Commit Graph

111 Commits

Author SHA1 Message Date
Aevyrie
cba6698033 Parallelize bevy 0.16-rc bottlenecks (#18632)
# Objective

- Found stuttering and performance degradation while updating big_space
stress tests.

## Solution

- Identify and fix slow spots using tracy. Patch to verify fixes.

## Testing

- Tracy
- Before: 

![image](https://github.com/user-attachments/assets/ab7f440d-88c1-4ad9-9ad9-dca127c9421f)
- prev_gt parallelization and mutating instead of component insertion: 

![image](https://github.com/user-attachments/assets/9279a663-c0ba-4529-b709-d0f81f2a1d8b)
- parallelize visibility ranges and mesh specialization

![image](https://github.com/user-attachments/assets/25b70e7c-5d30-48ab-9bb2-79211d4d672f)

---------

Co-authored-by: Zachary Harrold <zac@harrold.com.au>
2025-03-31 22:33:28 +02:00
charlotte
754d1fa7ca Remove entities from specialization caches when despawned. (#18627)
# Objective

Fixes #17872 

## Solution

This should have basically no impact on static scenes. We can optimize
more later if anything comes up. Needing to iterate the two level bin is
a bit unfortunate but shouldn't matter for apps that use a single
camera.
2025-03-31 22:33:27 +02:00
charlotte
48fc396f04 Fix unecessary specialization checks for apps with many materials (#18410)
# Objective

For materials that aren't being used or a visible entity doesn't have an
instance of, we were unnecessarily constantly checking whether they
needed specialization, saying yes (because the material had never been
specialized for that entity), and failing to look up the material
instance.

## Solution

If an entity doesn't have an instance of the material, it can't possibly
need specialization, so exit early before spending time doing the check.

Fixes #18388.
2025-03-19 21:36:18 +01:00
ickshonpe
4d8bc6161b
Extract sprites into a Vec (#17619)
# Objective

Extract sprites into a `Vec` instead of a `HashMap`.

## Solution

Extract UI nodes into a `Vec` instead of an `EntityHashMap`.
Add an index into the `Vec` to `Transparent2d`.
Compare both the index and render entity in prepare so there aren't any
collisions.

## Showcase
yellow this PR, red main

```
cargo run --example many_sprites --release --features "trace_tracy"
```

`extract_sprites`
<img width="452" alt="extract_sprites"
src="https://github.com/user-attachments/assets/66c60406-7c2b-4367-907d-4a71d3630296"
/>

`queue_sprites`
<img width="463" alt="queue_sprites"
src="https://github.com/user-attachments/assets/54b903bd-4137-4772-9f87-e10e1e050d69"
/>

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-03-18 00:48:33 +00:00
Gino Valente
9b32e09551
bevy_reflect: Add clone registrations project-wide (#18307)
# Objective

Now that #13432 has been merged, it's important we update our reflected
types to properly opt into this feature. If we do not, then this could
cause issues for users downstream who want to make use of
reflection-based cloning.

## Solution

This PR is broken into 4 commits:

1. Add `#[reflect(Clone)]` on all types marked `#[reflect(opaque)]` that
are also `Clone`. This is mandatory as these types would otherwise cause
the cloning operation to fail for any type that contains it at any
depth.
2. Update the reflection example to suggest adding `#[reflect(Clone)]`
on opaque types.
3. Add `#[reflect(clone)]` attributes on all fields marked
`#[reflect(ignore)]` that are also `Clone`. This prevents the ignored
field from causing the cloning operation to fail.
   
Note that some of the types that contain these fields are also `Clone`,
and thus can be marked `#[reflect(Clone)]`. This makes the
`#[reflect(clone)]` attribute redundant. However, I think it's safer to
keep it marked in the case that the `Clone` impl/derive is ever removed.
I'm open to removing them, though, if people disagree.
4. Finally, I added `#[reflect(Clone)]` on all types that are also
`Clone`. While not strictly necessary, it enables us to reduce the
generated output since we can just call `Clone::clone` directly instead
of calling `PartialReflect::reflect_clone` on each variant/field. It
also means we benefit from any optimizations or customizations made in
the `Clone` impl, including directly dereferencing `Copy` values and
increasing reference counters.

Along with that change I also took the liberty of adding any missing
registrations that I saw could be applied to the type as well, such as
`Default`, `PartialEq`, and `Hash`. There were hundreds of these to
edit, though, so it's possible I missed quite a few.

That last commit is **_massive_**. There were nearly 700 types to
update. So it's recommended to review the first three before moving onto
that last one.

Additionally, I can break the last commit off into its own PR or into
smaller PRs, but I figured this would be the easiest way of doing it
(and in a timely manner since I unfortunately don't have as much time as
I used to for code contributions).

## Testing

You can test locally with a `cargo check`:

```
cargo check --workspace --all-features
```
2025-03-17 18:32:35 +00:00
JoshValjosh
2953db7f8f
impl Eq/PartialEq for MeshMaterial{2|3}d (#17990)
# Objective

`Eq`/`PartialEq` are currently implemented for `MeshMaterial{2|3}d` only
through the derive macro. Since we don't have perfect derive yet, the
impls are only present for `M: Eq` and `M: PartialEq`. On the other
hand, I want to be able to compare material components for my toy
reactivity project.

## Solution

Switch to manual `Eq`/`PartialEq` impl.

## Testing

Boy I hope this didn't break anything!
2025-02-23 23:58:10 +00:00
Patrick Walton
5e569af2d0
Make the specialized pipeline cache two-level. (#17915)
Currently, the specialized pipeline cache maps a (view entity, mesh
entity) tuple to the retained pipeline for that entity. This causes two
problems:

1. Using the view entity is incorrect, because the view entity isn't
stable from frame to frame.

2. Switching the view entity to a `RetainedViewEntity`, which is
necessary for correctness, significantly regresses performance of
`specialize_material_meshes` and `specialize_shadows` because of the
loss of the fast `EntityHash`.

This patch fixes both problems by switching to a *two-level* hash table.
The outer level of the table maps each `RetainedViewEntity` to an inner
table, which maps each `MainEntity` to its pipeline ID and change tick.
Because we loop over views first and, within that loop, loop over
entities visible from that view, we hoist the slow lookup of the view
entity out of the inner entity loop.

Additionally, this patch fixes a bug whereby pipeline IDs were leaked
when removing the view. We still have a problem with leaking pipeline
IDs for deleted entities, but that won't be fixed until the specialized
pipeline cache is retained.

This patch improves performance of the [Caldera benchmark] from 7.8×
faster than 0.14 to 9.0× faster than 0.14, when applied on top of the
global binding arrays PR, #17898.

[Caldera benchmark]: https://github.com/DGriffin91/bevy_caldera_scene
2025-02-18 07:23:33 +00:00
Patrick Walton
85b366a8a2
Cache MeshInputUniform indices in each RenderBin. (#17772)
Currently, we look up each `MeshInputUniform` index in a hash table that
maps the main entity ID to the index every frame. This is inefficient,
cache unfriendly, and unnecessary, as the `MeshInputUniform` index for
an entity remains the same from frame to frame (even if the input
uniform changes). This commit changes the `IndexSet` in the `RenderBin`
to an `IndexMap` that maps the `MainEntity` to `MeshInputUniformIndex`
(a new type that this patch adds for more type safety).

On Caldera with parallel `batch_and_prepare_binned_render_phase`, this
patch improves that function from 3.18 ms to 2.42 ms, a 31% speedup.
2025-02-11 22:38:52 +00:00
Patrick Walton
69db29efb9
Sweep bins after queuing so as to only sweep them once. (#17787)
Currently, we *sweep*, or remove entities from bins when those entities
became invisible or changed phases, during `queue_material_meshes` and
similar phases. This, however, is wrong, because `queue_material_meshes`
executes once per material type, not once per phase. This could result
in sweeping bins multiple times per phase, which can corrupt the bins.
This commit fixes the issue by moving sweeping to a separate system that
runs after queuing.

This manifested itself as entities appearing and disappearing seemingly
at random.

Closes #17759.

---------

Co-authored-by: Robert Swain <robert.swain@gmail.com>
2025-02-10 23:15:35 +00:00
charlotte
af6629cbe9
Move specialize_* to QueueMeshes. (#17719)
# Objective

Things were breaking post-cs.

## Solution

`specialize_mesh_materials` must run after
`collect_meshes_for_gpu_building`. Therefore, its placement in the
`PrepareAssets` set didn't make sense (also more generally). To fix, we
put this class of system in ~`PrepareResources`~ `QueueMeshes`, although
it potentially could use a more descriptive location. We may want to
review the placement of `check_views_need_specialization` which is also
currently in `PrepareAssets`.
2025-02-09 14:13:42 +00:00
Patrick Walton
7fc122ad16
Retain bins from frame to frame. (#17698)
This PR makes Bevy keep entities in bins from frame to frame if they
haven't changed. This reduces the time spent in `queue_material_meshes`
and related functions to near zero for static geometry. This patch uses
the same change tick technique that #17567 uses to detect when meshes
have changed in such a way as to require re-binning.

In order to quickly find the relevant bin for an entity when that entity
has changed, we introduce a new type of cache, the *bin key cache*. This
cache stores a mapping from main world entity ID to cached bin key, as
well as the tick of the most recent change to the entity. As we iterate
through the visible entities in `queue_material_meshes`, we check the
cache to see whether the entity needs to be re-binned. If it doesn't,
then we mark it as clean in the `valid_cached_entity_bin_keys` bit set.
If it does, then we insert it into the correct bin, and then mark the
entity as clean. At the end, all entities not marked as clean are
removed from the bins.

This patch has a dramatic effect on the rendering performance of most
benchmarks, as it effectively eliminates `queue_material_meshes` from
the profile. Note, however, that it generally simultaneously regresses
`batch_and_prepare_binned_render_phase` by a bit (not by enough to
outweigh the win, however). I believe that's because, before this patch,
`queue_material_meshes` put the bins in the CPU cache for
`batch_and_prepare_binned_render_phase` to use, while with this patch,
`batch_and_prepare_binned_render_phase` must load the bins into the CPU
cache itself.

On Caldera, this reduces the time spent in `queue_material_meshes` from
5+ ms to 0.2ms-0.3ms. Note that benchmarking on that scene is very noisy
right now because of https://github.com/bevyengine/bevy/issues/17535.

![Screenshot 2025-02-05
153458](https://github.com/user-attachments/assets/e55f8134-b7e3-4b78-a5af-8d83e1e213b7)
2025-02-08 20:13:33 +00:00
charlotte
2ea5e9b846
Cold Specialization (#17567)
# Cold Specialization

## Objective

An ongoing part of our quest to retain everything in the render world,
cold-specialization aims to cache pipeline specialization so that
pipeline IDs can be recomputed only when necessary, rather than every
frame. This approach reduces redundant work in stable scenes, while
still accommodating scenarios in which materials, views, or visibility
might change, as well as unlocking future optimization work like
retaining render bins.

## Solution

Queue systems are split into a specialization system and queue system,
the former of which only runs when necessary to compute a new pipeline
id. Pipelines are invalidated using a combination of change detection
and ECS ticks.

### The difficulty with change detection

Detecting “what changed” can be tricky because pipeline specialization
depends not only on the entity’s components (e.g., mesh, material, etc.)
but also on which view (camera) it is rendering in. In other words, the
cache key for a given pipeline id is a view entity/render entity pair.
As such, it's not sufficient simply to react to change detection in
order to specialize -- an entity could currently be out of view or could
be rendered in the future in camera that is currently disabled or hasn't
spawned yet.

### Why ticks?

Ticks allow us to ensure correctness by allowing us to compare the last
time a view or entity was updated compared to the cached pipeline id.
This ensures that even if an entity was out of view or has never been
seen in a given camera before we can still correctly determine whether
it needs to be re-specialized or not.

## Testing

TODO: Tested a bunch of different examples, need to test more.

## Migration Guide

TODO

- `AssetEvents` has been moved into the `PostUpdate` schedule.

---------

Co-authored-by: Patrick Walton <pcwalton@mimiga.net>
2025-02-05 18:31:20 +00:00
Patrick Walton
dda97880c4
Implement experimental GPU two-phase occlusion culling for the standard 3D mesh pipeline. (#17413)
*Occlusion culling* allows the GPU to skip the vertex and fragment
shading overhead for objects that can be quickly proved to be invisible
because they're behind other geometry. A depth prepass already
eliminates most fragment shading overhead for occluded objects, but the
vertex shading overhead, as well as the cost of testing and rejecting
fragments against the Z-buffer, is presently unavoidable for standard
meshes. We currently perform occlusion culling only for meshlets. But
other meshes, such as skinned meshes, can benefit from occlusion culling
too in order to avoid the transform and skinning overhead for unseen
meshes.

This commit adapts the same [*two-phase occlusion culling*] technique
that meshlets use to Bevy's standard 3D mesh pipeline when the new
`OcclusionCulling` component, as well as the `DepthPrepass` component,
are present on the camera. It has these steps:

1. *Early depth prepass*: We use the hierarchical Z-buffer from the
previous frame to cull meshes for the initial depth prepass, effectively
rendering only the meshes that were visible in the last frame.

2. *Early depth downsample*: We downsample the depth buffer to create
another hierarchical Z-buffer, this time with the current view
transform.

3. *Late depth prepass*: We use the new hierarchical Z-buffer to test
all meshes that weren't rendered in the early depth prepass. Any meshes
that pass this check are rendered.

4. *Late depth downsample*: Again, we downsample the depth buffer to
create a hierarchical Z-buffer in preparation for the early depth
prepass of the next frame. This step is done after all the rendering, in
order to account for custom phase items that might write to the depth
buffer.

Note that this patch has no effect on the per-mesh CPU overhead for
occluded objects, which remains high for a GPU-driven renderer due to
the lack of `cold-specialization` and retained bins. If
`cold-specialization` and retained bins weren't on the horizon, then a
more traditional approach like potentially visible sets (PVS) or low-res
CPU rendering would probably be more efficient than the GPU-driven
approach that this patch implements for most scenes. However, at this
point the amount of effort required to implement a PVS baking tool or a
low-res CPU renderer would probably be greater than landing
`cold-specialization` and retained bins, and the GPU driven approach is
the more modern one anyway. It does mean that the performance
improvements from occlusion culling as implemented in this patch *today*
are likely to be limited, because of the high CPU overhead for occluded
meshes.

Note also that this patch currently doesn't implement occlusion culling
for 2D objects or shadow maps. Those can be addressed in a follow-up.
Additionally, note that the techniques in this patch require compute
shaders, which excludes support for WebGL 2.

This PR is marked experimental because of known precision issues with
the downsampling approach when applied to non-power-of-two framebuffer
sizes (i.e. most of them). These precision issues can, in rare cases,
cause objects to be judged occluded that in fact are not. (I've never
seen this in practice, but I know it's possible; it tends to be likelier
to happen with small meshes.) As a follow-up to this patch, we desire to
switch to the [SPD-based hi-Z buffer shader from the Granite engine],
which doesn't suffer from these problems, at which point we should be
able to graduate this feature from experimental status. I opted not to
include that rewrite in this patch for two reasons: (1) @JMS55 is
planning on doing the rewrite to coincide with the new availability of
image atomic operations in Naga; (2) to reduce the scope of this patch.

A new example, `occlusion_culling`, has been added. It demonstrates
objects becoming quickly occluded and disoccluded by dynamic geometry
and shows the number of objects that are actually being rendered. Also,
a new `--occlusion-culling` switch has been added to `scene_viewer`, in
order to make it easy to test this patch with large scenes like Bistro.

[*two-phase occlusion culling*]:
https://medium.com/@mil_kru/two-pass-occlusion-culling-4100edcad501

[Aaltonen SIGGRAPH 2015]:

https://www.advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf

[Some literature]:

https://gist.github.com/reduz/c5769d0e705d8ab7ac187d63be0099b5?permalink_comment_id=5040452#gistcomment-5040452

[SPD-based hi-Z buffer shader from the Granite engine]:
https://github.com/Themaister/Granite/blob/master/assets/shaders/post/hiz.comp

## Migration guide

* When enqueuing a custom mesh pipeline, work item buffers are now
created with
`bevy::render::batching::gpu_preprocessing::get_or_create_work_item_buffer`,
not `PreprocessWorkItemBuffers::new`. See the
`specialized_mesh_pipeline` example.

## Showcase

Occlusion culling example:
![Screenshot 2025-01-15
175051](https://github.com/user-attachments/assets/1544f301-68a3-45f8-84a6-7af3ad431258)

Bistro zoomed out, before occlusion culling:
![Screenshot 2025-01-16
185425](https://github.com/user-attachments/assets/5114bbdf-5dec-4de9-b17e-7aa77e7b61ed)

Bistro zoomed out, after occlusion culling:
![Screenshot 2025-01-16
184949](https://github.com/user-attachments/assets/9dd67713-656c-4276-9768-6d261ca94300)

In this scene, occlusion culling reduces the number of meshes Bevy has
to render from 1591 to 585.
2025-01-27 05:02:46 +00:00
Patrick Walton
72ddac140a
Retain RenderMaterialInstances and RenderMeshMaterialIds from frame to frame. (#16985)
This commit makes Bevy use change detection to only update
`RenderMaterialInstances` and `RenderMeshMaterialIds` when meshes have
been added, changed, or removed. `extract_mesh_materials`, the system
that extracts these, now follows the pattern that
`extract_meshes_for_gpu_building` established.

This improves frame time of `many_cubes` from 3.9ms to approximately
3.1ms, which slightly surpasses the performance of Bevy 0.14.

(Resubmitted from #16878 to clean up history.)

![Screenshot 2024-12-17
182109](https://github.com/user-attachments/assets/dfb26e20-b314-4c67-a59a-dc9623fabb62)

---------

Co-authored-by: Charlotte McElwain <charlotte.c.mcelwain@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
2025-01-22 03:35:46 +00:00
Patrick Walton
35101f3ed5
Use multi_draw_indirect_count where available, in preparation for two-phase occlusion culling. (#17211)
This commit allows Bevy to use `multi_draw_indirect_count` for drawing
meshes. The `multi_draw_indirect_count` feature works just like
`multi_draw_indirect`, but it takes the number of indirect parameters
from a GPU buffer rather than specifying it on the CPU.

Currently, the CPU constructs the list of indirect draw parameters with
the instance count for each batch set to zero, uploads the resulting
buffer to the GPU, and dispatches a compute shader that bumps the
instance count for each mesh that survives culling. Unfortunately, this
is inefficient when we support `multi_draw_indirect_count`. Draw
commands corresponding to meshes for which all instances were culled
will remain present in the list when calling
`multi_draw_indirect_count`, causing overhead. Proper use of
`multi_draw_indirect_count` requires eliminating these empty draw
commands.

To address this inefficiency, this PR makes Bevy fully construct the
indirect draw commands on the GPU instead of on the CPU. Instead of
writing instance counts to the draw command buffer, the mesh
preprocessing shader now writes them to a separate *indirect metadata
buffer*. A second compute dispatch known as the *build indirect
parameters* shader runs after mesh preprocessing and converts the
indirect draw metadata into actual indirect draw commands for the GPU.
The build indirect parameters shader operates on a batch at a time,
rather than an instance at a time, and as such each thread writes only 0
or 1 indirect draw parameters, simplifying the current logic in
`mesh_preprocessing`, which currently has to have special cases for the
first mesh in each batch. The build indirect parameters shader emits
draw commands in a tightly packed manner, enabling maximally efficient
use of `multi_draw_indirect_count`.

Along the way, this patch switches mesh preprocessing to dispatch one
compute invocation per render phase per view, instead of dispatching one
compute invocation per view. This is preparation for two-phase occlusion
culling, in which we will have two mesh preprocessing stages. In that
scenario, the first mesh preprocessing stage must only process opaque
and alpha tested objects, so the work items must be separated into those
that are opaque or alpha tested and those that aren't. Thus this PR
splits out the work items into a separate buffer for each phase. As this
patch rewrites so much of the mesh preprocessing infrastructure, it was
simpler to just fold the change into this patch instead of deferring it
to the forthcoming occlusion culling PR.

Finally, this patch changes mesh preprocessing so that it runs
separately for indexed and non-indexed meshes. This is because draw
commands for indexed and non-indexed meshes have different sizes and
layouts. *The existing code is actually broken for non-indexed meshes*,
as it attempts to overlay the indirect parameters for non-indexed meshes
on top of those for indexed meshes. Consequently, right now the
parameters will be read incorrectly when multiple non-indexed meshes are
multi-drawn together. *This is a bug fix* and, as with the change to
dispatch phases separately noted above, was easiest to include in this
patch as opposed to separately.

## Migration Guide

* Systems that add custom phase items now need to populate the indirect
drawing-related buffers. See the `specialized_mesh_pipeline` example for
an example of how this is done.
2025-01-14 21:19:20 +00:00
Patrick Walton
141b7673ab
Key render phases off the main world view entity, not the render world view entity. (#16942)
We won't be able to retain render phases from frame to frame if the keys
are unstable. It's not as simple as simply keying off the main world
entity, however, because some main world entities extract to multiple
render world entities. For example, directional lights extract to
multiple shadow cascades, and point lights extract to one view per
cubemap face. Therefore, we key off a new type, `RetainedViewEntity`,
which contains the main entity plus a *subview ID*.

This is part of the preparation for retained bins.

---------

Co-authored-by: ickshonpe <david.curthoys@googlemail.com>
2025-01-12 20:24:17 +00:00
MichiRecRoom
3742e621ef
Allow clippy::too_many_arguments to lint without warnings (#17249)
# Objective
Many instances of `clippy::too_many_arguments` linting happen to be on
systems - functions which we don't call manually, and thus there's not
much reason to worry about the argument count.

## Solution
Allow `clippy::too_many_arguments` globally, and remove all lint
attributes related to it.
2025-01-09 07:26:15 +00:00
MichiRecRoom
3d797d7513
bevy_sprite: Apply #![deny(clippy::allow_attributes, clippy::allow_attributes_without_reason)] (Attempt 2) (#17184)
I broke the commit history on the other one,
https://github.com/bevyengine/bevy/pull/17160. Woops.

# Objective
- https://github.com/bevyengine/bevy/issues/17111

## Solution
Set the `clippy::allow_attributes` and
`clippy::allow_attributes_without_reason` lints to `deny`, and bring
`bevy_sprite` in line with the new restrictions.

## Testing
`cargo clippy` and `cargo test --package bevy_sprite` were run, and no
errors were encountered.
2025-01-06 19:26:44 +00:00
Patrick Walton
a8f15bd95e
Introduce two-level bins for multidrawable meshes. (#16898)
Currently, our batchable binned items are stored in a hash table that
maps bin key, which includes the batch set key, to a list of entities.
Multidraw is handled by sorting the bin keys and accumulating adjacent
bins that can be multidrawn together (i.e. have the same batch set key)
into multidraw commands during `batch_and_prepare_binned_render_phase`.

This is reasonably efficient right now, but it will complicate future
work to retain indirect draw parameters from frame to frame. Consider
what must happen when we have retained indirect draw parameters and the
application adds a bin (i.e. a new mesh) that shares a batch set key
with some pre-existing meshes. (That is, the new mesh can be multidrawn
with the pre-existing meshes.) To be maximally efficient, our goal in
that scenario will be to update *only* the indirect draw parameters for
the batch set (i.e. multidraw command) containing the mesh that was
added, while leaving the others alone. That means that we have to
quickly locate all the bins that belong to the batch set being modified.

In the existing code, we would have to sort the list of bin keys so that
bins that can be multidrawn together become adjacent to one another in
the list. Then we would have to do a binary search through the sorted
list to find the location of the bin that was just added. Next, we would
have to widen our search to adjacent indexes that contain the same batch
set, doing expensive comparisons against the batch set key every time.
Finally, we would reallocate the indirect draw parameters and update the
stored pointers to the indirect draw parameters that the bins store.

By contrast, it'd be dramatically simpler if we simply changed the way
bins are stored to first map from batch set key (i.e. multidraw command)
to the bins (i.e. meshes) within that batch set key, and then from each
individual bin to the mesh instances. That way, the scenario above in
which we add a new mesh will be simpler to handle. First, we will look
up the batch set key corresponding to that mesh in the outer map to find
an inner map corresponding to the single multidraw command that will
draw that batch set. We will know how many meshes the multidraw command
is going to draw by the size of that inner map. Then we simply need to
reallocate the indirect draw parameters and update the pointers to those
parameters within the bins as necessary. There will be no need to do any
binary search or expensive batch set key comparison: only a single hash
lookup and an iteration over the inner map to update the pointers.

This patch implements the above technique. Because we don't have
retained bins yet, this PR provides no performance benefits. However, it
opens the door to maximally efficient updates when only a small number
of meshes change from frame to frame.

The main churn that this patch causes is that the *batch set key* (which
uniquely specifies a multidraw command) and *bin key* (which uniquely
specifies a mesh *within* that multidraw command) are now separate,
instead of the batch set key being embedded *within* the bin key.

In order to isolate potential regressions, I think that at least #16890,
#16836, and #16825 should land before this PR does.

## Migration Guide

* The *batch set key* is now separate from the *bin key* in
`BinnedPhaseItem`. The batch set key is used to collect multidrawable
meshes together. If you aren't using the multidraw feature, you can
safely set the batch set key to `()`.
2025-01-06 18:34:40 +00:00
Zachary Harrold
a371ee3019
Remove tracing re-export from bevy_utils (#17161)
# Objective

- Contributes to #11478

## Solution

- Made `bevy_utils::tracing` `doc(hidden)`
- Re-exported `tracing` from `bevy_log` for end-users
- Added `tracing` directly to crates that need it.

## Testing

- CI

---

## Migration Guide

If you were importing `tracing` via `bevy::utils::tracing`, instead use
`bevy::log::tracing`. Note that many items within `tracing` are also
directly re-exported from `bevy::log` as well, so you may only need
`bevy::log` for the most common items (e.g., `warn!`, `trace!`, etc.).
This also applies to the `log_once!` family of macros.

## Notes

- While this doesn't reduce the line-count in `bevy_utils`, it further
decouples the internal crates from `bevy_utils`, making its eventual
removal more feasible in the future.
- I have just imported `tracing` as we do for all dependencies. However,
a workspace dependency may be more appropriate for version management.
2025-01-05 23:06:34 +00:00
Benjamin Brienen
7112d5594e
Remove all deprecated code (#16338)
# Objective

Release cycle things

## Solution

Delete items deprecated in 0.15 and migrate bevy itself.

## Testing

CI
2025-01-05 20:33:39 +00:00
Benjamin Brienen
0362abd4f4
Make extract_mesh_materials and MaterialBindGroupAllocator public (#16982)
# Objective

Fixes #16730

## Solution

Make the relevant functions public. (`MaterialBindGroupAllocator` itself
was already `pub`)
2024-12-30 05:57:11 +00:00
Patrick Walton
40df1ea4b6
Remove the type parameter from check_visibility, and only invoke it once. (#16812)
Currently, `check_visibility` is parameterized over a query filter that
specifies the type of potentially-visible object. This has the
unfortunate side effect that we need a separate system,
`mark_view_visibility_as_changed_if_necessary`, to trigger view
visibility change detection. That system is quite slow because it must
iterate sequentially over all entities in the scene.

This PR moves the query filter from `check_visibility` to a new
component, `VisibilityClass`. `VisibilityClass` stores a list of type
IDs, each corresponding to one of the query filters we used to use.
Because `check_visibility` is no longer specialized to the query filter
at the type level, Bevy now only needs to invoke it once, leading to
better performance as `check_visibility` can do change detection on the
fly rather than delegating it to a separate system.

This commit also has ergonomic improvements, as there's no need for
applications that want to add their own custom renderable components to
add specializations of the `check_visibility` system to the schedule.
Instead, they only need to ensure that the `ViewVisibility` component is
properly kept up to date. The recommended way to do this, and the way
that's demonstrated in the `custom_phase_item` and
`specialized_mesh_pipeline` examples, is to make `ViewVisibility` a
required component and to add the type ID to it in a component add hook.
This patch does this for `Mesh3d`, `Mesh2d`, `Sprite`, `Light`, and
`Node`, which means that most app code doesn't need to change at all.

Note that, although this patch has a large impact on the performance of
visibility determination, it doesn't actually improve the end-to-end
frame time of `many_cubes`. That's because the render world was already
effectively hiding the latency from
`mark_view_visibility_as_changed_if_necessary`. This patch is, however,
necessary for *further* improvements to `many_cubes` performance.

`many_cubes` trace before:
![Screenshot 2024-12-13
015318](https://github.com/user-attachments/assets/d0b1881b-fb75-4a39-b05d-1a16eabfa2c5)

`many_cubes` trace after:
![Screenshot 2024-12-13
145735](https://github.com/user-attachments/assets/0a364289-e942-41bb-9cc2-b05d07e3722d)

## Migration Guide

* `check_visibility` no longer takes a `QueryFilter`, and there's no
need to add it manually to your app schedule anymore for custom
rendering items. Instead, entities with custom renderable components
should add the appropriate type IDs to `VisibilityClass`. See
`custom_phase_item` for an example.
2024-12-17 04:43:45 +00:00
Patrick Walton
f5de3f08fb
Use multidraw for opaque meshes when GPU culling is in use. (#16427)
This commit adds support for *multidraw*, which is a feature that allows
multiple meshes to be drawn in a single drawcall. `wgpu` currently
implements multidraw on Vulkan, so this feature is only enabled there.
Multiple meshes can be drawn at once if they're in the same vertex and
index buffers and are otherwise placed in the same bin. (Thus, for
example, at present the materials and textures must be identical, but
see #16368.) Multidraw is a significant performance improvement during
the draw phase because it reduces the number of rebindings, as well as
the number of drawcalls.

This feature is currently only enabled when GPU culling is used: i.e.
when `GpuCulling` is present on a camera. Therefore, if you run for
example `scene_viewer`, you will not see any performance improvements,
because `scene_viewer` doesn't add the `GpuCulling` component to its
camera.

Additionally, the multidraw feature is only implemented for opaque 3D
meshes and not for shadows or 2D meshes. I plan to make GPU culling the
default and to extend the feature to shadows in the future. Also, in the
future I suspect that polyfilling multidraw on APIs that don't support
it will be fruitful, as even without driver-level support use of
multidraw allows us to avoid expensive `wgpu` rebindings.
2024-12-06 17:22:03 +00:00
Patrick Walton
5adf831b42
Add a bindless mode to AsBindGroup. (#16368)
This patch adds the infrastructure necessary for Bevy to support
*bindless resources*, by adding a new `#[bindless]` attribute to
`AsBindGroup`.

Classically, only a single texture (or sampler, or buffer) can be
attached to each shader binding. This means that switching materials
requires breaking a batch and issuing a new drawcall, even if the mesh
is otherwise identical. This adds significant overhead not only in the
driver but also in `wgpu`, as switching bind groups increases the amount
of validation work that `wgpu` must do.

*Bindless resources* are the typical solution to this problem. Instead
of switching bindings between each texture, the renderer instead
supplies a large *array* of all textures in the scene up front, and the
material contains an index into that array. This pattern is repeated for
buffers and samplers as well. The renderer now no longer needs to switch
binding descriptor sets while drawing the scene.

Unfortunately, as things currently stand, this approach won't quite work
for Bevy. Two aspects of `wgpu` conspire to make this ideal approach
unacceptably slow:

1. In the DX12 backend, all binding arrays (bindless resources) must
have a constant size declared in the shader, and all textures in an
array must be bound to actual textures. Changing the size requires a
recompile.

2. Changing even one texture incurs revalidation of all textures, a
process that takes time that's linear in the total size of the binding
array.

This means that declaring a large array of textures big enough to
encompass the entire scene is presently unacceptably slow. For example,
if you declare 4096 textures, then `wgpu` will have to revalidate all
4096 textures if even a single one changes. This process can take
multiple frames.

To work around this problem, this PR groups bindless resources into
small *slabs* and maintains a free list for each. The size of each slab
for the bindless arrays associated with a material is specified via the
`#[bindless(N)]` attribute. For instance, consider the following
declaration:

```rust
#[derive(AsBindGroup)]
#[bindless(16)]
struct MyMaterial {
    #[buffer(0)]
    color: Vec4,
    #[texture(1)]
    #[sampler(2)]
    diffuse: Handle<Image>,
}
```

The `#[bindless(N)]` attribute specifies that, if bindless arrays are
supported on the current platform, each resource becomes a binding array
of N instances of that resource. So, for `MyMaterial` above, the `color`
attribute is exposed to the shader as `binding_array<vec4<f32>, 16>`,
the `diffuse` texture is exposed to the shader as
`binding_array<texture_2d<f32>, 16>`, and the `diffuse` sampler is
exposed to the shader as `binding_array<sampler, 16>`. Inside the
material's vertex and fragment shaders, the applicable index is
available via the `material_bind_group_slot` field of the `Mesh`
structure. So, for instance, you can access the current color like so:

```wgsl
// `uniform` binding arrays are a non-sequitur, so `uniform` is automatically promoted
// to `storage` in bindless mode.
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
    let color = material_color[mesh[in.instance_index].material_bind_group_slot];
    ...
}
```

Note that portable shader code can't guarantee that the current platform
supports bindless textures. Indeed, bindless mode is only available in
Vulkan and DX12. The `BINDLESS` shader definition is available for your
use to determine whether you're on a bindless platform or not. Thus a
portable version of the shader above would look like:

```wgsl
#ifdef BINDLESS
@group(2) @binding(0) var<storage> material_color: binding_array<Color, 4>;
#else // BINDLESS
@group(2) @binding(0) var<uniform> material_color: Color;
#endif // BINDLESS
...
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
#ifdef BINDLESS
    let color = material_color[mesh[in.instance_index].material_bind_group_slot];
#else // BINDLESS
    let color = material_color;
#endif // BINDLESS
    ...
}
```

Importantly, this PR *doesn't* update `StandardMaterial` to be bindless.
So, for example, `scene_viewer` will currently not run any faster. I
intend to update `StandardMaterial` to use bindless mode in a follow-up
patch.

A new example, `shaders/shader_material_bindless`, has been added to
demonstrate how to use this new feature.

Here's a Tracy profile of `submit_graph_commands` of this patch and an
additional patch (not submitted yet) that makes `StandardMaterial` use
bindless. Red is those patches; yellow is `main`. The scene was Bistro
Exterior with a hack that forces all textures to opaque. You can see a
1.47x mean speedup.
![Screenshot 2024-11-12
161713](https://github.com/user-attachments/assets/4334b362-42c8-4d64-9cfb-6835f019b95c)

## Migration Guide

* `RenderAssets::prepare_asset` now takes an `AssetId` parameter.
* Bin keys now have Bevy-specific material bind group indices instead of
`wgpu` material bind group IDs, as part of the bindless change. Use the
new `MaterialBindGroupAllocator` to map from bind group index to bind
group ID.
2024-12-03 18:00:34 +00:00
Benjamin Brienen
40640fdf42
Don't reëxport bevy_image from bevy_render (#16163)
# Objective

Fixes #15940

## Solution

Remove the `pub use` and fix the compile errors.
Make `bevy_image` available as `bevy::image`.

## Testing

Feature Frenzy would be good here! Maybe I'll learn how to use it if I
have some time this weekend, or maybe a reviewer can use it.

## Migration Guide

Use `bevy_image` instead of `bevy_render::texture` items.

---------

Co-authored-by: chompaa <antony.m.3012@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-11-10 06:54:38 +00:00
Joona Aalto
c1a4b82762
Revert default mesh materials (#15930)
# Objective

Closes #15799.

Many rendering people and maintainers are in favor of reverting default
mesh materials added in #15524, especially as the migration to required
component is already large and heavily breaking.

## Solution

Revert default mesh materials, and adjust docs accordingly.

- Remove `extract_default_materials`
- Remove `clear_material_instances`, and move the logic back into
`extract_mesh_materials`
- Remove `HasMaterial2d` and `HasMaterial3d`
- Change default material handles back to pink instead of white
- 2D uses `Color::srgb(1.0, 0.0, 1.0)`, while 3D uses `Color::srgb(1.0,
0.0, 0.5)`. Not sure if this is intended.

There is now no indication at all about missing materials for `Mesh2d`
and `Mesh3d`. Having a mesh without a material renders nothing.

## Testing

I ran `2d_shapes`, `mesh2d_manual`, and `3d_shapes`, with and without
mesh material components.
2024-10-15 19:47:40 +00:00
charlotte
da211ee314
Fix broken mesh2d (#15838)
Forgot to clean this up when I was still trying to figure out what was
broken.

Closes #15835.
2024-10-10 21:28:45 +00:00
charlotte
dd812b3e49
Type safe retained render world (#15756)
# Objective

In the Render World, there are a number of collections that are derived
from Main World entities and are used to drive rendering. The most
notable are:
- `VisibleEntities`, which is generated in the `check_visibility` system
and contains visible entities for a view.
- `ExtractedInstances`, which maps entity ids to asset ids.

In the old model, these collections were trivially kept in sync -- any
extracted phase item could look itself up because the render entity id
was guaranteed to always match the corresponding main world id.

After #15320, this became much more complicated, and was leading to a
number of subtle bugs in the Render World. The main rendering systems,
i.e. `queue_material_meshes` and `queue_material2d_meshes`, follow a
similar pattern:

```rust
for visible_entity in visible_entities.iter::<With<Mesh2d>>() {
    let Some(mesh_instance) = render_mesh_instances.get_mut(visible_entity) else {
        continue;
    };
            
    // Look some more stuff up and specialize the pipeline...
            
    let bin_key = Opaque2dBinKey {
        pipeline: pipeline_id,
        draw_function: draw_opaque_2d,
        asset_id: mesh_instance.mesh_asset_id.into(),
        material_bind_group_id: material_2d.get_bind_group_id().0,
    };
    opaque_phase.add(
        bin_key,
        *visible_entity,
        BinnedRenderPhaseType::mesh(mesh_instance.automatic_batching),
    );
}
```

In this case, `visible_entities` and `render_mesh_instances` are both
collections that are created and keyed by Main World entity ids, and so
this lookup happens to work by coincidence. However, there is a major
unintentional bug here: namely, because `visible_entities` is a
collection of Main World ids, the phase item being queued is created
with a Main World id rather than its correct Render World id.

This happens to not break mesh rendering because the render commands
used for drawing meshes do not access the `ItemQuery` parameter, but
demonstrates the confusion that is now possible: our UI phase items are
correctly being queued with Render World ids while our meshes aren't.

Additionally, this makes it very easy and error prone to use the wrong
entity id to look up things like assets. For example, if instead we
ignored visibility checks and queued our meshes via a query, we'd have
to be extra careful to use `&MainEntity` instead of the natural
`Entity`.

## Solution

Make all collections that are derived from Main World data use
`MainEntity` as their key, to ensure type safety and avoid accidentally
looking up data with the wrong entity id:

```rust
pub type MainEntityHashMap<V> = hashbrown::HashMap<MainEntity, V, EntityHash>;
```

Additionally, we make all `PhaseItem` be able to provide both their Main
and Render World ids, to allow render phase implementors maximum
flexibility as to what id should be used to look up data.

You can think of this like tracking at the type level whether something
in the Render World should use it's "primary key", i.e. entity id, or
needs to use a foreign key, i.e. `MainEntity`.

## Testing

##### TODO:

This will require extensive testing to make sure things didn't break!
Additionally, some extraction logic has become more complicated and
needs to be checked for regressions.

## Migration Guide

With the advent of the retained render world, collections that contain
references to `Entity` that are extracted into the render world have
been changed to contain `MainEntity` in order to prevent errors where a
render world entity id is used to look up an item by accident. Custom
rendering code may need to be changed to query for `&MainEntity` in
order to look up the correct item from such a collection. Additionally,
users who implement their own extraction logic for collections of main
world entity should strongly consider extracting into a different
collection that uses `MainEntity` as a key.

Additionally, render phases now require specifying both the `Entity` and
`MainEntity` for a given `PhaseItem`. Custom render phases should ensure
`MainEntity` is available when queuing a phase item.
2024-10-10 18:47:04 +00:00
Zachary Harrold
ecd04c1b72
Remove thiserror from bevy_sprite (#15763)
# Objective

- Contributes to #15460

## Solution

- Removed `thiserror` from `bevy_sprite`
2024-10-09 14:29:26 +00:00
Joona Aalto
54006b107b
Migrate meshes and materials to required components (#15524)
# Objective

A big step in the migration to required components: meshes and
materials!

## Solution

As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):

- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:

![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)

![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)

Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.

## Testing

I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!

## Implementation Notes

- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.

---

## Migration Guide

Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.

Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.

The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.

---------

Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00
Zachary Harrold
d70595b667
Add core and alloc over std Lints (#15281)
# Objective

- Fixes #6370
- Closes #6581

## Solution

- Added the following lints to the workspace:
  - `std_instead_of_core`
  - `std_instead_of_alloc`
  - `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.

## Testing

- Ran CI locally

## Migration Guide

The MSRV is now 1.81. Please update to this version or higher.

## Notes

- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00
Allen Pocket
d93b78a66e
Remove unnecessary muts in RenderSet::QueueMeshes (#14953)
# Objective

Fixes #14952
2024-08-28 11:38:38 +00:00
charlotte
1caa64d948
Refactor AsBindGroup to use a associated SystemParam. (#14909)
# Objective

Adding more features to `AsBindGroup` proc macro means making the trait
arguments uglier. Downstream implementors of the trait without the proc
macro might want to do different things than our default arguments.

## Solution

Make `AsBindGroup` take an associated `Param` type.

## Migration Guide

`AsBindGroup` now allows the user to specify a `SystemParam` to be used
for creating bind groups.
2024-08-25 20:16:34 +00:00
robtfm
6e2f96f222
check sampler type in as_bind_group derives (#12637)
# Objective

currently if we use an image with the wrong sampler type in a material,
wgpu panics with an invalid texture format. turn this into a warning and
fail more gracefully.

## Solution

the expected sampler type is specified in the AsBindGroup derive, so we
can just check the image sampler is what it should be.

i am not totally sure about the mapping of image sampler type to
#[sampler(type)], i assumed:

```
    "filtering" => [ TextureSampleType::Float { filterable: true } ],
    "non_filtering" => [
        TextureSampleType::Float { filterable: false },
        TextureSampleType::Sint,
        TextureSampleType::Uint,
    ],
    "comparison" => [ TextureSampleType::Depth ],
```
2024-08-21 01:41:31 +00:00
IceSentry
9de25ad330
Add AlphaMask2d phase (#14724)
# Objective

- Bevy now supports an opaque phase for mesh2d, but it's very common for
2d textures to have a transparent alpha channel.

## Solution

- Add an alpha mask phase identical to the one in 3d. It will do the
alpha masking in the shader before drawing the mesh.
- Uses the BinnedRenderPhase
- Since it's an opaque draw it also correctly writes to depth

## Testing

- Tested the mes2d_alpha_mode example and the bevymark example with
alpha mask mode enabled

---

## Showcase


![image](https://github.com/user-attachments/assets/9e5e4561-d0a7-4aa3-b049-d4b1247d5ed4)

The white logo on the right is rendered with alpha mask enabled.

Running the bevymark example I can get 65fps for 120k mesh2d all using
alpha mask.

## Notes

This is one more step for mesh2d improvements
https://github.com/bevyengine/bevy/issues/13265

---------

Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com>
2024-08-15 14:10:37 +00:00
IceSentry
9d6a4fbc85
Use BinnedRenderPhase for Opaque2d (#13091)
Based on top of #12982  and #13069 

# Objective

- Opaque2d was implemented with SortedRenderPhase but BinnedRenderPhase
should be much faster

## Solution

- Implement BinnedRenderPhase for Opaque2d

## Notes

While testing this PR, before the change I had ~14 fps in bevymark with
100k entities. After this change I get ~71 fps, compared to using
sprites where I only get ~63 fps. This means that after this PR mesh2d
with opaque meshes will be faster than the sprite path. This is not a 1
to 1 comparison since sprites do alpha blending.
2024-08-12 15:38:24 +00:00
IceSentry
5abc32ceda
Add 2d opaque phase with depth buffer (#13069)
This PR is based on top of #12982

# Objective

- Mesh2d currently only has an alpha blended phase. Most sprites don't
need transparency though.
- For some 2d games it can be useful to have a 2d depth buffer

## Solution

- Add an opaque phase to render Mesh2d that don't need transparency
- This phase currently uses the `SortedRenderPhase` to make it easier to
implement based on the already existing transparent phase. A follow up
PR will switch this to `BinnedRenderPhase`.
- Add a 2d depth buffer
- Use that depth buffer in the transparent phase to make sure that
sprites and transparent mesh2d are displayed correctly

## Testing

I added the mesh2d_transforms example that layers many opaque and
transparent mesh2d to make sure they all get displayed correctly. I also
confirmed it works with sprites by modifying that example locally.

---

## Changelog

- Added `AlphaMode2d`
- Added `Opaque2d` render phase
- Camera2d now have a `ViewDepthTexture` component

## Migration Guide

- `ColorMaterial` now contains `AlphaMode2d`. To keep previous
behaviour, use `AlphaMode::BLEND`. If you know your sprite is opaque,
use `AlphaMode::OPAQUE`

## Follow up PRs

- See tracking issue: #13265

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Christopher Biscardi <chris@christopherbiscardi.com>
2024-08-07 00:22:09 +00:00
IceSentry
3faca1e549
Don't ignore draw errors (#13240)
# Objective

- It's possible to have errors in a draw command, but these errors are
ignored

## Solution

- Return a result with the error

## Changelog

Renamed `RenderCommandResult::Failure` to `RenderCommandResult::Skip`
Added a `reason` string parameter to `RenderCommandResult::Failure`

## Migration Guide
If you were using `RenderCommandResult::Failure` to just ignore an error
and retry later, use `RenderCommandResult::Skip` instead.

This wasn't intentional, but this PR should also help with
https://github.com/bevyengine/bevy/issues/12660 since we can turn a few
unwraps into error messages now.

---------

Co-authored-by: Charlotte McElwain <charlotte.c.mcelwain@gmail.com>
2024-07-22 19:22:30 +00:00
charlotte
03fd1b46ef
Move Msaa to component (#14273)
Switches `Msaa` from being a globally configured resource to a per
camera view component.

Closes #7194

# Objective

Allow individual views to describe their own MSAA settings. For example,
when rendering to different windows or to different parts of the same
view.

## Solution

Make `Msaa` a component that is required on all camera bundles.

## Testing

Ran a variety of examples to ensure that nothing broke.

TODO:
- [ ] Make sure android still works per previous comment in
`extract_windows`.

---

## Migration Guide

`Msaa` is no longer configured as a global resource, and should be
specified on each spawned camera if a non-default setting is desired.

---------

Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-07-22 18:28:23 +00:00
Patrick Walton
bc34216929
Pack multiple vertex and index arrays together into growable buffers. (#14257)
This commit uses the [`offset-allocator`] crate to combine vertex and
index arrays from different meshes into single buffers. Since the
primary source of `wgpu` overhead is from validation and synchronization
when switching buffers, this significantly improves Bevy's rendering
performance on many scenes.

This patch is a more flexible version of #13218, which also used slabs.
Unlike #13218, which used slabs of a fixed size, this commit implements
slabs that start small and can grow. In addition to reducing memory
usage, supporting slab growth reduces the number of vertex and index
buffer switches that need to happen during rendering, leading to
improved performance. To prevent pathological fragmentation behavior,
slabs are capped to a maximum size, and mesh arrays that are too large
get their own dedicated slabs.

As an additional improvement over #13218, this commit allows the
application to customize all allocator heuristics. The
`MeshAllocatorSettings` resource contains values that adjust the minimum
and maximum slab sizes, the cutoff point at which meshes get their own
dedicated slabs, and the rate at which slabs grow. Hopefully-sensible
defaults have been chosen for each value.

Unfortunately, WebGL 2 doesn't support the *base vertex* feature, which
is necessary to pack vertex arrays from different meshes into the same
buffer. `wgpu` represents this restriction as the downlevel flag
`BASE_VERTEX`. This patch detects that bit and ensures that all vertex
buffers get dedicated slabs on that platform. Even on WebGL 2, though,
we can combine all *index* arrays into single buffers to reduce buffer
changes, and we do so.

The following measurements are on Bistro:

Overall frame time improves from 8.74 ms to 5.53 ms (1.58x speedup):
![Screenshot 2024-07-09
163521](https://github.com/bevyengine/bevy/assets/157897/5d83c824-c0ee-434c-bbaf-218ff7212c48)

Render system time improves from 6.57 ms to 3.54 ms (1.86x speedup):
![Screenshot 2024-07-09
163559](https://github.com/bevyengine/bevy/assets/157897/d94e2273-c3a0-496a-9f88-20d394129610)

Opaque pass time improves from 4.64 ms to 2.33 ms (1.99x speedup):
![Screenshot 2024-07-09
163536](https://github.com/bevyengine/bevy/assets/157897/e4ef6e48-d60e-44ae-9a71-b9a731c99d9a)

## Migration Guide

### Changed

* Vertex and index buffers for meshes may now be packed alongside other
buffers, for performance.
* `GpuMesh` has been renamed to `RenderMesh`, to reflect the fact that
it no longer directly stores handles to GPU objects.
* Because meshes no longer have their own vertex and index buffers, the
responsibility for the buffers has moved from `GpuMesh` (now called
`RenderMesh`) to the `MeshAllocator` resource. To access the vertex data
for a mesh, use `MeshAllocator::mesh_vertex_slice`. To access the index
data for a mesh, use `MeshAllocator::mesh_index_slice`.

[`offset-allocator`]: https://github.com/pcwalton/offset-allocator
2024-07-16 20:33:15 +00:00
Brian Reavis
e69e28fe74
Made Material2dBindGroupId instantiable (#14053)
# Objective / Solution

Make it possible to construct `Material2dBindGroupId` for custom 2D
material pipelines by making the inner field public.

---

The 3D variant (`MaterialBindGroupId`) had this done in
e79b9b62ce
2024-06-29 00:41:15 +00:00
Ricky Taylor
9b9d3d81cb
Normalise matrix naming (#13489)
# Objective
- Fixes #10909
- Fixes #8492

## Solution
- Name all matrices `x_from_y`, for example `world_from_view`.

## Testing
- I've tested most of the 3D examples. The `lighting` example
particularly should hit a lot of the changes and appears to run fine.

---

## Changelog
- Renamed matrices across the engine to follow a `y_from_x` naming,
making the space conversion more obvious.

## Migration Guide
- `Frustum`'s `from_view_projection`, `from_view_projection_custom_far`
and `from_view_projection_no_far` were renamed to
`from_clip_from_world`, `from_clip_from_world_custom_far` and
`from_clip_from_world_no_far`.
- `ComputedCameraValues::projection_matrix` was renamed to
`clip_from_view`.
- `CameraProjection::get_projection_matrix` was renamed to
`get_clip_from_view` (this affects implementations on `Projection`,
`PerspectiveProjection` and `OrthographicProjection`).
- `ViewRangefinder3d::from_view_matrix` was renamed to
`from_world_from_view`.
- `PreviousViewData`'s members were renamed to `view_from_world` and
`clip_from_world`.
- `ExtractedView`'s `projection`, `transform` and `view_projection` were
renamed to `clip_from_view`, `world_from_view` and `clip_from_world`.
- `ViewUniform`'s `view_proj`, `unjittered_view_proj`,
`inverse_view_proj`, `view`, `inverse_view`, `projection` and
`inverse_projection` were renamed to `clip_from_world`,
`unjittered_clip_from_world`, `world_from_clip`, `world_from_view`,
`view_from_world`, `clip_from_view` and `view_from_clip`.
- `GpuDirectionalCascade::view_projection` was renamed to
`clip_from_world`.
- `MeshTransforms`' `transform` and `previous_transform` were renamed to
`world_from_local` and `previous_world_from_local`.
- `MeshUniform`'s `transform`, `previous_transform`,
`inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed
to `world_from_local`, `previous_world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh` type in WGSL mirrors this, however `transform` and
`previous_transform` were named `model` and `previous_model`).
- `Mesh2dTransforms::transform` was renamed to `world_from_local`.
- `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and
`inverse_transpose_model_b` were renamed to `world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh2d` type in WGSL mirrors this).
- In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and
`get_previous_model_matrix` were renamed to `get_world_from_local` and
`get_previous_world_from_local`.
- In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed
to `get_world_from_local`.
2024-06-03 16:56:53 +00:00
Patrick Walton
9da0b2a0ec
Make render phases render world resources instead of components. (#13277)
This commit makes us stop using the render world ECS for
`BinnedRenderPhase` and `SortedRenderPhase` and instead use resources
with `EntityHashMap`s inside. There are three reasons to do this:

1. We can use `clear()` to clear out the render phase collections
instead of recreating the components from scratch, allowing us to reuse
allocations.

2. This is a prerequisite for retained bins, because components can't be
retained from frame to frame in the render world, but resources can.

3. We want to move away from storing anything in components in the
render world ECS, and this is a step in that direction.

This patch results in a small performance benefit, due to point (1)
above.

## Changelog

### Changed

* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources.

## Migration Guide

* The `BinnedRenderPhase` and `SortedRenderPhase` render world
components have been replaced with `ViewBinnedRenderPhases` and
`ViewSortedRenderPhases` resources. Instead of querying for the
components, look the camera entity up in the
`ViewBinnedRenderPhases`/`ViewSortedRenderPhases` tables.
2024-05-21 18:23:04 +00:00
IceSentry
64e1a7835a
Clean up 2d render phases (#12982)
# Objective

Currently, the 2d pipeline only has a transparent pass that is used for
everything. I want to have separate passes for opaque/alpha
mask/transparent meshes just like in 3d.

This PR does the basic work to start adding new phases to the 2d
pipeline and get the current setup a bit closer to 3d.

## Solution

- Use `ViewNode` for `MainTransparentPass2dNode`
- Added `Node2d::StartMainPass`, `Node2d::EndMainPass`
- Rename everything to clarify that the main pass is currently the
transparent pass

---

## Changelog

- Added `Node2d::StartMainPass`, `Node2d::EndMainPass`

## Migration Guide

If you were using `Node2d::MainPass` to order your own custom render
node. You now need to order it relative to `Node2d::StartMainPass` or
`Node2d::EndMainPass`.
2024-05-08 08:13:39 +00:00
Patrick Walton
16531fb3e3
Implement GPU frustum culling. (#12889)
This commit implements opt-in GPU frustum culling, built on top of the
infrastructure in https://github.com/bevyengine/bevy/pull/12773. To
enable it on a camera, add the `GpuCulling` component to it. To
additionally disable CPU frustum culling, add the `NoCpuCulling`
component. Note that adding `GpuCulling` without `NoCpuCulling`
*currently* does nothing useful. The reason why `GpuCulling` doesn't
automatically imply `NoCpuCulling` is that I intend to follow this patch
up with GPU two-phase occlusion culling, and CPU frustum culling plus
GPU occlusion culling seems like a very commonly-desired mode.

Adding the `GpuCulling` component to a view puts that view into
*indirect mode*. This mode makes all drawcalls indirect, relying on the
mesh preprocessing shader to allocate instances dynamically. In indirect
mode, the `PreprocessWorkItem` `output_index` points not to a
`MeshUniform` instance slot but instead to a set of `wgpu`
`IndirectParameters`, from which it allocates an instance slot
dynamically if frustum culling succeeds. Batch building has been updated
to allocate and track indirect parameter slots, and the AABBs are now
supplied to the GPU as `MeshCullingData`.

A small amount of code relating to the frustum culling has been borrowed
from meshlets and moved into `maths.wgsl`. Note that standard Bevy
frustum culling uses AABBs, while meshlets use bounding spheres; this
means that not as much code can be shared as one might think.

This patch doesn't provide any way to perform GPU culling on shadow
maps, to avoid making this patch bigger than it already is. That can be
a followup.

## Changelog

### Added

* Frustum culling can now optionally be done on the GPU. To enable it,
add the `GpuCulling` component to a camera.
* To disable CPU frustum culling, add `NoCpuCulling` to a camera. Note
that `GpuCulling` doesn't automatically imply `NoCpuCulling`.
2024-04-28 12:50:00 +00:00
Patrick Walton
5caf085dac
Divide the single VisibleEntities list into separate lists for 2D meshes, 3D meshes, lights, and UI elements, for performance. (#12582)
This commit splits `VisibleEntities::entities` into four separate lists:
one for lights, one for 2D meshes, one for 3D meshes, and one for UI
elements. This allows `queue_material_meshes` and similar methods to
avoid examining entities that are obviously irrelevant. In particular,
this separation helps scenes with many skinned meshes, as the individual
bones are considered visible entities but have no rendered appearance.

Internally, `VisibleEntities::entities` is a `HashMap` from the `TypeId`
representing a `QueryFilter` to the appropriate `Entity` list. I had to
do this because `VisibleEntities` is located within an upstream crate
from the crates that provide lights (`bevy_pbr`) and 2D meshes
(`bevy_sprite`). As an added benefit, this setup allows apps to provide
their own types of renderable components, by simply adding a specialized
`check_visibility` to the schedule.

This provides a 16.23% end-to-end speedup on `many_foxes` with 10,000
foxes (24.06 ms/frame to 20.70 ms/frame).

## Migration guide

* `check_visibility` and `VisibleEntities` now store the four types of
renderable entities--2D meshes, 3D meshes, lights, and UI
elements--separately. If your custom rendering code examines
`VisibleEntities`, it will now need to specify which type of entity it's
interested in using the `WithMesh2d`, `WithMesh`, `WithLight`, and
`WithNode` types respectively. If your app introduces a new type of
renderable entity, you'll need to add an explicit call to
`check_visibility` to the schedule to accommodate your new component or
components.

## Analysis

`many_foxes`, 10,000 foxes: `main`:
![Screenshot 2024-03-31
114444](https://github.com/bevyengine/bevy/assets/157897/16ecb2ff-6e04-46c0-a4b0-b2fde2084bad)

`many_foxes`, 10,000 foxes, this branch:
![Screenshot 2024-03-31
114256](https://github.com/bevyengine/bevy/assets/157897/94dedae4-bd00-45b2-9aaf-dfc237004ddb)

`queue_material_meshes` (yellow = this branch, red = `main`):
![Screenshot 2024-03-31
114637](https://github.com/bevyengine/bevy/assets/157897/f90912bd-45bd-42c4-bd74-57d98a0f036e)

`queue_shadows` (yellow = this branch, red = `main`):
![Screenshot 2024-03-31
114607](https://github.com/bevyengine/bevy/assets/157897/6ce693e3-20c0-4234-8ec9-a6f191299e2d)
2024-04-11 20:33:20 +00:00
Robert Swain
ab7cbfa8fc
Consolidate Render(Ui)Materials(2d) into RenderAssets (#12827)
# Objective

- Replace `RenderMaterials` / `RenderMaterials2d` / `RenderUiMaterials`
with `RenderAssets` to enable implementing changes to one thing,
`RenderAssets`, that applies to all use cases rather than duplicating
changes everywhere for multiple things that should be one thing.
- Adopts #8149 

## Solution

- Make RenderAsset generic over the destination type rather than the
source type as in #8149
- Use `RenderAssets<PreparedMaterial<M>>` etc for render materials

---

## Changelog

- Changed:
- The `RenderAsset` trait is now implemented on the destination type.
Its `SourceAsset` associated type refers to the type of the source
asset.
- `RenderMaterials`, `RenderMaterials2d`, and `RenderUiMaterials` have
been replaced by `RenderAssets<PreparedMaterial<M>>` and similar.

## Migration Guide

- `RenderAsset` is now implemented for the destination type rather that
the source asset type. The source asset type is now the `RenderAsset`
trait's `SourceAsset` associated type.
2024-04-09 13:26:34 +00:00
Patrick Walton
37522fd0ae
Micro-optimize queue_material_meshes, primarily to remove bit manipulation. (#12791)
This commit makes the following optimizations:

## `MeshPipelineKey`/`BaseMeshPipelineKey` split

`MeshPipelineKey` has been split into `BaseMeshPipelineKey`, which lives
in `bevy_render` and `MeshPipelineKey`, which lives in `bevy_pbr`.
Conceptually, `BaseMeshPipelineKey` is a superclass of
`MeshPipelineKey`. For `BaseMeshPipelineKey`, the bits start at the
highest (most significant) bit and grow downward toward the lowest bit;
for `MeshPipelineKey`, the bits start at the lowest bit and grow upward
toward the highest bit. This prevents them from colliding.

The goal of this is to avoid having to reassemble bits of the pipeline
key for every mesh every frame. Instead, we can just use a bitwise or
operation to combine the pieces that make up a `MeshPipelineKey`.

## `specialize_slow`

Previously, all of `specialize()` was marked as `#[inline]`. This
bloated `queue_material_meshes` unnecessarily, as a large chunk of it
ended up being a slow path that was rarely hit. This commit refactors
the function to move the slow path to `specialize_slow()`.

Together, these two changes shave about 5% off `queue_material_meshes`:

![Screenshot 2024-03-29
130002](https://github.com/bevyengine/bevy/assets/157897/a7e5a994-a807-4328-b314-9003429dcdd2)

## Migration Guide

- The `primitive_topology` field on `GpuMesh` is now an accessor method:
`GpuMesh::primitive_topology()`.
- For performance reasons, `MeshPipelineKey` has been split into
`BaseMeshPipelineKey`, which lives in `bevy_render`, and
`MeshPipelineKey`, which lives in `bevy_pbr`. These two should be
combined with bitwise-or to produce the final `MeshPipelineKey`.
2024-04-01 21:58:53 +00:00
Cameron
01649f13e2
Refactor App and SubApp internals for better separation (#9202)
# Objective

This is a necessary precursor to #9122 (this was split from that PR to
reduce the amount of code to review all at once).

Moving `!Send` resource ownership to `App` will make it unambiguously
`!Send`. `SubApp` must be `Send`, so it can't wrap `App`.

## Solution

Refactor `App` and `SubApp` to not have a recursive relationship. Since
`SubApp` no longer wraps `App`, once `!Send` resources are moved out of
`World` and into `App`, `SubApp` will become unambiguously `Send`.

There could be less code duplication between `App` and `SubApp`, but
that would break `App` method chaining.

## Changelog

- `SubApp` no longer wraps `App`.
- `App` fields are no longer publicly accessible.
- `App` can no longer be converted into a `SubApp`.
- Various methods now return references to a `SubApp` instead of an
`App`.
## Migration Guide

- To construct a sub-app, use `SubApp::new()`. `App` can no longer
convert into `SubApp`.
- If you implemented a trait for `App`, you may want to implement it for
`SubApp` as well.
- If you're accessing `app.world` directly, you now have to use
`app.world()` and `app.world_mut()`.
- `App::sub_app` now returns `&SubApp`.
- `App::sub_app_mut`  now returns `&mut SubApp`.
- `App::get_sub_app` now returns `Option<&SubApp>.`
- `App::get_sub_app_mut` now returns `Option<&mut SubApp>.`
2024-03-31 03:16:10 +00:00