in
`ComponentCloneHandler::Custom` is as follows:
```rs
pub fn component_clone_custom(
world: &mut DeferredWorld,
entity_cloner: &EntityCloner,
) {
// implementation
}
```
The `EntityCloner` implementation (used internally by
`EntityCloneBuilder`) assumes that after calling this custom handler,
the `target` entity has the desired version of the component from the
`source` entity.
### Builder handler overrides
Besides component-defined and world-overriden handlers,
`EntityCloneBuilder` also has a way to override handlers locally. It is
mainly used to allow configuration methods like `recursive` and
`add_observers`.
```rs
// From observer clone handler implementation
impl CloneEntityWithObserversExt for EntityCloneBuilder<'_> {
fn add_observers(&mut self, add_observers: bool) -> &mut Self {
if add_observers {
self.override_component_clone_handler::<ObservedBy>(ComponentCloneHandler::Custom(
component_clone_observed_by,
))
} else {
self.remove_component_clone_handler_override::<ObservedBy>()
}
}
}
```
## Testing
Includes some basic functionality tests and doctests.
Performance-wise this feature is the same as calling `clone` followed by
`insert` for every entity component. There is also some inherent
overhead due to every component clone handler having to access component
data through `World`, but this can be reduced without breaking current
public API in a later PR.
Co-authored by: @BenjaminBrienen
# Objective
Fixes#16494. Closes#16539, which this replaces. Suggestions alone
weren't enough, so now we have a new PR!
---------
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
- Fixes#16406 even more. The previous implementation did not take into
account the depth of the requiree when setting the depth relative to the
required_by component.
## Solution
- Add the depth of the requiree!
## Testing
- Added a test.
---------
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- Fixes#16406
- Fixes an issue where registering a "deeper" required component, then a
"shallower" required component, would result in the wrong required
constructor being used for the root component.
## Solution
- Make `register_required_components` add any "parent" of a component as
`required_by` to the new "child".
- Assign the depth of the `requiree` plus 1 as the depth of a new
runtime required component.
## Testing
- Added two new tests.
# Objective
Fixes#16406.
Currently, the `#[require(...)]` attribute internally registers
component requirements using `register_required_components_manual`. This
is done recursively in a way where every requirement in the "inheritance
tree" is added into a flat `RequiredComponents` hash map with component
constructors and inheritance depths stored.
However, this does not consider runtime requirements: if a plugins has
already registered `C` as required by `B`, and a component `A` requires
`B` through the macro attribute, spawning an entity with `A` won't add
`C`. The `required_by` hash set for `C` doesn't have `A`, and the
`RequiredComponents` of `A` don't have `C`.
Intuitively, I would've thought that the macro attribute's requirements
were always added *before* runtime requirements, and in that case I
believe this shouldn't have been an issue. But the macro requirements
are based on `Component::register_required_components`, which in a lot
of cases (I think) is only called *after* the first time a bundle with
the component is inserted. So if a runtime requirement is defined
*before* this (as is often the case, during `Plugin::build`), the macro
may not take it into account.
## Solution
Register requirements inherited from the `required` component in
`register_required_components_manual_unchecked`.
## Testing
I added a test, essentially the same as in #16406, and it now passes. I
also ran some of the tests in #16409, and they seem to work as expected.
All the existing tests for required components pass.
# Objective
After #12929 we no longer have methods to get component or ticks for
previously obtained table column.
It's possible to use a lower level API by indexing the slice, but then
it won't be possible to construct `ComponentTicks`.
## Solution
Make `ComponentTicks` fields public. They don't hold any invariants and
you can't get a mutable reference to the struct in Bevy.
I also removed the getters since they are no longer needed.
## Testing
- I tested the compilation
---
## Migration Guide
- Instead of using `ComponentTicks::last_changed_tick` and
`ComponentTicks::added_tick` methods, access fields directly.
# Objective
Allow required component default values to be provided in-line.
```rust
#[derive(Component)]
#[require(
FocusPolicy(block_focus_policy)
)]
struct SomeComponent;
fn block_focus_policy() -> FocusPolicy {
FocusPolicy::Block
}
```
May now be expressed as:
```rust
#[derive(Component)]
#[require(
FocusPolicy(|| FocusPolicy::Block)
)]
struct SomeComponent;
```
## Solution
Modified the #[require] proc macro to accept a closure.
## Testing
Tested using my branch as a dependency, and switching between the inline
closure syntax and function syntax for a bunch of different components.
# Objective
Fixes#15367.
Currently, required components can only be defined through the `require`
macro attribute. While this should be used in most cases, there are also
several instances where you may want to define requirements at runtime,
commonly in plugins.
Example use cases:
- Require components only if the relevant optional plugins are enabled.
For example, a `SleepTimer` component (for physics) is only relevant if
the `SleepPlugin` is enabled.
- Third party crates can define their own requirements for first party
types. For example, "each `Handle<Mesh>` should require my custom
rendering data components". This also gets around the orphan rule.
- Generic plugins that add marker components based on the existence of
other components, like a generic `ColliderPlugin<C: AnyCollider>` that
wants to add a `ColliderMarker` component for all types of colliders.
- This is currently relevant for the retained render world in #15320.
The `ExtractComponentPlugin<C>` should add `SyncToRenderWorld` to all
components that should be extracted. This is currently done with
observers, which is more expensive than required components, and causes
archetype moves.
- Replace some built-in components with custom versions. For example, if
`GlobalTransform` required `Transform` through `TransformPlugin`, but we
wanted to use a `CustomTransform` type, we could replace
`TransformPlugin` with our own plugin. (This specific example isn't
good, but there are likely better use cases where this may be useful)
See #15367 for more in-depth reasoning.
## Solution
Add `register_required_components::<T, R>` and
`register_required_components_with::<T, R>` methods for `Default` and
custom constructors respectively. These methods exist on `App` and
`World`.
```rust
struct BirdPlugin;
impl Plugin for BirdPlugin {
fn plugin(app: &mut App) {
// Make `Bird` require `Wings` with a `Default` constructor.
app.register_required_components::<Bird, Wings>();
// Make `Wings` require `FlapSpeed` with a custom constructor.
// Fun fact: Some hummingbirds can flutter their wings 80 times per second!
app.register_required_components_with::<Wings, FlapSpeed>(|| FlapSpeed::from_duration(1.0 / 80.0));
}
}
```
The custom constructor is a function pointer to match the `require` API,
though it could take a raw value too.
Requirement inheritance works similarly as with the `require` attribute.
If `Bird` required `FlapSpeed` directly, it would take precedence over
indirectly requiring it through `Wings`. The same logic applies to all
levels of the inheritance tree.
Note that registering the same component requirement more than once will
panic, similarly to trying to add multiple component hooks of the same
type to the same component. This avoids constructor conflicts and
confusing ordering issues.
### Implementation
Runtime requirements have two additional challenges in comparison to the
`require` attribute.
1. The `require` attribute uses recursion and macros with clever
ordering to populate hash maps of required components for each component
type. The expected semantics are that "more specific" requirements
override ones deeper in the inheritance tree. However, at runtime, there
is no representation of how "specific" each requirement is.
2. If you first register the requirement `X -> Y`, and later register `Y
-> Z`, then `X` should also indirectly require `Z`. However, `Y` itself
doesn't know that it is required by `X`, so it's not aware that it
should update the list of required components for `X`.
My solutions to these problems are:
1. Store the depth in the inheritance tree for each entry of a given
component's `RequiredComponents`. This is used to determine how
"specific" each requirement is. For `require`-based registration, these
depths are computed as part of the recursion.
2. Store and maintain a `required_by` list in each component's
`ComponentInfo`, next to `required_components`. For `require`-based
registration, these are also added after each registration, as part of
the recursion.
When calling `register_required_components`, it works as follows:
1. Get the required components of `Foo`, and check that `Bar` isn't
already a *direct* requirement.
3. Register `Bar` as a required component for `Foo`, and add `Foo` to
the `required_by` list for `Bar`.
4. Find and register all indirect requirements inherited from `Bar`,
adding `Foo` to the `required_by` list for each component.
5. Iterate through components that require `Foo`, registering the new
inherited requires for them as indirect requirements.
The runtime registration is likely slightly more expensive than the
`require` version, but it is a one-time cost, and quite negligible in
practice, unless projects have hundreds or thousands of runtime
requirements. I have not benchmarked this however.
This does also add a small amount of extra cost to the `require`
attribute for updating `required_by` lists, but I expect it to be very
minor.
## Testing
I added some tests that are copies of the `require` versions, as well as
some tests that are more specific to the runtime implementation. I might
add a few more tests though.
## Discussion
- Is `register_required_components` a good name? Originally I went for
`register_component_requirement` to be consistent with
`register_component_hooks`, but the general feature is often referred to
as "required components", which is why I changed it to
`register_required_components`.
- Should we *not* panic for duplicate requirements? If so, should they
just be ignored, or should the latest registration overwrite earlier
ones?
- If we do want to panic for duplicate, conflicting registrations,
should we at least not panic if the registrations are *exactly* the
same, i.e. same component and same constructor? The current
implementation panics for all duplicate direct registrations regardless
of the constructor.
## Next Steps
- Allow `register_required_components` to take a `Bundle` instead of a
single required component.
- I could also try to do it in this PR if that would be preferable.
- Not directly related, but archetype invariants?
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Fixes#15451
## Migration Guide
- `World::init_component` has been renamed to `register_component`.
- `World::init_component_with_descriptor` has been renamed to
`register_component_with_descriptor`.
- `World::init_bundle` has been renamed to `register_bundle`.
- `Components::init_component` has been renamed to `register_component`.
- `Components::init_component_with_descriptor` has been renamed to
`register_component_with_descriptor`.
- `Components::init_resource` has been renamed to `register_resource`.
- `Components::init_non_send` had been renamed to `register_non_send`.
Enabled `check-private-items` in `clippy.toml` and then fixed the
resulting errors. Most of these were simply misformatted and of the
remaining:
- ~Added `#[allow(clippy::missing_safety_doc)]` to~ Removed unsafe from
a pair of functions in `bevy_utils/futures` which are only unsafe so
that they can be passed to a function which requires `unsafe fn`
- Removed `unsafe` from `UnsafeWorldCell::observers` as from what I can
tell it is always safe like `components`, `bundles` etc. (this should be
checked)
- Added safety docs to:
- `Bundles::get_storage_unchecked`: Based on the function that writes to
`dynamic_component_storages`
- `Bundles::get_storages_unchecked`: Based on the function that writes
to `dynamic_bundle_storages`
- `QueryIterationCursor::init_empty`: Duplicated from `init`
- `QueryIterationCursor::peek_last`: Thanks Giooschi (also added
internal unsafe blocks)
- `tests::drop_ptr`: Moved safety comment out to the doc string
This lint would also apply to `missing_errors_doc`, `missing_panics_doc`
and `unnecessary_safety_doc` if we chose to enable any of those at some
point, although there is an open
[issue](https://github.com/rust-lang/rust-clippy/issues/13074) to
separate these options.
## Introduction
This is the first step in my [Next Generation Scene / UI
Proposal](https://github.com/bevyengine/bevy/discussions/14437).
Fixes https://github.com/bevyengine/bevy/issues/7272#14800.
Bevy's current Bundles as the "unit of construction" hamstring the UI
user experience and have been a pain point in the Bevy ecosystem
generally when composing scenes:
* They are an additional _object defining_ concept, which must be
learned separately from components. Notably, Bundles _are not present at
runtime_, which is confusing and limiting.
* They can completely erase the _defining component_ during Bundle init.
For example, `ButtonBundle { style: Style::default(), ..default() }`
_makes no mention_ of the `Button` component symbol, which is what makes
the Entity a "button"!
* They are not capable of representing "dependency inheritance" without
completely non-viable / ergonomically crushing nested bundles. This
limitation is especially painful in UI scenarios, but it applies to
everything across the board.
* They introduce a bunch of additional nesting when defining scenes,
making them ugly to look at
* They introduce component name "stutter": `SomeBundle { component_name:
ComponentName::new() }`
* They require copious sprinklings of `..default()` when spawning them
in Rust code, due to the additional layer of nesting
**Required Components** solve this by allowing you to define which
components a given component needs, and how to construct those
components when they aren't explicitly provided.
This is what a `ButtonBundle` looks like with Bundles (the current
approach):
```rust
#[derive(Component, Default)]
struct Button;
#[derive(Bundle, Default)]
struct ButtonBundle {
pub button: Button,
pub node: Node,
pub style: Style,
pub interaction: Interaction,
pub focus_policy: FocusPolicy,
pub border_color: BorderColor,
pub border_radius: BorderRadius,
pub image: UiImage,
pub transform: Transform,
pub global_transform: GlobalTransform,
pub visibility: Visibility,
pub inherited_visibility: InheritedVisibility,
pub view_visibility: ViewVisibility,
pub z_index: ZIndex,
}
commands.spawn(ButtonBundle {
style: Style {
width: Val::Px(100.0),
height: Val::Px(50.0),
..default()
},
focus_policy: FocusPolicy::Block,
..default()
})
```
And this is what it looks like with Required Components:
```rust
#[derive(Component)]
#[require(Node, UiImage)]
struct Button;
commands.spawn((
Button,
Style {
width: Val::Px(100.0),
height: Val::Px(50.0),
..default()
},
FocusPolicy::Block,
));
```
With Required Components, we mention only the most relevant components.
Every component required by `Node` (ex: `Style`, `FocusPolicy`, etc) is
automatically brought in!
### Efficiency
1. At insertion/spawn time, Required Components (including recursive
required components) are initialized and inserted _as if they were
manually inserted alongside the given components_. This means that this
is maximally efficient: there are no archetype or table moves.
2. Required components are only initialized and inserted if they were
not manually provided by the developer. For the code example in the
previous section, because `Style` and `FocusPolicy` are inserted
manually, they _will not_ be initialized and inserted as part of the
required components system. Efficient!
3. The "missing required components _and_ constructors needed for an
insertion" are cached in the "archetype graph edge", meaning they aren't
computed per-insertion. When a component is inserted, the "missing
required components" list is iterated (and that graph edge (AddBundle)
is actually already looked up for us during insertion, because we need
that for "normal" insert logic too).
### IDE Integration
The `#[require(SomeComponent)]` macro has been written in such a way
that Rust Analyzer can provide type-inspection-on-hover and `F12` /
go-to-definition for required components.
### Custom Constructors
The `require` syntax expects a `Default` constructor by default, but it
can be overridden with a custom constructor:
```rust
#[derive(Component)]
#[require(
Node,
Style(button_style),
UiImage
)]
struct Button;
fn button_style() -> Style {
Style {
width: Val::Px(100.0),
..default()
}
}
```
### Multiple Inheritance
You may have noticed by now that this behaves a bit like "multiple
inheritance". One of the problems that this presents is that it is
possible to have duplicate requires for a given type at different levels
of the inheritance tree:
```rust
#[derive(Component)
struct X(usize);
#[derive(Component)]
#[require(X(x1))
struct Y;
fn x1() -> X {
X(1)
}
#[derive(Component)]
#[require(
Y,
X(x2),
)]
struct Z;
fn x2() -> X {
X(2)
}
// What version of X is inserted for Z?
commands.spawn(Z);
```
This is allowed (and encouraged), although this doesn't appear to occur
much in practice. First: only one version of `X` is initialized and
inserted for `Z`. In the case above, I think we can all probably agree
that it makes the most sense to use the `x2` constructor for `X`,
because `Y`'s `x1` constructor exists "beneath" `Z` in the inheritance
hierarchy; `Z`'s constructor is "more specific".
The algorithm is simple and predictable:
1. Use all of the constructors (including default constructors) directly
defined in the spawned component's require list
2. In the order the requires are defined in `#[require()]`, recursively
visit the require list of each of the components in the list (this is a
depth Depth First Search). When a constructor is found, it will only be
used if one has not already been found.
From a user perspective, just think about this as the following:
1. Specifying a required component constructor for `Foo` directly on a
spawned component `Bar` will result in that constructor being used (and
overriding existing constructors lower in the inheritance tree). This is
the classic "inheritance override" behavior people expect.
2. For cases where "multiple inheritance" results in constructor
clashes, Components should be listed in "importance order". List a
component earlier in the requirement list to initialize its inheritance
tree earlier.
Required Components _does_ generally result in a model where component
values are decoupled from each other at construction time. Notably, some
existing Bundle patterns use bundle constructors to initialize multiple
components with shared state. I think (in general) moving away from this
is necessary:
1. It allows Required Components (and the Scene system more generally)
to operate according to simple rules
2. The "do arbitrary init value sharing in Bundle constructors" approach
_already_ causes data consistency problems, and those problems would be
exacerbated in the context of a Scene/UI system. For cases where shared
state is truly necessary, I think we are better served by observers /
hooks.
3. If a situation _truly_ needs shared state constructors (which should
be rare / generally discouraged), Bundles are still there if they are
needed.
## Next Steps
* **Require Construct-ed Components**: I have already implemented this
(as defined in the [Next Generation Scene / UI
Proposal](https://github.com/bevyengine/bevy/discussions/14437). However
I've removed `Construct` support from this PR, as that has not landed
yet. Adding this back in requires relatively minimal changes to the
current impl, and can be done as part of a future Construct pr.
* **Port Built-in Bundles to Required Components**: This isn't something
we should do right away. It will require rethinking our public
interfaces, which IMO should be done holistically after the rest of Next
Generation Scene / UI lands. I think we should merge this PR first and
let people experiment _inside their own code with their own Components_
while we wait for the rest of the new scene system to land.
* **_Consider_ Automatic Required Component Removal**: We should
evaluate _if_ automatic Required Component removal should be done. Ex:
if all components that explicitly require a component are removed,
automatically remove that component. This issue has been explicitly
deferred in this PR, as I consider the insertion behavior to be
desirable on its own (and viable on its own). I am also doubtful that we
can find a design that has behavior we actually want. Aka: can we
_really_ distinguish between a component that is "only there because it
was automatically inserted" and "a component that was necessary / should
be kept". See my [discussion response
here](https://github.com/bevyengine/bevy/discussions/14437#discussioncomment-10268668)
for more details.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Pascal Hertleif <killercup@gmail.com>
# Objective
Fixes#14202
## Solution
Add `on_replaced` component hook and `OnReplaced` observer trigger
## Testing
- Did you test these changes? If so, how?
- Updated & added unit tests
---
## Changelog
- Added new `on_replaced` component hook and `OnReplaced` observer
trigger for performing cleanup on component values when they are
overwritten with `.insert()`
# Objective
Fixes https://github.com/bevyengine/bevy/issues/13972
## Solution
Added 3 new attributes to the `Component` macro.
## Testing
Added `component_hook_order_spawn_despawn_with_macro_hooks`, that makes
the same as `component_hook_order_spawn_despawn` but uses a struct, that
defines it's hooks with the `Component` macro.
---
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
…izer (#13442)"
This reverts commit 5cfb063d4a.
- This PR broke bevy-trait-query, which needs to be able to write a
resource in init_state. See #13798 for more details.
- Note this doesn't fix everything as transmutes for bevy-trait-query
will still be broken,. But the current usage in that crate is UB, so we
need to find another solution.
# Objective
In #13343, `WorldQuery::get_state` was constrained from `&World` as the
argument to `&Components`, but `WorldQuery::init_state` hasn't yet been
changed from `&mut World` to match.
Fixes#13358
## Solution
Create a wrapper around `&mut Components` and `&mut Storages` that can
be obtained from `&mut World` with a `component_initializer` method.
This new `ComponentInitializer` re-exposes the API on `&mut Components`
minus the `&mut Storages` parameter where it was present. For the
`&Components` API, it simply derefs to its `components` field.
## Changelog
### Added
The `World::component_initializer` method.
The `ComponentInitializer` struct that re-exposes `Components` API.
### Changed
`WorldQuery::init_state` now takes `&mut ComponentInitializer` instead
of `&mut World`.
## Migration Guide
Instead of passing `&mut World` to `WorldQuery::init_state` directly,
pass in a mutable reference to the struct returned from
`World::component_initializer`.
# Objective
While reviewing the other open hooks-related PRs, I found that the docs
on the `ComponentHooks` struct itself didn't give enough information
about how and why the feature could be used.
## Solution
1. Clean up the docs to add additional context.
2. Add a doc test demonstrating simple usage.
## Testing
The doc test passes locally.
---------
Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com>
# Objective
- Fixes#12377
## Solution
Added simple `#[diagnostic::on_unimplemented(...)]` attributes to some
critical public traits providing a more approachable initial error
message. Where appropriate, a `note` is added indicating that a `derive`
macro is available.
## Examples
<details>
<summary>Examples hidden for brevity</summary>
Below is a collection of examples showing the new error messages
produced by this change. In general, messages will start with a more
Bevy-centric error message (e.g., _`MyComponent` is not a `Component`_),
and a note directing the user to an available derive macro where
appropriate.
### Missing `#[derive(Resource)]`
<details>
<summary>Example Code</summary>
```rust
use bevy::prelude::*;
struct MyResource;
fn main() {
App::new()
.insert_resource(MyResource)
.run();
}
```
</details>
<details>
<summary>Error Generated</summary>
```error
error[E0277]: `MyResource` is not a `Resource`
--> examples/app/empty.rs:7:26
|
7 | .insert_resource(MyResource)
| --------------- ^^^^^^^^^^ invalid `Resource`
| |
| required by a bound introduced by this call
|
= help: the trait `Resource` is not implemented for `MyResource`
= note: consider annotating `MyResource` with `#[derive(Resource)]`
= help: the following other types implement trait `Resource`:
AccessibilityRequested
ManageAccessibilityUpdates
bevy::bevy_a11y::Focus
DiagnosticsStore
FrameCount
bevy::prelude::State<S>
SystemInfo
bevy::prelude::Axis<T>
and 141 others
note: required by a bound in `bevy::prelude::App::insert_resource`
--> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:419:31
|
419 | pub fn insert_resource<R: Resource>(&mut self, resource: R) -> &mut Self {
| ^^^^^^^^ required by this bound in `App::insert_resource`
```
</details>
### Putting A `QueryData` in a `QueryFilter` Slot
<details>
<summary>Example Code</summary>
```rust
use bevy::prelude::*;
#[derive(Component)]
struct A;
#[derive(Component)]
struct B;
fn my_system(_query: Query<&A, &B>) {}
fn main() {
App::new()
.add_systems(Update, my_system)
.run();
}
```
</details>
<details>
<summary>Error Generated</summary>
```error
error[E0277]: `&B` is not a valid `Query` filter
--> examples/app/empty.rs:9:22
|
9 | fn my_system(_query: Query<&A, &B>) {}
| ^^^^^^^^^^^^^ invalid `Query` filter
|
= help: the trait `QueryFilter` is not implemented for `&B`
= help: the following other types implement trait `QueryFilter`:
With<T>
Without<T>
bevy::prelude::Or<()>
bevy::prelude::Or<(F0,)>
bevy::prelude::Or<(F0, F1)>
bevy::prelude::Or<(F0, F1, F2)>
bevy::prelude::Or<(F0, F1, F2, F3)>
bevy::prelude::Or<(F0, F1, F2, F3, F4)>
and 28 others
note: required by a bound in `bevy::prelude::Query`
--> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\query.rs:349:51
|
349 | pub struct Query<'world, 'state, D: QueryData, F: QueryFilter = ()> {
| ^^^^^^^^^^^ required by this bound in `Query`
```
</details>
### Missing `#[derive(Component)]`
<details>
<summary>Example Code</summary>
```rust
use bevy::prelude::*;
struct A;
fn my_system(mut commands: Commands) {
commands.spawn(A);
}
fn main() {
App::new()
.add_systems(Startup, my_system)
.run();
}
```
</details>
<details>
<summary>Error Generated</summary>
```error
error[E0277]: `A` is not a `Bundle`
--> examples/app/empty.rs:6:20
|
6 | commands.spawn(A);
| ----- ^ invalid `Bundle`
| |
| required by a bound introduced by this call
|
= help: the trait `bevy::prelude::Component` is not implemented for `A`, which is required by `A: Bundle`
= note: consider annotating `A` with `#[derive(Component)]` or `#[derive(Bundle)]`
= help: the following other types implement trait `Bundle`:
TransformBundle
SceneBundle
DynamicSceneBundle
AudioSourceBundle<Source>
SpriteBundle
SpriteSheetBundle
Text2dBundle
MaterialMesh2dBundle<M>
and 34 others
= note: required for `A` to implement `Bundle`
note: required by a bound in `bevy::prelude::Commands::<'w, 's>::spawn`
--> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\commands\mod.rs:243:21
|
243 | pub fn spawn<T: Bundle>(&mut self, bundle: T) -> EntityCommands {
| ^^^^^^ required by this bound in `Commands::<'w, 's>::spawn`
```
</details>
### Missing `#[derive(Asset)]`
<details>
<summary>Example Code</summary>
```rust
use bevy::prelude::*;
struct A;
fn main() {
App::new()
.init_asset::<A>()
.run();
}
```
</details>
<details>
<summary>Error Generated</summary>
```error
error[E0277]: `A` is not an `Asset`
--> examples/app/empty.rs:7:23
|
7 | .init_asset::<A>()
| ---------- ^ invalid `Asset`
| |
| required by a bound introduced by this call
|
= help: the trait `Asset` is not implemented for `A`
= note: consider annotating `A` with `#[derive(Asset)]`
= help: the following other types implement trait `Asset`:
Font
AnimationGraph
DynamicScene
Scene
AudioSource
Pitch
bevy::bevy_gltf::Gltf
GltfNode
and 17 others
note: required by a bound in `init_asset`
--> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_asset\src\lib.rs:307:22
|
307 | fn init_asset<A: Asset>(&mut self) -> &mut Self;
| ^^^^^ required by this bound in `AssetApp::init_asset`
```
</details>
### Mismatched Input and Output on System Piping
<details>
<summary>Example Code</summary>
```rust
use bevy::prelude::*;
fn producer() -> u32 {
123
}
fn consumer(_: In<u16>) {}
fn main() {
App::new()
.add_systems(Update, producer.pipe(consumer))
.run();
}
```
</details>
<details>
<summary>Error Generated</summary>
```error
error[E0277]: `fn(bevy::prelude::In<u16>) {consumer}` is not a valid system with input `u32` and output `_`
--> examples/app/empty.rs:11:44
|
11 | .add_systems(Update, producer.pipe(consumer))
| ---- ^^^^^^^^ invalid system
| |
| required by a bound introduced by this call
|
= help: the trait `bevy::prelude::IntoSystem<u32, _, _>` is not implemented for fn item `fn(bevy::prelude::In<u16>) {consumer}`
= note: expecting a system which consumes `u32` and produces `_`
note: required by a bound in `pipe`
--> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_ecs\src\system\mod.rs:168:12
|
166 | fn pipe<B, Final, MarkerB>(self, system: B) -> PipeSystem<Self::System, B::System>
| ---- required by a bound in this associated function
167 | where
168 | B: IntoSystem<Out, Final, MarkerB>,
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `IntoSystem::pipe`
```
</details>
### Missing Reflection
<details>
<summary>Example Code</summary>
```rust
use bevy::prelude::*;
#[derive(Component)]
struct MyComponent;
fn main() {
App::new()
.register_type::<MyComponent>()
.run();
}
```
</details>
<details>
<summary>Error Generated</summary>
```error
error[E0277]: `MyComponent` does not provide type registration information
--> examples/app/empty.rs:8:26
|
8 | .register_type::<MyComponent>()
| ------------- ^^^^^^^^^^^ the trait `GetTypeRegistration` is not implemented for `MyComponent`
| |
| required by a bound introduced by this call
|
= note: consider annotating `MyComponent` with `#[derive(Reflect)]`
= help: the following other types implement trait `GetTypeRegistration`:
bool
char
isize
i8
i16
i32
i64
i128
and 443 others
note: required by a bound in `bevy::prelude::App::register_type`
--> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:619:29
|
619 | pub fn register_type<T: bevy_reflect::GetTypeRegistration>(&mut self) -> &mut Self {
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::register_type`
```
</details>
### Missing `#[derive(States)]` Implementation
<details>
<summary>Example Code</summary>
```rust
use bevy::prelude::*;
#[derive(Debug, Clone, Copy, Default, Eq, PartialEq, Hash)]
enum AppState {
#[default]
Menu,
InGame {
paused: bool,
turbo: bool,
},
}
fn main() {
App::new()
.init_state::<AppState>()
.run();
}
```
</details>
<details>
<summary>Error Generated</summary>
```error
error[E0277]: the trait bound `AppState: FreelyMutableState` is not satisfied
--> examples/app/empty.rs:15:23
|
15 | .init_state::<AppState>()
| ---------- ^^^^^^^^ the trait `FreelyMutableState` is not implemented for `AppState`
| |
| required by a bound introduced by this call
|
= note: consider annotating `AppState` with `#[derive(States)]`
note: required by a bound in `bevy::prelude::App::init_state`
--> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:282:26
|
282 | pub fn init_state<S: FreelyMutableState + FromWorld>(&mut self) -> &mut Self {
| ^^^^^^^^^^^^^^^^^^ required by this bound in `App::init_state`
```
</details>
### Adding a `System` with Unhandled Output
<details>
<summary>Example Code</summary>
```rust
use bevy::prelude::*;
fn producer() -> u32 {
123
}
fn main() {
App::new()
.add_systems(Update, consumer)
.run();
}
```
</details>
<details>
<summary>Error Generated</summary>
```error
error[E0277]: `fn() -> u32 {producer}` does not describe a valid system configuration
--> examples/app/empty.rs:9:30
|
9 | .add_systems(Update, producer)
| ----------- ^^^^^^^^ invalid system configuration
| |
| required by a bound introduced by this call
|
= help: the trait `IntoSystem<(), (), _>` is not implemented for fn item `fn() -> u32 {producer}`, which is required by `fn() -> u32 {producer}: IntoSystemConfigs<_>`
= help: the following other types implement trait `IntoSystemConfigs<Marker>`:
<Box<(dyn bevy::prelude::System<In = (), Out = ()> + 'static)> as IntoSystemConfigs<()>>
<NodeConfigs<Box<(dyn bevy::prelude::System<In = (), Out = ()> + 'static)>> as IntoSystemConfigs<()>>
<(S0,) as IntoSystemConfigs<(SystemConfigTupleMarker, P0)>>
<(S0, S1) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1)>>
<(S0, S1, S2) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2)>>
<(S0, S1, S2, S3) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3)>>
<(S0, S1, S2, S3, S4) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3, P4)>>
<(S0, S1, S2, S3, S4, S5) as IntoSystemConfigs<(SystemConfigTupleMarker, P0, P1, P2, P3, P4, P5)>>
and 14 others
= note: required for `fn() -> u32 {producer}` to implement `IntoSystemConfigs<_>`
note: required by a bound in `bevy::prelude::App::add_systems`
--> C:\Users\Zac\Documents\GitHub\bevy\crates\bevy_app\src\app.rs:342:23
|
339 | pub fn add_systems<M>(
| ----------- required by a bound in this associated function
...
342 | systems: impl IntoSystemConfigs<M>,
| ^^^^^^^^^^^^^^^^^^^^ required by this bound in `App::add_systems`
```
</details>
</details>
## Testing
CI passed locally.
## Migration Guide
Upgrade to version 1.78 (or higher) of Rust.
## Future Work
- Currently, hints are not supported in this diagnostic. Ideally,
suggestions like _"consider using ..."_ would be in a hint rather than a
note, but that is the best option for now.
- System chaining and other `all_tuples!(...)`-based traits have bad
error messages due to the slightly different error message format.
---------
Co-authored-by: Jamie Ridding <Themayu@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
# Objective
Improve performance scalability when adding new event types to a Bevy
app. Currently, just using Bevy in the default configuration, all apps
spend upwards of 100+us in the `First` schedule, every app tick,
evaluating if it should update events or not, even if events are not
being used for that particular frame, and this scales with the number of
Events registered in the app.
## Solution
As `Events::update` is guaranteed `O(1)` by just checking if a
resource's value, swapping two Vecs, and then clearing one of them, the
actual cost of running `event_update_system` is *very* cheap. The
overhead of doing system dependency injection, task scheduling ,and the
multithreaded executor outweighs the cost of running the system by a
large margin.
Create an `EventRegistry` resource that keeps a number of function
pointers that update each event. Replace the per-event type
`event_update_system` with a singular exclusive system uses the
`EventRegistry` to update all events instead. Update `SubApp::add_event`
to use `EventRegistry` instead.
## Performance
This speeds reduces the cost of the `First` schedule in both many_foxes
and many_cubes by over 80%. Note this is with system spans on. The
majority of this is now context-switching costs from launching
`time_system`, which should be mostly eliminated with #12869.

The actual `event_update_system` is usually *very* short, using only a
few microseconds on average.

---
## Changelog
TODO
## Migration Guide
TODO
---------
Co-authored-by: Josh Matthews <josh@joshmatthews.net>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
When doing a final pass for #3362, it appeared that `ComponentStorage`
as a trait, the two types implementing it, and the associated type on
`Component` aren't really necessary anymore. This likely was due to an
earlier constraint on the use of consts in traits, but that definitely
doesn't seem to be a problem in Rust 1.76.
## Solution
Remove them.
---
## Changelog
Changed: `Component::Storage` has been replaced with
`Component::STORAGE_TYPE` as a const.
Removed: `bevy::ecs::component::ComponentStorage` trait
Removed: `bevy::ecs::component::TableStorage` struct
Removed: `bevy::ecs::component::SparseSetStorage` struct
## Migration Guide
If you were manually implementing `Component` instead of using the
derive macro, replace the associated `Storage` associated type with the
`STORAGE_TYPE` const:
```rust
// in Bevy 0.13
impl Component for MyComponent {
type Storage = TableStorage;
}
// in Bevy 0.14
impl Component for MyComponent {
const STORAGE_TYPE: StorageType = StorageType::Table;
}
```
Component is no longer object safe. If you were relying on `&dyn
Component`, `Box<dyn Component>`, etc. please [file an issue
](https://github.com/bevyengine/bevy/issues) to get [this
change](https://github.com/bevyengine/bevy/pull/12311) reverted.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fix mismatch between the `Component` trait method and the `World`
method.
## Solution
- Replace init_component_info with register_component_hooks.
# Objective
- Provide a reliable and performant mechanism to allows users to keep
components synchronized with external sources: closing/opening sockets,
updating indexes, debugging etc.
- Implement a generic mechanism to provide mutable access to the world
without allowing structural changes; this will not only be used here but
is a foundational piece for observers, which are key for a performant
implementation of relations.
## Solution
- Implement a new type `DeferredWorld` (naming is not important,
`StaticWorld` is also suitable) that wraps a world pointer and prevents
user code from making any structural changes to the ECS; spawning
entities, creating components, initializing resources etc.
- Add component lifecycle hooks `on_add`, `on_insert` and `on_remove`
that can be assigned callbacks in user code.
---
## Changelog
- Add new `DeferredWorld` type.
- Add new world methods: `register_component::<T>` and
`register_component_with_descriptor`. These differ from `init_component`
in that they provide mutable access to the created `ComponentInfo` but
will panic if the component is already in any archetypes. These
restrictions serve two purposes:
1. Prevent users from defining hooks for components that may already
have associated hooks provided in another plugin. (a use case better
served by observers)
2. Ensure that when an `Archetype` is created it gets the appropriate
flags to early-out when triggering hooks.
- Add methods to `ComponentInfo`: `on_add`, `on_insert` and `on_remove`
to be used to register hooks of the form `fn(DeferredWorld, Entity,
ComponentId)`
- Modify `BundleInserter`, `BundleSpawner` and `EntityWorldMut` to
trigger component hooks when appropriate.
- Add bit flags to `Archetype` indicating whether or not any contained
components have each type of hook, this can be expanded for other flags
as needed.
- Add `component_hooks` example to illustrate usage. Try it out! It's
fun to mash keys.
## Safety
The changes to component insertion, removal and deletion involve a large
amount of unsafe code and it's fair for that to raise some concern. I
have attempted to document it as clearly as possible and have confirmed
that all the hooks examples are accepted by `cargo miri` as not causing
any undefined behavior. The largest issue is in ensuring there are no
outstanding references when passing a `DeferredWorld` to the hooks which
requires some use of raw pointers (as was already happening to some
degree in those places) and I have taken some time to ensure that is the
case but feel free to let me know if I've missed anything.
## Performance
These changes come with a small but measurable performance cost of
between 1-5% on `add_remove` benchmarks and between 1-3% on `insert`
benchmarks. One consideration to be made is the existence of the current
`RemovedComponents` which is on average more costly than the addition of
`on_remove` hooks due to the early-out, however hooks doesn't completely
remove the need for `RemovedComponents` as there is a chance you want to
respond to the removal of a component that already has an `on_remove`
hook defined in another plugin, so I have not removed it here. I do
intend to deprecate it with the introduction of observers in a follow up
PR.
## Discussion Questions
- Currently `DeferredWorld` implements `Deref` to `&World` which makes
sense conceptually, however it does cause some issues with rust-analyzer
providing autocomplete for `&mut World` references which is annoying.
There are alternative implementations that may address this but involve
more code churn so I have attempted them here. The other alternative is
to not implement `Deref` at all but that leads to a large amount of API
duplication.
- `DeferredWorld`, `StaticWorld`, something else?
- In adding support for hooks to `EntityWorldMut` I encountered some
unfortunate difficulties with my desired API. If commands are flushed
after each call i.e. `world.spawn() // flush commands .insert(A) //
flush commands` the entity may be despawned while `EntityWorldMut` still
exists which is invalid. An alternative was then to add
`self.world.flush_commands()` to the drop implementation for
`EntityWorldMut` but that runs into other problems for implementing
functions like `into_unsafe_entity_cell`. For now I have implemented a
`.flush()` which will flush the commands and consume `EntityWorldMut` or
users can manually run `world.flush_commands()` after using
`EntityWorldMut`.
- In order to allowing querying on a deferred world we need
implementations of `WorldQuery` to not break our guarantees of no
structural changes through their `UnsafeWorldCell`. All our
implementations do this, but there isn't currently any safety
documentation specifying what is or isn't allowed for an implementation,
just for the caller, (they also shouldn't be aliasing components they
didn't specify access for etc.) is that something we should start doing?
(see 10752)
Please check out the example `component_hooks` or the tests in
`bundle.rs` for usage examples. I will continue to expand this
description as I go.
See #10839 for a more ergonomic API built on top of this one that isn't
subject to the same restrictions and supports `SystemParam` dependency
injection.
# Objective
- Part of #11590
- Fix `unsafe_op_in_unsafe_fn` for trivial cases in bevy_ecs
## Solution
Fix `unsafe_op_in_unsafe_fn` in bevy_ecs for trivial cases, i.e., add an
`unsafe` block when the safety comment already exists or add a comment
like "The invariants are uphold by the caller".
---------
Co-authored-by: James Liu <contact@jamessliu.com>
Use `TypeIdMap<T>` instead of `HashMap<TypeId, T>`
- ~~`TypeIdMap` was in `bevy_ecs`. I've kept it there because of
#11478~~
- ~~I haven't swapped `bevy_reflect` over because it doesn't depend on
`bevy_ecs`, but I'd also be happy with moving `TypeIdMap` to
`bevy_utils` and then adding a dependency to that~~
- ~~this is a slight change in the public API of
`DrawFunctionsInternal`, does this need to go in the changelog?~~
## Changelog
- moved `TypeIdMap` to `bevy_utils`
- changed `DrawFunctionsInternal::indices` to `TypeIdMap`
## Migration Guide
- `TypeIdMap` now lives in `bevy_utils`
- `DrawFunctionsInternal::indices` now uses a `TypeIdMap`.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Deriving `Reflect` for some public ChangeDetection/Tick structs in
bevy_ecs
---------
Co-authored-by: Charles Bournhonesque <cbournhonesque@snapchat.com>
# Objective
There are a lot of doctests that are `ignore`d for no documented reason.
And that should be fixed.
## Solution
I searched the bevy repo with the regex ` ```[a-z,]*ignore ` in order to
find all `ignore`d doctests. For each one of the `ignore`d doctests, I
did the following steps:
1. Attempt to remove the `ignored` attribute while still passing the
test. I did this by adding hidden dummy structs and imports.
2. If step 1 doesn't work, attempt to replace the `ignored` attribute
with the `no_run` attribute while still passing the test.
3. If step 2 doesn't work, keep the `ignored` attribute but add
documentation for why the `ignored` attribute was added.
---------
Co-authored-by: François <mockersf@gmail.com>
# Objective
- Shorten paths by removing unnecessary prefixes
## Solution
- Remove the prefixes from many paths which do not need them. Finding
the paths was done automatically using built-in refactoring tools in
Jetbrains RustRover.
# Objective
- Updates for rust 1.73
## Solution
- new doc check for `redundant_explicit_links`
- updated to text for compile fail tests
---
## Changelog
- updates for rust 1.73
# Objective
Occasionally, it is useful to pull `ComponentInfo` or
`ComponentDescriptor` out of the `Components` collection so that they
can be inspected without borrowing the whole `World`.
## Solution
Make `ComponentInfo` and `ComponentDescriptor` `Clone`, so that
reflection-heavy code can store them in a side table.
---
## Changelog
- Implement `Clone` for `ComponentInfo` and `ComponentDescriptor`
# Objective
- When reading API docs and seeing a reference to `ComponentId`, it
isn't immediately clear how to get one from your `Component`. It could
be made to be more clear.
## Solution
- Improve cross-linking of docs about `ComponentId`
# Objective
- Remove need to call `.get()` on two ticks to compare them for
equality.
## Solution
- Derive `Eq` and `PartialEq`.
---
## Changelog
> `Tick` now implements `Eq` and `PartialEq`
# Objective
`ComponentIdFor` is a type that gives you access to a component's
`ComponentId` in a system. It is currently awkward to use, since it must
be wrapped in a `Local<>` to be used.
## Solution
Make `ComponentIdFor` a proper SystemParam.
---
## Changelog
- Refactored the type `ComponentIdFor` in order to simplify how it is
used.
## Migration Guide
The type `ComponentIdFor<T>` now implements `SystemParam` instead of
`FromWorld` -- this means it should be used as the parameter for a
system directly instead of being used in a `Local`.
```rust
// Before:
fn my_system(
component_id: Local<ComponentIdFor<MyComponent>>,
) {
let component_id = **component_id;
}
// After:
fn my_system(
component_id: ComponentIdFor<MyComponent>,
) {
let component_id = component_id.get();
}
```
# Objective
EntityRef::get_change_ticks mentions that ComponentTicks is useful to
create change detection for your own runtime.
However, ComponentTicks doesn't even expose enough data to create
something that implements DetectChanges. Specifically, we need to be
able to extract the last change tick.
## Solution
We add a method to get the last change tick. We also add a method to get
the added tick.
## Changelog
- Add `last_changed_tick` and `added_tick` to `ComponentTicks`
# Objective
Title.
---------
Co-authored-by: François <mockersf@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
Upon closer inspection, there are a few functions in the ECS that are
not being inlined, even with the highest optimizations and LTO enabled:
- Almost all
[WorldQuery::init_fetch](9fd5f20e25/results/query_get.s (L57))
calls. Affects `Query::get` calls in hot loops. In particular, the
`WorldQuery` implementation for `()` is used *everywhere* as the default
filter and is effectively a no-op.
-
[Entities::get](9fd5f20e25/results/query_get.s (L39)).
Affects `Query::get`, `World::get`, and any component insertion or
removal.
-
[Entities::set](9fd5f20e25/results/entity_remove.s (L2487)).
Affects any component insertion or removal.
-
[Tick::new](9fd5f20e25/results/entity_insert.s (L1368)).
I've only seen this in component insertion and spawning.
- ArchetypeRow::new
- BlobVec::set_len
Almost all of these have trivial or even empty implementations or have
significant opportunity to be optimized into surrounding code when
inlined with LTO enabled.
## Solution
Inline them
Fixes issue mentioned in PR #8285.
_Note: By mistake, this is currently dependent on #8285_
# Objective
Ensure consistency in the spelling of the documentation.
Exceptions:
`crates/bevy_mikktspace/src/generated.rs` - Has not been changed from
licence to license as it is part of a licensing agreement.
Maybe for further consistency,
https://github.com/bevyengine/bevy-website should also be given a look.
## Solution
### Changed the spelling of the current words (UK/CN/AU -> US) :
cancelled -> canceled (Breaking API changes in #8285)
behaviour -> behavior (Breaking API changes in #8285)
neighbour -> neighbor
grey -> gray
recognise -> recognize
centre -> center
metres -> meters
colour -> color
### ~~Update [`engine_style_guide.md`]~~ Moved to #8324
---
## Changelog
Changed UK spellings in documentation to US
## Migration Guide
Non-breaking changes*
\* If merged after #8285
…able like Table. Rename clear to clear_entities to clarify that metadata keeps, only value cleared
# Objective
- Provide some inspectability for SparseSets.
## Solution
- `Tables` has these three methods, len, is_empty and iter too. Add these methods to `SparseSets`, so user can print the shape of storage.
---
## Changelog
> This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section.
- Add `len`, `is_empty`, `iter` methods on SparseSets.
- Rename `clear` to `clear_entities` to clarify its purpose.
- Add `new_for_test` on `ComponentInfo` to make test code easy.
- Add test case covering new methods.
## Migration Guide
> This section is optional. If there are no breaking changes, you can delete this section.
- Simply adding new functionality is not a breaking change.
…u64, so hash safety is not a concern
# Objective
- While reading the code, just noticed the BundleInfo's HashMap is std::collections::HashMap, which uses a slow but safe hasher.
## Solution
- Use bevy_utils::HashMap instead
benchmark diff (I run several times in a linux box, the perf improvement is consistent, though numbers varies from time to time, I paste my last run result here):
``` bash
cargo bench -- spawn
Compiling bevy_ecs v0.9.0 (/home/lishuo/developer/pr/bevy/crates/bevy_ecs)
Compiling bevy_app v0.9.0 (/home/lishuo/developer/pr/bevy/crates/bevy_app)
Compiling benches v0.1.0 (/home/lishuo/developer/pr/bevy/benches)
Finished bench [optimized] target(s) in 1m 17s
Running benches/bevy_ecs/change_detection.rs (/home/lishuo/developer/pr/bevy/benches/target/release/deps/change_detection-86c5445d0dc34529)
Gnuplot not found, using plotters backend
Running benches/bevy_ecs/benches.rs (/home/lishuo/developer/pr/bevy/benches/target/release/deps/ecs-e49b3abe80bfd8c0)
Gnuplot not found, using plotters backend
spawn_commands/2000_entities
time: [153.94 µs 159.19 µs 164.37 µs]
change: [-14.706% -11.050% -6.9633%] (p = 0.00 < 0.05)
Performance has improved.
spawn_commands/4000_entities
time: [328.77 µs 339.11 µs 349.11 µs]
change: [-7.6331% -3.9932% +0.0487%] (p = 0.06 > 0.05)
No change in performance detected.
spawn_commands/6000_entities
time: [445.01 µs 461.29 µs 477.36 µs]
change: [-16.639% -13.358% -10.006%] (p = 0.00 < 0.05)
Performance has improved.
spawn_commands/8000_entities
time: [657.94 µs 677.71 µs 696.95 µs]
change: [-8.8708% -5.2591% -1.6847%] (p = 0.01 < 0.05)
Performance has improved.
get_or_spawn/individual time: [452.02 µs 466.70 µs 482.07 µs]
change: [-17.218% -14.041% -10.728%] (p = 0.00 < 0.05)
Performance has improved.
get_or_spawn/batched time: [291.12 µs 301.12 µs 311.31 µs]
change: [-12.281% -8.9163% -5.3660%] (p = 0.00 < 0.05)
Performance has improved.
spawn_world/1_entities time: [81.668 ns 84.284 ns 86.860 ns]
change: [-12.251% -6.7872% -1.5402%] (p = 0.02 < 0.05)
Performance has improved.
spawn_world/10_entities time: [789.78 ns 821.96 ns 851.95 ns]
change: [-19.738% -14.186% -8.0733%] (p = 0.00 < 0.05)
Performance has improved.
spawn_world/100_entities
time: [7.9906 µs 8.2449 µs 8.5013 µs]
change: [-12.417% -6.6837% -0.8766%] (p = 0.02 < 0.05)
Change within noise threshold.
spawn_world/1000_entities
time: [81.602 µs 84.161 µs 86.833 µs]
change: [-13.656% -8.6520% -3.0491%] (p = 0.00 < 0.05)
Performance has improved.
Found 1 outliers among 100 measurements (1.00%)
1 (1.00%) high mild
Benchmarking spawn_world/10000_entities: Warming up for 500.00 ms
Warning: Unable to complete 100 samples in 4.0s. You may wish to increase target time to 4.0s, enable flat sampling, or reduce sample count to 70.
spawn_world/10000_entities
time: [813.02 µs 839.76 µs 865.41 µs]
change: [-12.133% -6.1970% -0.2302%] (p = 0.05 < 0.05)
Change within noise threshold.
```
---
## Changelog
> This section is optional. If this was a trivial fix, or has no externally-visible impact, you can delete this section.
- use bevy_utils::HashMap for Bundles::bundle_ids
## Migration Guide
> This section is optional. If there are no breaking changes, you can delete this section.
- Not a breaking change, hashmap is internal impl.
# Objective
Clarify what the function is actually calculating.
The `Tick::is_older_than` function is actually calculating whether the tick is newer than the system's `last_change_tick`, not older. As far as I can tell, the engine was using it correctly everywhere already.
## Solution
- Rename the function.
---
## Changelog
- `Tick::is_older_than` was renamed to `Tick::is_newer_than`. This is not a functional change, since that was what was always being calculated, despite the wrong name.
## Migration Guide
- Replace usages of `Tick::is_older_than` with `Tick::is_newer_than`.
Huge thanks to @maniwani, @devil-ira, @hymm, @cart, @superdump and @jakobhellermann for the help with this PR.
# Objective
- Followup #6587.
- Minimal integration for the Stageless Scheduling RFC: https://github.com/bevyengine/rfcs/pull/45
## Solution
- [x] Remove old scheduling module
- [x] Migrate new methods to no longer use extension methods
- [x] Fix compiler errors
- [x] Fix benchmarks
- [x] Fix examples
- [x] Fix docs
- [x] Fix tests
## Changelog
### Added
- a large number of methods on `App` to work with schedules ergonomically
- the `CoreSchedule` enum
- `App::add_extract_system` via the `RenderingAppExtension` trait extension method
- the private `prepare_view_uniforms` system now has a public system set for scheduling purposes, called `ViewSet::PrepareUniforms`
### Removed
- stages, and all code that mentions stages
- states have been dramatically simplified, and no longer use a stack
- `RunCriteriaLabel`
- `AsSystemLabel` trait
- `on_hierarchy_reports_enabled` run criteria (now just uses an ad hoc resource checking run condition)
- systems in `RenderSet/Stage::Extract` no longer warn when they do not read data from the main world
- `RunCriteriaLabel`
- `transform_propagate_system_set`: this was a nonstandard pattern that didn't actually provide enough control. The systems are already `pub`: the docs have been updated to ensure that the third-party usage is clear.
### Changed
- `System::default_labels` is now `System::default_system_sets`.
- `App::add_default_labels` is now `App::add_default_sets`
- `CoreStage` and `StartupStage` enums are now `CoreSet` and `StartupSet`
- `App::add_system_set` was renamed to `App::add_systems`
- The `StartupSchedule` label is now defined as part of the `CoreSchedules` enum
- `.label(SystemLabel)` is now referred to as `.in_set(SystemSet)`
- `SystemLabel` trait was replaced by `SystemSet`
- `SystemTypeIdLabel<T>` was replaced by `SystemSetType<T>`
- The `ReportHierarchyIssue` resource now has a public constructor (`new`), and implements `PartialEq`
- Fixed time steps now use a schedule (`CoreSchedule::FixedTimeStep`) rather than a run criteria.
- Adding rendering extraction systems now panics rather than silently failing if no subapp with the `RenderApp` label is found.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied.
- `SceneSpawnerSystem` now runs under `CoreSet::Update`, rather than `CoreStage::PreUpdate.at_end()`.
- `bevy_pbr::add_clusters` is no longer an exclusive system
- the top level `bevy_ecs::schedule` module was replaced with `bevy_ecs::scheduling`
- `tick_global_task_pools_on_main_thread` is no longer run as an exclusive system. Instead, it has been replaced by `tick_global_task_pools`, which uses a `NonSend` resource to force running on the main thread.
## Migration Guide
- Calls to `.label(MyLabel)` should be replaced with `.in_set(MySet)`
- Stages have been removed. Replace these with system sets, and then add command flushes using the `apply_system_buffers` exclusive system where needed.
- The `CoreStage`, `StartupStage, `RenderStage` and `AssetStage` enums have been replaced with `CoreSet`, `StartupSet, `RenderSet` and `AssetSet`. The same scheduling guarantees have been preserved.
- Systems are no longer added to `CoreSet::Update` by default. Add systems manually if this behavior is needed, although you should consider adding your game logic systems to `CoreSchedule::FixedTimestep` instead for more reliable framerate-independent behavior.
- Similarly, startup systems are no longer part of `StartupSet::Startup` by default. In most cases, this won't matter to you.
- For example, `add_system_to_stage(CoreStage::PostUpdate, my_system)` should be replaced with
- `add_system(my_system.in_set(CoreSet::PostUpdate)`
- When testing systems or otherwise running them in a headless fashion, simply construct and run a schedule using `Schedule::new()` and `World::run_schedule` rather than constructing stages
- Run criteria have been renamed to run conditions. These can now be combined with each other and with states.
- Looping run criteria and state stacks have been removed. Use an exclusive system that runs a schedule if you need this level of control over system control flow.
- For app-level control flow over which schedules get run when (such as for rollback networking), create your own schedule and insert it under the `CoreSchedule::Outer` label.
- Fixed timesteps are now evaluated in a schedule, rather than controlled via run criteria. The `run_fixed_timestep` system runs this schedule between `CoreSet::First` and `CoreSet::PreUpdate` by default.
- Command flush points introduced by `AssetStage` have been removed. If you were relying on these, add them back manually.
- Adding extract systems is now typically done directly on the main app. Make sure the `RenderingAppExtension` trait is in scope, then call `app.add_extract_system(my_system)`.
- the `calculate_bounds` system, with the `CalculateBounds` label, is now in `CoreSet::Update`, rather than in `CoreSet::PostUpdate` before commands are applied. You may need to order your movement systems to occur before this system in order to avoid system order ambiguities in culling behavior.
- the `RenderLabel` `AppLabel` was renamed to `RenderApp` for clarity
- `App::add_state` now takes 0 arguments: the starting state is set based on the `Default` impl.
- Instead of creating `SystemSet` containers for systems that run in stages, simply use `.on_enter::<State::Variant>()` or its `on_exit` or `on_update` siblings.
- `SystemLabel` derives should be replaced with `SystemSet`. You will also need to add the `Debug`, `PartialEq`, `Eq`, and `Hash` traits to satisfy the new trait bounds.
- `with_run_criteria` has been renamed to `run_if`. Run criteria have been renamed to run conditions for clarity, and should now simply return a bool.
- States have been dramatically simplified: there is no longer a "state stack". To queue a transition to the next state, call `NextState::set`
## TODO
- [x] remove dead methods on App and World
- [x] add `App::add_system_to_schedule` and `App::add_systems_to_schedule`
- [x] avoid adding the default system set at inappropriate times
- [x] remove any accidental cycles in the default plugins schedule
- [x] migrate benchmarks
- [x] expose explicit labels for the built-in command flush points
- [x] migrate engine code
- [x] remove all mentions of stages from the docs
- [x] verify docs for States
- [x] fix uses of exclusive systems that use .end / .at_start / .before_commands
- [x] migrate RenderStage and AssetStage
- [x] migrate examples
- [x] ensure that transform propagation is exported in a sufficiently public way (the systems are already pub)
- [x] ensure that on_enter schedules are run at least once before the main app
- [x] re-enable opt-in to execution order ambiguities
- [x] revert change to `update_bounds` to ensure it runs in `PostUpdate`
- [x] test all examples
- [x] unbreak directional lights
- [x] unbreak shadows (see 3d_scene, 3d_shape, lighting, transparaency_3d examples)
- [x] game menu example shows loading screen and menu simultaneously
- [x] display settings menu is a blank screen
- [x] `without_winit` example panics
- [x] ensure all tests pass
- [x] SubApp doc test fails
- [x] runs_spawn_local tasks fails
- [x] [Fix panic_when_hierachy_cycle test hanging](https://github.com/alice-i-cecile/bevy/pull/120)
## Points of Difficulty and Controversy
**Reviewers, please give feedback on these and look closely**
1. Default sets, from the RFC, have been removed. These added a tremendous amount of implicit complexity and result in hard to debug scheduling errors. They're going to be tackled in the form of "base sets" by @cart in a followup.
2. The outer schedule controls which schedule is run when `App::update` is called.
3. I implemented `Label for `Box<dyn Label>` for our label types. This enables us to store schedule labels in concrete form, and then later run them. I ran into the same set of problems when working with one-shot systems. We've previously investigated this pattern in depth, and it does not appear to lead to extra indirection with nested boxes.
4. `SubApp::update` simply runs the default schedule once. This sucks, but this whole API is incomplete and this was the minimal changeset.
5. `time_system` and `tick_global_task_pools_on_main_thread` no longer use exclusive systems to attempt to force scheduling order
6. Implemetnation strategy for fixed timesteps
7. `AssetStage` was migrated to `AssetSet` without reintroducing command flush points. These did not appear to be used, and it's nice to remove these bottlenecks.
8. Migration of `bevy_render/lib.rs` and pipelined rendering. The logic here is unusually tricky, as we have complex scheduling requirements.
## Future Work (ideally before 0.10)
- Rename schedule_v3 module to schedule or scheduling
- Add a derive macro to states, and likely a `EnumIter` trait of some form
- Figure out what exactly to do with the "systems added should basically work by default" problem
- Improve ergonomics for working with fixed timesteps and states
- Polish FixedTime API to match Time
- Rebase and merge #7415
- Resolve all internal ambiguities (blocked on better tools, especially #7442)
- Add "base sets" to replace the removed default sets.
# Objective
Removal events are unwieldy and require some knowledge of when to put systems that need to catch events for them, it is very easy to end up missing one and end up with memory leak-ish issues where you don't clean up after yourself.
## Solution
Consolidate removals with the benefits of `Events<...>` (such as double buffering and per system ticks for reading the events) and reduce the special casing of it, ideally I was hoping to move the removals to a `Resource` in the world, but that seems a bit more rough to implement/maintain because of double mutable borrowing issues.
This doesn't go the full length of change detection esque removal detection a la https://github.com/bevyengine/rfcs/pull/44.
Just tries to make the current workflow a bit more user friendly so detecting removals isn't such a scheduling nightmare.
---
## Changelog
- RemovedComponents<T> is now backed by an `Events<Entity>` for the benefits of double buffering.
## Migration Guide
- Add a `mut` for `removed: RemovedComponents<T>` since we are now modifying an event reader internally.
- Iterating over removed components now requires `&mut removed_components` or `removed_components.iter()` instead of `&removed_components`.
# Objective
- `Components::resource_id` doesn't exist. Like `Components::component_id` but for resources.
## Solution
- Created `Components::resource_id` and added some docs.
---
## Changelog
- Added `Components::resource_id`.
- Changed `World::init_resource` to return the generated `ComponentId`.
- Changed `World::init_non_send_resource` to return the generated `ComponentId`.
# Objective
It's not clear to users how to handle `!Sync` types as components and resources in the absence of engine level support for them.
## Solution
Added a section to `Component`'s and `Resource`'s type level docs on available options for making a type `Sync` when it holds `!Sync` fields, linking `bevy_utils::synccell::SyncCell` and the currently unstable `std::sync::Exclusive`.
Also added a compile_fail doctest that illustrates how to apply `SyncCell`. These will break when/if #6572 gets merged, at which point these docs should be updated.
# Objective
Fixes#4884. `ComponentTicks` stores both added and changed ticks contiguously in the same 8 bytes. This is convenient when passing around both together, but causes half the bytes fetched from memory for the purposes of change detection to effectively go unused. This is inefficient when most queries (no filter, mutating *something*) only write out to the changed ticks.
## Solution
Split the storage for change detection ticks into two separate `Vec`s inside `Column`. Fetch only what is needed during iteration.
This also potentially also removes one blocker from autovectorization of dense queries.
EDIT: This is confirmed to enable autovectorization of dense queries in `for_each` and `par_for_each` where possible. Unfortunately `iter` has other blockers that prevent it.
### TODO
- [x] Microbenchmark
- [x] Check if this allows query iteration to autovectorize simple loops.
- [x] Clean up all of the spurious tuples now littered throughout the API
### Open Questions
- ~~Is `Mut::is_added` absolutely necessary? Can we not just use `Added` or `ChangeTrackers`?~~ It's optimized out if unused.
- ~~Does the fetch of the added ticks get optimized out if not used?~~ Yes it is.
---
## Changelog
Added: `Tick`, a wrapper around a single change detection tick.
Added: `Column::get_added_ticks`
Added: `Column::get_column_ticks`
Added: `SparseSet::get_added_ticks`
Added: `SparseSet::get_column_ticks`
Changed: `Column` now stores added and changed ticks separately internally.
Changed: Most APIs returning `&UnsafeCell<ComponentTicks>` now returns `TickCells` instead, which contains two separate `&UnsafeCell<Tick>` for either component ticks.
Changed: `Query::for_each(_mut)`, `Query::par_for_each(_mut)` will now leverage autovectorization to speed up query iteration where possible.
## Migration Guide
TODO
## Objective
Fixes https://github.com/bevyengine/bevy/issues/6063
## Solution
- Use `then_some(x)` instead of `then( || x)`.
- Updated error logs from `bevy_ecs_compile_fail_tests`.
## Migration Guide
From Rust 1.63 to 1.64, a new Clippy error was added; now one should use `then_some(x)` instead of `then( || x)`.
# Objective
`SAFETY` comments are meant to be placed before `unsafe` blocks and should contain the reasoning of why in this case the usage of unsafe is okay. This is useful when reading the code because it makes it clear which assumptions are required for safety, and makes it easier to spot possible unsoundness holes. It also forces the code writer to think of something to write and maybe look at the safety contracts of any called unsafe methods again to double-check their correct usage.
There's a clippy lint called `undocumented_unsafe_blocks` which warns when using a block without such a comment.
## Solution
- since clippy expects `SAFETY` instead of `SAFE`, rename those
- add `SAFETY` comments in more places
- for the last remaining 3 places, add an `#[allow()]` and `// TODO` since I wasn't comfortable enough with the code to justify their safety
- add ` #![warn(clippy::undocumented_unsafe_blocks)]` to `bevy_ecs`
### Note for reviewers
The first commit only renames `SAFETY` to `SAFE` so it doesn't need a thorough review.
cb042a416e..55cef2d6fa is the diff for all other changes.
### Safety comments where I'm not too familiar with the code
774012ece5/crates/bevy_ecs/src/entity/mod.rs (L540-L546)774012ece5/crates/bevy_ecs/src/world/entity_ref.rs (L249-L252)
### Locations left undocumented with a `TODO` comment
5dde944a30/crates/bevy_ecs/src/schedule/executor_parallel.rs (L196-L199)5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L287-L289)5dde944a30/crates/bevy_ecs/src/world/entity_ref.rs (L413-L415)
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
# Objective
Fixes#5153
## Solution
Search for all enums and manually check if they have default impls that can use this new derive.
By my reckoning:
| enum | num |
|-|-|
| total | 159 |
| has default impl | 29 |
| default is unit variant | 23 |
# Objective
- Simplify the process of obtaining a `ComponentId` instance corresponding to a `Component`.
- Resolves#5060.
## Solution
- Add a `component_id::<T: Component>(&self)` function to both `World` and `Components` to retrieve the `ComponentId` associated with `T` from a immutable reference.
---
## Changelog
- Added `World::component_id::<C>()` and `Components::component_id::<C>()` to retrieve a `Component`'s corresponding `ComponentId` if it exists.
# Objective
The descriptions included in the API docs of `entity` module, `Entity` struct, and `Component` trait have some issues:
1. the concept of entity is not clearly defined,
2. descriptions are a little bit out of place,
3. in a case the description leak too many details about the implementation,
4. some descriptions are not exhaustive,
5. there are not enough examples,
6. the content can be formatted in a much better way.
## Solution
1. ~~Stress the fact that entity is an abstract and elementary concept. Abstract because the concept of entity is not hardcoded into the library but emerges from the interaction of `Entity` with every other part of `bevy_ecs`, like components and world methods. Elementary because it is a fundamental concept that cannot be defined with other terms (like point in euclidean geometry, or time in classical physics).~~ We decided to omit the definition of entity in the API docs ([see why]). It is only described in its relationship with components.
2. Information has been moved to relevant places and links are used instead in the other places.
3. Implementation details about `Entity` have been reduced.
4. Descriptions have been made more exhaustive by stating how to obtain and use items. Entity operations are enriched with `World` methods.
5. Examples have been added or enriched.
6. Sections have been added to organize content. Entity operations are now laid out in a table.
### Todo list
- [x] Break lines at sentence-level.
## For reviewers
- ~~I added a TODO over `Component` docs, make sure to check it out and discuss it if necessary.~~ ([Resolved])
- You can easily check the rendered documentation by doing `cargo doc -p bevy_ecs --no-deps --open`.
[see why]: https://github.com/bevyengine/bevy/pull/4767#discussion_r875106329
[Resolved]: https://github.com/bevyengine/bevy/pull/4767#discussion_r874127825
# Objective
Don't allocate memory for Component types known at compile-time. Save a bit of memory.
## Solution
Change `ComponentDescriptor::name` from `String` to `Cow<'static, str>` to use the `&'static str` returned by `std::any::type_name`.
# Objective
Even if bevy itself does not provide any builtin scripting or modding APIs, it should have the foundations for building them yourself.
For that it should be enough to have APIs that are not tied to the actual rust types with generics, but rather accept `ComponentId`s and `bevy_ptr` ptrs.
## Solution
Add the following APIs to bevy
```rust
fn EntityRef::get_by_id(ComponentId) -> Option<Ptr<'w>>;
fn EntityMut::get_by_id(ComponentId) -> Option<Ptr<'_>>;
fn EntityMut::get_mut_by_id(ComponentId) -> Option<MutUntyped<'_>>;
fn World::get_resource_by_id(ComponentId) -> Option<Ptr<'_>>;
fn World::get_resource_mut_by_id(ComponentId) -> Option<MutUntyped<'_>>;
// Safety: `value` must point to a valid value of the component
unsafe fn World::insert_resource_by_id(ComponentId, value: OwningPtr);
fn ComponentDescriptor::new_with_layout(..) -> Self;
fn World::init_component_with_descriptor(ComponentDescriptor) -> ComponentId;
```
~~This PR would definitely benefit from #3001 (lifetime'd pointers) to make sure that the lifetimes of the pointers are valid and the my-move pointer in `insert_resource_by_id` could be an `OwningPtr`, but that can be adapter later if/when #3001 is merged.~~
### Not in this PR
- inserting components on entities (this is very tied to types with bundles and the `BundleInserter`)
- an untyped version of a query (needs good API design, has a large implementation complexity, can be done in a third-party crate)
Co-authored-by: Jakob Hellermann <hellermann@sipgate.de>
# Objective
- We do a lot of function pointer calls in a hot loop (clearing entities in render). This is slow, since calling function pointers cannot be optimised out. We can avoid that in the cases where the function call is a no-op.
- Alternative to https://github.com/bevyengine/bevy/pull/2897
- On my machine, in `many_cubes`, this reduces dropping time from ~150μs to ~80μs.
## Solution
- Make `drop` in `BlobVec` an `Option`, recording whether the given drop impl is required or not.
- Note that this does add branching in some cases - we could consider splitting this into two fields, i.e. unconditionally call the `drop` fn pointer.
- My intuition of how often types stored in `World` should have non-trivial drops makes me think that would be slower, however.
N.B. Even once this lands, we should still test having a 'drop_multiple' variant - for types with a real `Drop` impl, the current implementation is definitely optimal.
## Objective
- ~~Make absurdly long-lived changes stay detectable for even longer (without leveling up to `u64`).~~
- Give all changes a consistent maximum lifespan.
- Improve code clarity.
## Solution
- ~~Increase the frequency of `check_tick` scans to increase the oldest reliably-detectable change.~~
(Deferred until we can benchmark the cost of a scan.)
- Ignore changes older than the maximum reliably-detectable age.
- General refactoring—name the constants, use them everywhere, and update the docs.
- Update test cases to check for the specified behavior.
## Related
This PR addresses (at least partially) the concerns raised in:
- #3071
- #3082 (and associated PR #3084)
## Background
- #1471
Given the minimum interval between `check_ticks` scans, `N`, the oldest reliably-detectable change is `u32::MAX - (2 * N - 1)` (or `MAX_CHANGE_AGE`). Reducing `N` from ~530 million (current value) to something like ~2 million would extend the lifetime of changes by a billion.
| minimum `check_ticks` interval | oldest reliably-detectable change | usable % of `u32::MAX` |
| --- | --- | --- |
| `u32::MAX / 8` (536,870,911) | `(u32::MAX / 4) * 3` | 75.0% |
| `2_000_000` | `u32::MAX - 3_999_999` | 99.9% |
Similarly, changes are still allowed to be between `MAX_CHANGE_AGE`-old and `u32::MAX`-old in the interim between `check_tick` scans. While we prevent their age from overflowing, the test to detect changes still compares raw values. This makes failure ultimately unreliable, since when ancient changes stop being detected varies depending on when the next scan occurs.
## Open Question
Currently, systems and system states are incorrectly initialized with their `last_change_tick` set to `0`, which doesn't handle wraparound correctly.
For consistent behavior, they should either be initialized to the world's `last_change_tick` (and detect no changes) or to `MAX_CHANGE_AGE` behind the world's current `change_tick` (and detect everything as a change). I've currently gone with the latter since that was closer to the existing behavior.
## Follow-up Work
(Edited: entire section)
We haven't actually profiled how long a `check_ticks` scan takes on a "large" `World` , so we don't know if it's safe to increase their frequency. However, we are currently relying on play sessions not lasting long enough to trigger a scan and apps not having enough entities/archetypes for it to be "expensive" (our assumption). That isn't a real solution. (Either scanning never costs enough to impact frame times or we provide an option to use `u64` change ticks. Nobody will accept random hiccups.)
To further extend the lifetime of changes, we actually only need to increment the world tick if a system has `Fetch: !ReadOnlySystemParamFetch`. The behavior will be identical because all writes are sequenced, but I'm not sure how to implement that in a way that the compiler can optimize the branch out.
Also, since having no false positives depends on a `check_ticks` scan running at least every `2 * N - 1` ticks, a `last_check_tick` should also be stored in the `World` so that any lull in system execution (like a command flush) could trigger a scan if needed. To be completely robust, all the systems initialized on the world should be scanned, not just those in the current stage.
# Objective
The pointer types introduced in #3001 are useful not just in `bevy_ecs`, but also in crates like `bevy_reflect` (#4475) or even outside of bevy.
## Solution
Extract `Ptr<'a>`, `PtrMut<'a>`, `OwnedPtr<'a>`, `ThinSlicePtr<'a, T>` and `UnsafeCellDeref` from `bevy_ecs::ptr` into `bevy_ptr`.
**Note:** `bevy_ecs` still reexports the `bevy_ptr` as `bevy_ecs::ptr` so that crates like `bevy_transform` can use the `Bundle` derive without needing to depend on `bevy_ptr` themselves.
# Objective
The `Ptr` types gives free access to the underlying `NonNull<u8>`, which adds more publicly visible pointer wrangling than there needs to be. There are also a few edge cases where Ptr types could be more readily utilized for properly validating the soundness of ECS operations.
## Solution
- Replace `*Ptr(Mut)::inner` with `cast` which requires a concrete type to give the pointer. This function could also have a `debug_assert` with an alignment check to ensure that the pointer is aligned properly, but is currently not included.
- Use `OwningPtr::read` in ECS macros over casting the inner pointer around.
# Objective
`bevy_ecs` has large amounts of unsafe code which is hard to get right and makes it difficult to audit for soundness.
## Solution
Introduce lifetimed, type-erased pointers: `Ptr<'a>` `PtrMut<'a>` `OwningPtr<'a>'` and `ThinSlicePtr<'a, T>` which are newtypes around a raw pointer with a lifetime and conceptually representing strong invariants about the pointee and validity of the pointer.
The process of converting bevy_ecs to use these has already caught multiple cases of unsound behavior.
## Changelog
TL;DR for release notes: `bevy_ecs` now uses lifetimed, type-erased pointers internally, significantly improving safety and legibility without sacrificing performance. This should have approximately no end user impact, unless you were meddling with the (unfortunately public) internals of `bevy_ecs`.
- `Fetch`, `FilterFetch` and `ReadOnlyFetch` trait no longer have a `'state` lifetime
- this was unneeded
- `ReadOnly/Fetch` associated types on `WorldQuery` are now on a new `WorldQueryGats<'world>` trait
- was required to work around lack of Generic Associated Types (we wish to express `type Fetch<'a>: Fetch<'a>`)
- `derive(WorldQuery)` no longer requires `'w` lifetime on struct
- this was unneeded, and improves the end user experience
- `EntityMut::get_unchecked_mut` returns `&'_ mut T` not `&'w mut T`
- allows easier use of unsafe API with less footguns, and can be worked around via lifetime transmutery as a user
- `Bundle::from_components` now takes a `ctx` parameter to pass to the `FnMut` closure
- required because closure return types can't borrow from captures
- `Fetch::init` takes `&'world World`, `Fetch::set_archetype` takes `&'world Archetype` and `&'world Tables`, `Fetch::set_table` takes `&'world Table`
- allows types implementing `Fetch` to store borrows into world
- `WorldQuery` trait now has a `shrink` fn to shorten the lifetime in `Fetch::<'a>::Item`
- this works around lack of subtyping of assoc types, rust doesnt allow you to turn `<T as Fetch<'static>>::Item'` into `<T as Fetch<'a>>::Item'`
- `QueryCombinationsIter` requires this
- Most types implementing `Fetch` now have a lifetime `'w`
- allows the fetches to store borrows of world data instead of using raw pointers
## Migration guide
- `EntityMut::get_unchecked_mut` returns a more restricted lifetime, there is no general way to migrate this as it depends on your code
- `Bundle::from_components` implementations must pass the `ctx` arg to `func`
- `Bundle::from_components` callers have to use a fn arg instead of closure captures for borrowing from world
- Remove lifetime args on `derive(WorldQuery)` structs as it is nonsensical
- `<Q as WorldQuery>::ReadOnly/Fetch` should be changed to either `RO/QueryFetch<'world>` or `<Q as WorldQueryGats<'world>>::ReadOnly/Fetch`
- `<F as Fetch<'w, 's>>` should be changed to `<F as Fetch<'w>>`
- Change the fn sigs of `Fetch::init/set_archetype/set_table` to match respective trait fn sigs
- Implement the required `fn shrink` on any `WorldQuery` implementations
- Move assoc types `Fetch` and `ReadOnlyFetch` on `WorldQuery` impls to `WorldQueryGats` impls
- Pass an appropriate `'world` lifetime to whatever fetch struct you are for some reason using
### Type inference regression
in some cases rustc may give spurrious errors when attempting to infer the `F` parameter on a query/querystate this can be fixed by manually specifying the type, i.e. `QueryState:🆕:<_, ()>(world)`. The error is rather confusing:
```rust=
error[E0271]: type mismatch resolving `<() as Fetch<'_>>::Item == bool`
--> crates/bevy_pbr/src/render/light.rs:1413:30
|
1413 | main_view_query: QueryState::new(world),
| ^^^^^^^^^^^^^^^ expected `bool`, found `()`
|
= note: required because of the requirements on the impl of `for<'x> FilterFetch<'x>` for `<() as WorldQueryGats<'x>>::Fetch`
note: required by a bound in `bevy_ecs::query::QueryState::<Q, F>::new`
--> crates/bevy_ecs/src/query/state.rs:49:32
|
49 | for<'x> QueryFetch<'x, F>: FilterFetch<'x>,
| ^^^^^^^^^^^^^^^ required by this bound in `bevy_ecs::query::QueryState::<Q, F>::new`
```
---
Made with help from @BoxyUwU and @alice-i-cecile
Co-authored-by: Boxy <supbscripter@gmail.com>
What is says on the tin.
This has got more to do with making `clippy` slightly more *quiet* than it does with changing anything that might greatly impact readability or performance.
that said, deriving `Default` for a couple of structs is a nice easy win
#3457 adds the `doc_markdown` clippy lint, which checks doc comments to make sure code identifiers are escaped with backticks. This causes a lot of lint errors, so this is one of a number of PR's that will fix those lint errors one crate at a time.
This PR fixes lints in the `bevy_ecs` crate.
# Objective
Remove the `StorageType` parameter from `ComponentDescriptor::new_resource` as discussed in #3361.
- fixes#3361
## Solution
- Parameter removed.
- Basic docs added.
## Note
Left a [comment](https://github.com/bevyengine/bevy/issues/3361#issuecomment-996433346) about `SparseStorage` being the more reasonable choice.
Co-authored-by: r4gus <david@thesugar.de>
This implements the most minimal variant of #1843 - a derive for marker trait. This is a prerequisite to more complicated features like statically defined storage type or opt-out component reflection.
In order to make component struct's purpose explicit and avoid misuse, it must be annotated with `#[derive(Component)]` (manual impl is discouraged for compatibility). Right now this is just a marker trait, but in the future it might be expanded. Making this change early allows us to make further changes later without breaking backward compatibility for derive macro users.
This already prevents a lot of issues, like using bundles in `insert` calls. Primitive types are no longer valid components as well. This can be easily worked around by adding newtype wrappers and deriving `Component` for them.
One funny example of prevented bad code (from our own tests) is when an newtype struct or enum variant is used. Previously, it was possible to write `insert(Newtype)` instead of `insert(Newtype(value))`. That code compiled, because function pointers (in this case newtype struct constructor) implement `Send + Sync + 'static`, so we allowed them to be used as components. This is no longer the case and such invalid code will trigger a compile error.
Co-authored-by: = <=>
Co-authored-by: TheRawMeatball <therawmeatball@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
## Objective
The upcoming Bevy Book makes many references to the API documentation of bevy.
Most references belong to the first two chapters of the Bevy Book:
- bevyengine/bevy-website#176
- bevyengine/bevy-website#182
This PR attempts to improve the documentation of `bevy_ecs` and `bevy_app` in order to help readers of the Book who want to delve deeper into technical details.
## Solution
- Add crate and level module documentation
- Document the most important items (basically those included in the preludes), with the following style, where applicable:
- **Summary.** Short description of the item.
- **Second paragraph.** Detailed description of the item, without going too much in the implementation.
- **Code example(s).**
- **Safety or panic notes.**
## Collaboration
Any kind of collaboration is welcome, especially corrections, wording, new ideas and guidelines on where the focus should be put in.
---
### Related issues
- Fixes#2246
# Objective
There is currently a 1-to-1 mapping between components and real rust types. This means that it is impossible for multiple components to be represented by the same rust type or for a component to not have a rust type at all. This means that component types can't be defined in languages other than rust like necessary for scripting or sandboxed (wasm?) plugins.
## Solution
Refactor `ComponentDescriptor` and `Bundle` to remove `TypeInfo`. `Bundle` now uses `ComponentId` instead. `ComponentDescriptor` is now always created from a rust type instead of through the `TypeInfo` indirection. A future PR may make it possible to construct a `ComponentDescriptor` from it's fields without a rust type being involved.