ca8dd06146
11 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
ca8dd06146
|
Impose a more sensible ordering for animation graph evaluation. (#15589)
This is an updated version of #15530. Review comments were addressed. This commit changes the animation graph evaluation to be operate in a more sensible order and updates the semantics of blend nodes to conform to [the animation composition RFC]. Prior to this patch, a node graph like this: ``` ┌─────┐ │ │ │ 1 │ │ │ └──┬──┘ │ ┌───────┴───────┐ │ │ ▼ ▼ ┌─────┐ ┌─────┐ │ │ │ │ │ 2 │ │ 3 │ │ │ │ │ └──┬──┘ └──┬──┘ │ │ ┌───┴───┐ ┌───┴───┐ │ │ │ │ ▼ ▼ ▼ ▼ ┌─────┐ ┌─────┐ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │ │ 4 │ │ 6 │ │ 5 │ │ 7 │ │ │ │ │ │ │ │ │ └─────┘ └─────┘ └─────┘ └─────┘ ``` Would be evaluated as (((4 ⊕ 5) ⊕ 6) ⊕ 7), with the blend (lerp/slerp) operation notated as ⊕. As quaternion multiplication isn't commutative, this is very counterintuitive and will especially lead to trouble with the forthcoming additive blending feature (#15198). This patch fixes the issue by changing the evaluation order to postorder, with children of a node evaluated in ascending order by node index. To do so, this patch revamps `AnimationCurve` to be based on an *evaluation stack* and a *blend register*. During target evaluation, the graph evaluator traverses the graph in postorder. When encountering a clip node, the evaluator pushes the possibly-interpolated value onto the evaluation stack. When encountering a blend node, the evaluator pops values off the stack into the blend register, accumulating weights as appropriate. When the graph is completely evaluated, the top element on the stack is *committed* to the property of the component. A new system, the *graph threading* system, is added in order to cache the sorted postorder traversal to avoid the overhead of sorting children at animation evaluation time. Mask evaluation has been moved to this system so that the graph only has to be traversed at most once per frame. Unlike the `ActiveAnimation` list, the *threaded graph* is cached from frame to frame and only has to be regenerated when the animation graph asset changes. This patch currently regresses the `animate_target` performance in `many_foxes` by around 50%, resulting in an FPS loss of about 2-3 FPS. I'd argue that this is an acceptable price to pay for a much more intuitive system. In the future, we can mitigate the regression with a fast path that avoids consulting the graph if only one animation is playing. However, in the interest of keeping this patch simple, I didn't do so here. [the animation composition RFC]: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md # Objective - Describe the objective or issue this PR addresses. - If you're fixing a specific issue, say "Fixes #X". ## Solution - Describe the solution used to achieve the objective above. ## Testing - Did you test these changes? If so, how? - Are there any parts that need more testing? - How can other people (reviewers) test your changes? Is there anything specific they need to know? - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? --- ## Showcase > This section is optional. If this PR does not include a visual change or does not add a new feature, you can delete this section. - Help others understand the result of this PR by showcasing your awesome work! - If this PR adds a new feature or public API, consider adding a brief pseudo-code snippet of it in action - If this PR includes a visual change, consider adding a screenshot, GIF, or video - If you want, you could even include a before/after comparison! - If the Migration Guide adequately covers the changes, you can delete this section While a showcase should aim to be brief and digestible, you can use a toggleable section to save space on longer showcases: <details> <summary>Click to view showcase</summary> ```rust println!("My super cool code."); ``` </details> ## Migration Guide > This section is optional. If there are no breaking changes, you can delete this section. - If this PR is a breaking change (relative to the last release of Bevy), describe how a user might need to migrate their code to support these changes - Simply adding new functionality is not a breaking change. - Fixing behavior that was definitely a bug, rather than a questionable design choice is not a breaking change. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
73af2b7d29
|
Cleanup unneeded lifetimes in bevy_asset (#15546)
# Objective Fixes #15541 A bunch of lifetimes were added during the Assets V2 rework, but after moving to async traits in #12550 they can be elided. That PR mentions that this might be the case, but apparently it wasn't followed up on at the time. ~~I ended up grepping for `<'a` and finding a similar case in `bevy_reflect` which I also fixed.~~ (edit: that one was needed apparently) Note that elided lifetimes are unstable in `impl Trait`. If that gets stabilized then we can elide even more. ## Solution Remove the extra lifetimes. ## Testing Everything still compiles. If I have messed something up there is a small risk that some user code stops compiling, but all the examples still work at least. --- ## Migration Guide The traits `AssetLoader`, `AssetSaver` and `Process` traits from `bevy_asset` now use elided lifetimes. If you implement these then remove the named lifetime. |
||
![]() |
d70595b667
|
Add core and alloc over std Lints (#15281)
# Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com> |
||
![]() |
efda7f3f9c
|
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this comment: https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300 See #15375 for more reasoning/motivation. ## Rebasing (rerunning) ```rust git switch simpler-lint-fixes git reset --hard main cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "rustfmt" cargo clippy --workspace --all-targets --all-features --fix cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "clippy" git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887 ``` |
||
![]() |
d2624765d0
|
Implement animation masks, allowing fine control of the targets that animations affect. (#15013)
This commit adds support for *masks* to the animation graph. A mask is a set of animation targets (bones) that neither a node nor its descendants are allowed to animate. Animation targets can be assigned one or more *mask group*s, which are specific to a single graph. If a node masks out any mask group that an animation target belongs to, animation curves for that target will be ignored during evaluation. The canonical use case for masks is to support characters holding objects. Typically, character animations will contain hand animations in the case that the character's hand is empty. (For example, running animations may close a character's fingers into a fist.) However, when the character is holding an object, the animation must be altered so that the hand grips the object. Bevy currently has no convenient way to handle this. The only workaround that I can see is to have entirely separate animation clips for characters' hands and bodies and keep them in sync, which is burdensome and doesn't match artists' expectations from other engines, which all effectively have support for masks. However, with mask group support, this task is simple. We assign each hand to a mask group and parent all character animations to a node. When a character grasps an object in hand, we position the fingers as appropriate and then enable the mask group for that hand in that node. This allows the character's animations to run normally, while the object remains correctly attached to the hand. Note that even with this PR, we won't have support for running separate animations for a character's hand and the rest of the character. This is because we're missing additive blending: there's no way to combine the two masked animations together properly. I intend that to be a follow-up PR. The major engines all have support for masks, though the workflow varies from engine to engine: * Unity has support for masks [essentially as implemented here], though with layers instead of a tree. However, when using the Mecanim ("Humanoid") feature, precise control over bones is lost in favor of predefined muscle groups. * Unreal has a feature named [*layered blend per bone*]. This allows for separate blend weights for different bones, effectively achieving masks. I believe that the combination of blend nodes and masks make Bevy's animation graph as expressible as that of Unreal, once we have support for additive blending, though you may have to use more nodes than you would in Unreal. Moreover, separating out the concepts of "blend weight" and "which bones this node applies to" seems like a cleaner design than what Unreal has. * Godot's `AnimationTree` has the notion of [*blend filters*], which are essentially the same as masks as implemented in this PR. Additionally, this patch fixes a bug with weight evaluation whereby weights weren't properly propagated down to grandchildren, because the weight evaluation for a node only checked its parent's weight, not its evaluated weight. I considered submitting this as a separate PR, but given that this PR refactors that code entirely to support masks and weights under a unified "evaluated node" concept, I simply included the fix here. A new example, `animation_masks`, has been added. It demonstrates how to toggle masks on and off for specific portions of a skin. This is part of #14395, but I'm going to defer closing that issue until we have additive blending. [essentially as implemented here]: https://docs.unity3d.com/560/Documentation/Manual/class-AvatarMask.html [*layered blend per bone*]: https://dev.epicgames.com/documentation/en-us/unreal-engine/using-layered-animations-in-unreal-engine [*blend filters*]: https://docs.godotengine.org/en/stable/tutorials/animation/animation_tree.html ## Migration Guide * The serialized format of animation graphs has changed with the addition of animation masks. To upgrade animation graph RON files, add `mask` and `mask_groups` fields as appropriate. (They can be safely set to zero.) |
||
![]() |
c816cf9072
|
Reorganize some of bevy_animation 's imports into a more consistent style (#14983)
# Objective `bevy_animation` imports a lot of items - and it uses a very inconsistent code style to do so. ## Solution Changes the offending `use` statements to be more consistent across the crate. ## Testing - Did you test these changes? If so, how? - No testing is needed beyond lint checks, and those finished successfully. - ~~Are there any parts that need more testing?~~ - ~~How can other people (reviewers) test your changes? Is there anything specific they need to know?~~ - ~~If relevant, what platforms did you test these changes on, and are there any important ones you can't test?~~ |
||
![]() |
2c3f5a00ac
|
Add AnimationGraph::from_clips and simplify animated_fox example (#14853)
# Objective Add a convenience constructor to make simple animation graphs easier to build. I've had some notes about attempting this since #11989 that I just remembered after seeing #14852. This partially addresses #14852, but I don't really know animation well enough to write all of the documentation it's asking for. ## Solution Add `AnimationGraph::from_clips` and use it to simplify `animated_fox`. Do some other little bits of incidental cleanup and documentation . ## Testing I ran `cargo run --example animated_fox`. |
||
![]() |
938d810766
|
Apply unused_qualifications lint (#14828)
# Objective Fixes #14782 ## Solution Enable the lint and fix all upcoming hints (`--fix`). Also tried to figure out the false-positive (see review comment). Maybe split this PR up into multiple parts where only the last one enables the lint, so some can already be merged resulting in less many files touched / less potential for merge conflicts? Currently, there are some cases where it might be easier to read the code with the qualifier, so perhaps remove the import of it and adapt its cases? In the current stage it's just a plain adoption of the suggestions in order to have a base to discuss. ## Testing `cargo clippy` and `cargo run -p ci` are happy. |
||
![]() |
5876352206
|
Optimize common usages of AssetReader (#14082)
# Objective The `AssetReader` trait allows customizing the behavior of fetching bytes for an `AssetPath`, and expects implementors to return `dyn AsyncRead + AsyncSeek`. This gives implementors of `AssetLoader` great flexibility to tightly integrate their asset loading behavior with the asynchronous task system. However, almost all implementors of `AssetLoader` don't use the async functionality at all, and just call `AsyncReadExt::read_to_end(&mut Vec<u8>)`. This is incredibly inefficient, as this method repeatedly calls `poll_read` on the trait object, filling the vector 32 bytes at a time. At my work we have assets that are hundreds of megabytes which makes this a meaningful overhead. ## Solution Turn the `Reader` type alias into an actual trait, with a provided method `read_to_end`. This provided method should be more efficient than the existing extension method, as the compiler will know the underlying type of `Reader` when generating this function, which removes the repeated dynamic dispatches and allows the compiler to make further optimizations after inlining. Individual implementors are able to override the provided implementation -- for simple asset readers that just copy bytes from one buffer to another, this allows removing a large amount of overhead from the provided implementation. Now that `Reader` is an actual trait, I also improved the ergonomics for implementing `AssetReader`. Currently, implementors are expected to box their reader and return it as a trait object, which adds unnecessary boilerplate to implementations. This PR changes that trait method to return a pseudo trait alias, which allows implementors to return `impl Reader` instead of `Box<dyn Reader>`. Now, the boilerplate for boxing occurs in `ErasedAssetReader`. ## Testing I made identical changes to my company's fork of bevy. Our app, which makes heavy use of `read_to_end` for asset loading, still worked properly after this. I am not aware if we have a more systematic way of testing asset loading for correctness. --- ## Migration Guide The trait method `bevy_asset::io::AssetReader::read` (and `read_meta`) now return an opaque type instead of a boxed trait object. Implementors of these methods should change the type signatures appropriately ```rust impl AssetReader for MyReader { // Before async fn read<'a>(&'a self, path: &'a Path) -> Result<Box<Reader<'a>>, AssetReaderError> { let reader = // construct a reader Box::new(reader) as Box<Reader<'a>> } // After async fn read<'a>(&'a self, path: &'a Path) -> Result<impl Reader + 'a, AssetReaderError> { // create a reader } } ``` `bevy::asset::io::Reader` is now a trait, rather than a type alias for a trait object. Implementors of `AssetLoader::load` will need to adjust the method signature accordingly ```rust impl AssetLoader for MyLoader { async fn load<'a>( &'a self, // Before: reader: &'a mut bevy::asset::io::Reader, // After: reader: &'a mut dyn bevy::asset::io::Reader, _: &'a Self::Settings, load_context: &'a mut LoadContext<'_>, ) -> Result<Self::Asset, Self::Error> { } ``` Additionally, implementors of `AssetReader` that return a type implementing `futures_io::AsyncRead` and `AsyncSeek` might need to explicitly implement `bevy::asset::io::Reader` for that type. ```rust impl bevy::asset::io::Reader for MyAsyncReadAndSeek {} ``` |
||
![]() |
ac49dce4ca
|
Use async-fn in traits rather than BoxedFuture (#12550)
# Objective Simplify implementing some asset traits without Box::pin(async move{}) shenanigans. Fixes (in part) https://github.com/bevyengine/bevy/issues/11308 ## Solution Use async-fn in traits when possible in all traits. Traits with return position impl trait are not object safe however, and as AssetReader and AssetWriter are both used with dynamic dispatch, you need a Boxed version of these futures anyway. In the future, Rust is [adding ](https://blog.rust-lang.org/2023/12/21/async-fn-rpit-in-traits.html)proc macros to generate these traits automatically, and at some point in the future dyn traits should 'just work'. Until then.... this seemed liked the right approach given more ErasedXXX already exist, but, no clue if there's plans here! Especially since these are public now, it's a bit of an unfortunate API, and means this is a breaking change. In theory this saves some performance when these traits are used with static dispatch, but, seems like most code paths go through dynamic dispatch, which boxes anyway. I also suspect a bunch of the lifetime annotations on these function could be simplified now as the BoxedFuture was often the only thing returned which needed a lifetime annotation, but I'm not touching that for now as traits + lifetimes can be so tricky. This is a revival of [pull/11362](https://github.com/bevyengine/bevy/pull/11362) after a spectacular merge f*ckup, with updates to the latest Bevy. Just to recap some discussion: - Overall this seems like a win for code quality, especially when implementing these traits, but a loss for having to deal with ErasedXXX variants. - `ConditionalSend` was the preferred name for the trait that might be Send, to deal with wasm platforms. - When reviewing be sure to disable whitespace difference, as that's 95% of the PR. ## Changelog - AssetReader, AssetWriter, AssetLoader, AssetSaver and Process now use async-fn in traits rather than boxed futures. ## Migration Guide - Custom implementations of AssetReader, AssetWriter, AssetLoader, AssetSaver and Process should switch to async fn rather than returning a bevy_utils::BoxedFuture. - Simultaniously, to use dynamic dispatch on these traits you should instead use dyn ErasedXXX. |
||
![]() |
dfdf2b9ea4
|
Implement the AnimationGraph , allowing for multiple animations to be blended together. (#11989)
This is an implementation of RFC #51: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md Note that the implementation strategy is different from the one outlined in that RFC, because two-phase animation has now landed. # Objective Bevy needs animation blending. The RFC for this is [RFC 51]. ## Solution This is an implementation of the RFC. Note that the implementation strategy is different from the one outlined there, because two-phase animation has now landed. This is just a draft to get the conversation started. Currently we're missing a few things: - [x] A fully-fleshed-out mechanism for transitions - [x] A serialization format for `AnimationGraph`s - [x] Examples are broken, other than `animated_fox` - [x] Documentation --- ## Changelog ### Added * The `AnimationPlayer` has been reworked to support blending multiple animations together through an `AnimationGraph`, and as such will no longer function unless a `Handle<AnimationGraph>` has been added to the entity containing the player. See [RFC 51] for more details. * Transition functionality has moved from the `AnimationPlayer` to a new component, `AnimationTransitions`, which works in tandem with the `AnimationGraph`. ## Migration Guide * `AnimationPlayer`s can no longer play animations by themselves and need to be paired with a `Handle<AnimationGraph>`. Code that was using `AnimationPlayer` to play animations will need to create an `AnimationGraph` asset first, add a node for the clip (or clips) you want to play, and then supply the index of that node to the `AnimationPlayer`'s `play` method. * The `AnimationPlayer::play_with_transition()` method has been removed and replaced with the `AnimationTransitions` component. If you were previously using `AnimationPlayer::play_with_transition()`, add all animations that you were playing to the `AnimationGraph`, and create an `AnimationTransitions` component to manage the blending between them. [RFC 51]: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md --------- Co-authored-by: Rob Parrett <robparrett@gmail.com> |