cf6c65522f
31 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
cf6c65522f
|
Derived Default for all public unit components. (#17139)
Derived `Default` for all public unit structs that already derive from `Component`. This allows them to be used more easily as required components. To avoid clutter in tests/examples, only public components were affected, but this could easily be expanded to affect all unit components. Fixes #17052. |
||
![]() |
64efd08e13
|
Prefer Display over Debug (#16112)
# Objective Fixes #16104 ## Solution I removed all instances of `:?` and put them back one by one where it caused an error. I removed some bevy_utils helper functions that were only used in 2 places and don't add value. See: #11478 ## Testing CI should catch the mistakes ## Migration Guide `bevy::utils::{dbg,info,warn,error}` were removed. Use `bevy::utils::tracing::{debug,info,warn,error}` instead. --------- Co-authored-by: SpecificProtagonist <vincentjunge@posteo.net> |
||
![]() |
39f9e07b5f
|
Support scale factor for image render targets (#16796)
# Objective
I have something of a niche use case. I have a camera rendering pixel
art with a scale factor set, and another camera that renders to an
off-screen texture which is supposed to match the main camera exactly.
However, when computing camera target info, Bevy [hardcodes a scale
factor of
1.0](
|
||
![]() |
73d68d60bb
|
Change GpuImage::size from UVec2 to Extent3d (#16815)
# Objective When preparing `GpuImage`s, we currently discard the `depth_or_array_layers` of the `Image`'s size by converting it into a `UVec2`. Fixes #16715. ## Solution Change `GpuImage::size` to `Extent3d`, and just pass that through when creating `GpuImage`s. Also copy the `aspect_ratio`, and `size` (now `size_2d` for disambiguation from the field) functions from `Image` to `GpuImage` for ease of use with 2D textures. I originally copied all size-related functions (like `width`, and `height`), but i think they are unnecessary considering how visible the `size` field on `GpuImage` is compared to `Image`. ## Testing Tested via `cargo r -p ci` for everything except docs, when generating docs it keeps spitting out a ton of ``` error[E0554]: `#![feature]` may not be used on the stable release channel --> crates/bevy_dylib/src/lib.rs:1:21 | 1 | #![cfg_attr(docsrs, feature(doc_auto_cfg))] | ``` Not sure why this is happening, but it also happens without my changes, so it's almost certainly some strange issue specific to my machine. ## Migration Guide - `GpuImage::size` is now an `Extent3d`. To easily get 2D size, use `size_2d()`. |
||
![]() |
f87b9fe20c
|
Turn apply_deferred into a ZST System (#16642)
# Objective - Required by #16622 due to differing implementations of `System` by `FunctionSystem` and `ExclusiveFunctionSystem`. - Optimize the memory usage of instances of `apply_deferred` in system schedules. ## Solution By changing `apply_deferred` from being an ordinary system that ends up as an `ExclusiveFunctionSystem`, and instead into a ZST struct that implements `System` manually, we save ~320 bytes per instance of `apply_deferred` in any schedule. ## Testing - All current tests pass. --- ## Migration Guide - If you were previously calling the special `apply_deferred` system via `apply_deferred(world)`, don't. |
||
![]() |
40640fdf42
|
Don't reëxport bevy_image from bevy_render (#16163)
# Objective Fixes #15940 ## Solution Remove the `pub use` and fix the compile errors. Make `bevy_image` available as `bevy::image`. ## Testing Feature Frenzy would be good here! Maybe I'll learn how to use it if I have some time this weekend, or maybe a reviewer can use it. ## Migration Guide Use `bevy_image` instead of `bevy_render::texture` items. --------- Co-authored-by: chompaa <antony.m.3012@gmail.com> Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
![]() |
c29e67153b
|
Expose Pipeline Compilation Zero Initialize Workgroup Memory Option (#16301)
# Objective - wgpu 0.20 made workgroup vars stop being zero-init by default. this broke some applications (cough foresight cough) and now we workaround it. wgpu exposes a compilation option that zero initializes workgroup memory by default, but bevy does not expose it. ## Solution - expose the compilation option wgpu gives us ## Testing - ran examples: 3d_scene, compute_shader_game_of_life, gpu_readback, lines, specialized_mesh_pipeline. they all work - confirmed fix for our own problems --- </details> ## Migration Guide - add `zero_initialize_workgroup_memory: false,` to `ComputePipelineDescriptor` or `RenderPipelineDescriptor` structs to preserve 0.14 functionality, add `zero_initialize_workgroup_memory: true,` to restore bevy 0.13 functionality. |
||
![]() |
40c26f80aa
|
Gpu readback (#15419)
# Objective Adds a new `Readback` component to request for readback of a `Handle<Image>` or `Handle<ShaderStorageBuffer>` to the CPU in a future frame. ## Solution We track the `Readback` component and allocate a target buffer to write the gpu resource into and map it back asynchronously, which then fires a trigger on the entity in the main world. This proccess is asynchronous, and generally takes a few frames. ## Showcase ```rust let mut buffer = ShaderStorageBuffer::from(vec![0u32; 16]); buffer.buffer_description.usage |= BufferUsages::COPY_SRC; let buffer = buffers.add(buffer); commands .spawn(Readback::buffer(buffer.clone())) .observe(|trigger: Trigger<ReadbackComplete>| { info!("Buffer data from previous frame {:?}", trigger.event()); }); ``` --------- Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com> Co-authored-by: IceSentry <IceSentry@users.noreply.github.com> |
||
![]() |
d70595b667
|
Add core and alloc over std Lints (#15281)
# Objective - Fixes #6370 - Closes #6581 ## Solution - Added the following lints to the workspace: - `std_instead_of_core` - `std_instead_of_alloc` - `alloc_instead_of_core` - Used `cargo +nightly fmt` with [item level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A) to split all `use` statements into single items. - Used `cargo clippy --workspace --all-targets --all-features --fix --allow-dirty` to _attempt_ to resolve the new linting issues, and intervened where the lint was unable to resolve the issue automatically (usually due to needing an `extern crate alloc;` statement in a crate root). - Manually removed certain uses of `std` where negative feature gating prevented `--all-features` from finding the offending uses. - Used `cargo +nightly fmt` with [crate level use formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A) to re-merge all `use` statements matching Bevy's previous styling. - Manually fixed cases where the `fmt` tool could not re-merge `use` statements due to conditional compilation attributes. ## Testing - Ran CI locally ## Migration Guide The MSRV is now 1.81. Please update to this version or higher. ## Notes - This is a _massive_ change to try and push through, which is why I've outlined the semi-automatic steps I used to create this PR, in case this fails and someone else tries again in the future. - Making this change has no impact on user code, but does mean Bevy contributors will be warned to use `core` and `alloc` instead of `std` where possible. - This lint is a critical first step towards investigating `no_std` options for Bevy. --------- Co-authored-by: François Mockers <francois.mockers@vleue.com> |
||
![]() |
efda7f3f9c
|
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this comment: https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300 See #15375 for more reasoning/motivation. ## Rebasing (rerunning) ```rust git switch simpler-lint-fixes git reset --hard main cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "rustfmt" cargo clippy --workspace --all-targets --all-features --fix cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate cargo fmt --all git add --update git commit --message "clippy" git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887 ``` |
||
![]() |
d9527c101c
|
Rewrite screenshots. (#14833)
# Objective Rewrite screenshotting to be able to accept any `RenderTarget`. Closes #12478 ## Solution Previously, screenshotting relied on setting a variety of state on the requested window. When extracted, the window's `swap_chain_texture_view` property would be swapped out with a texture_view created that frame for the screenshot pipeline to write back to the cpu. Besides being tightly coupled to window in a way that prevented screenshotting other render targets, this approach had the drawback of relying on the implicit state of `swap_chain_texture_view` being returned from a `NormalizedRenderTarget` when view targets were prepared. Because property is set every frame for windows, that wasn't a problem, but poses a problem for render target images. Namely, to do the equivalent trick, we'd have to replace the `GpuImage`'s texture view, and somehow restore it later. As such, this PR creates a new `prepare_view_textures` system which runs before `prepare_view_targets` that allows a new `prepare_screenshots` system to be sandwiched between and overwrite the render targets texture view if a screenshot has been requested that frame for the given target. Additionally, screenshotting itself has been changed to use a component + observer pattern. We now spawn a `Screenshot` component into the world, whose lifetime is tracked with a series of marker components. When the screenshot is read back to the CPU, we send the image over a channel back to the main world where an observer fires on the screenshot entity before being despawned the next frame. This allows the user to access resources in their save callback that might be useful (e.g. uploading the screenshot over the network, etc.). ## Testing  TODO: - [x] Web - [ ] Manual texture view --- ## Showcase render to texture example: <img src="https://github.com/user-attachments/assets/612ac47b-8a24-4287-a745-3051837963b0" width=200/> web saving still works: <img src="https://github.com/user-attachments/assets/e2a15b17-1ff5-4006-ab2a-e5cc74888b9c" width=200/> ## Migration Guide `ScreenshotManager` has been removed. To take a screenshot, spawn a `Screenshot` entity with the specified render target and provide an observer targeting the `ScreenshotCaptured` event. See the `window/screenshot` example to see an example. --------- Co-authored-by: Kristoffer Søholm <k.soeholm@gmail.com> |
||
![]() |
b3d3daad5a
|
Fix Clippy lints on WASM (#13030)
# Objective - Fixes #13024. ## Solution - Run `cargo clippy --target wasm32-unknown-unknown` until there are no more errors. - I recommend reviewing one commit at a time :) --- ## Changelog - Fixed Clippy lints for `wasm32-unknown-unknown` target. - Updated `bevy_transform`'s `README.md`. |
||
![]() |
01649f13e2
|
Refactor App and SubApp internals for better separation (#9202)
# Objective This is a necessary precursor to #9122 (this was split from that PR to reduce the amount of code to review all at once). Moving `!Send` resource ownership to `App` will make it unambiguously `!Send`. `SubApp` must be `Send`, so it can't wrap `App`. ## Solution Refactor `App` and `SubApp` to not have a recursive relationship. Since `SubApp` no longer wraps `App`, once `!Send` resources are moved out of `World` and into `App`, `SubApp` will become unambiguously `Send`. There could be less code duplication between `App` and `SubApp`, but that would break `App` method chaining. ## Changelog - `SubApp` no longer wraps `App`. - `App` fields are no longer publicly accessible. - `App` can no longer be converted into a `SubApp`. - Various methods now return references to a `SubApp` instead of an `App`. ## Migration Guide - To construct a sub-app, use `SubApp::new()`. `App` can no longer convert into `SubApp`. - If you implemented a trait for `App`, you may want to implement it for `SubApp` as well. - If you're accessing `app.world` directly, you now have to use `app.world()` and `app.world_mut()`. - `App::sub_app` now returns `&SubApp`. - `App::sub_app_mut` now returns `&mut SubApp`. - `App::get_sub_app` now returns `Option<&SubApp>.` - `App::get_sub_app_mut` now returns `Option<&mut SubApp>.` |
||
![]() |
71486393ed
|
move ci testing to dev_tools (#12371)
# Objective - Fix #12356 - better isolation of ci testing tools in dev tools instead of being in various crates ## Solution - Move the parts doing the work of ci testing to the dev tools |
||
![]() |
6533170e94
|
Add bevy_dev_tools crate (#11341)
# Objective - Resolves #11309 ## Solution - Add `bevy_dev_tools` crate as a default feature. - Add `DevToolsPlugin` and add it to an app if the `bevy_dev_tools` feature is enabled. `bevy_dev_tools` is reserved by @alice-i-cecile, should we wait until it gets transferred to cart before merging? --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com> |
||
![]() |
5619bd09d1
|
Replace bevy_log's tracing reexport with bevy_utils' (#12254)
# Objective Fixes #11298. Make the use of bevy_log vs bevy_utils::tracing more consistent. ## Solution Replace all uses of bevy_log's logging macros with the reexport from bevy_utils. Remove bevy_log as a dependency where it's no longer needed anymore. Ideally we should just be using tracing directly, but given that all of these crates are already using bevy_utils, this likely isn't that great of a loss right now. |
||
![]() |
1c67e020f7
|
Move EntityHash related types into bevy_ecs (#11498)
# Objective Reduce the size of `bevy_utils` (https://github.com/bevyengine/bevy/issues/11478) ## Solution Move `EntityHash` related types into `bevy_ecs`. This also allows us access to `Entity`, which means we no longer need `EntityHashMap`'s first generic argument. --- ## Changelog - Moved `bevy::utils::{EntityHash, EntityHasher, EntityHashMap, EntityHashSet}` into `bevy::ecs::entity::hash` . - Removed `EntityHashMap`'s first generic argument. It is now hardcoded to always be `Entity`. ## Migration Guide - Uses of `bevy::utils::{EntityHash, EntityHasher, EntityHashMap, EntityHashSet}` now have to be imported from `bevy::ecs::entity::hash`. - Uses of `EntityHashMap` no longer have to specify the first generic parameter. It is now hardcoded to always be `Entity`. |
||
![]() |
6b40b6749e
|
RenderAssetPersistencePolicy → RenderAssetUsages (#11399)
# Objective Right now, all assets in the main world get extracted and prepared in the render world (if the asset's using the RenderAssetPlugin). This is unfortunate for two cases: 1. **TextureAtlas** / **FontAtlas**: This one's huge. The individual `Image` assets that make up the atlas are cloned and prepared individually when there's no reason for them to be. The atlas textures are built on the CPU in the main world. *There can be hundreds of images that get prepared for rendering only not to be used.* 2. If one loads an Image and needs to transform it in a system before rendering it, kind of like the [decompression example](https://github.com/bevyengine/bevy/blob/main/examples/asset/asset_decompression.rs#L120), there's a price paid for extracting & preparing the asset that's not intended to be rendered yet. ------ * References #10520 * References #1782 ## Solution This changes the `RenderAssetPersistencePolicy` enum to bitflags. I felt that the objective with the parameter is so similar in nature to wgpu's [`TextureUsages`](https://docs.rs/wgpu/latest/wgpu/struct.TextureUsages.html) and [`BufferUsages`](https://docs.rs/wgpu/latest/wgpu/struct.BufferUsages.html), that it may as well be just like that. ```rust // This asset only needs to be in the main world. Don't extract and prepare it. RenderAssetUsages::MAIN_WORLD // Keep this asset in the main world and RenderAssetUsages::MAIN_WORLD | RenderAssetUsages::RENDER_WORLD // This asset is only needed in the render world. Remove it from the asset server once extracted. RenderAssetUsages::RENDER_WORLD ``` ### Alternate Solution I considered introducing a third field to `RenderAssetPersistencePolicy` enum: ```rust enum RenderAssetPersistencePolicy { /// Keep the asset in the main world after extracting to the render world. Keep, /// Remove the asset from the main world after extracting to the render world. Unload, /// This doesn't need to be in the render world at all. NoExtract, // <----- } ``` Functional, but this seemed like shoehorning. Another option is renaming the enum to something like: ```rust enum RenderAssetExtractionPolicy { /// Extract the asset and keep it in the main world. Extract, /// Remove the asset from the main world after extracting to the render world. ExtractAndUnload, /// This doesn't need to be in the render world at all. NoExtract, } ``` I think this last one could be a good option if the bitflags are too clunky. ## Migration Guide * `RenderAssetPersistencePolicy::Keep` → `RenderAssetUsage::MAIN_WORLD | RenderAssetUsage::RENDER_WORLD` (or `RenderAssetUsage::default()`) * `RenderAssetPersistencePolicy::Unload` → `RenderAssetUsage::RENDER_WORLD` * For types implementing the `RenderAsset` trait, change `fn persistence_policy(&self) -> RenderAssetPersistencePolicy` to `fn asset_usage(&self) -> RenderAssetUsages`. * Change any references to `cpu_persistent_access` (`RenderAssetPersistencePolicy`) to `asset_usage` (`RenderAssetUsage`). This applies to `Image`, `Mesh`, and a few other types. |
||
![]() |
4695b82f6b
|
Use EntityHashMap whenever possible (#11353)
# Objective Fixes #11352 ## Solution - Use `EntityHashMap<Entity, T>` instead of `HashMap<Entity, T>` --- ## Changelog Changed - Use `EntityHashMap<Entity, T>` instead of `HashMap<Entity, T>` whenever possible ## Migration Guide TODO |
||
![]() |
44424391fe
|
Unload render assets from RAM (#10520)
# Objective - No point in keeping Meshes/Images in RAM once they're going to be sent to the GPU, and kept in VRAM. This saves a _significant_ amount of memory (several GBs) on scenes like bistro. - References - https://github.com/bevyengine/bevy/pull/1782 - https://github.com/bevyengine/bevy/pull/8624 ## Solution - Augment RenderAsset with the capability to unload the underlying asset after extracting to the render world. - Mesh/Image now have a cpu_persistent_access field. If this field is RenderAssetPersistencePolicy::Unload, the asset will be unloaded from Assets<T>. - A new AssetEvent is sent upon dropping the last strong handle for the asset, which signals to the RenderAsset to remove the GPU version of the asset. --- ## Changelog - Added `AssetEvent::NoLongerUsed` and `AssetEvent::is_no_longer_used()`. This event is sent when the last strong handle of an asset is dropped. - Rewrote the API for `RenderAsset` to allow for unloading the asset data from the CPU. - Added `RenderAssetPersistencePolicy`. - Added `Mesh::cpu_persistent_access` for memory savings when the asset is not needed except for on the GPU. - Added `Image::cpu_persistent_access` for memory savings when the asset is not needed except for on the GPU. - Added `ImageLoaderSettings::cpu_persistent_access`. - Added `ExrTextureLoaderSettings`. - Added `HdrTextureLoaderSettings`. ## Migration Guide - Asset loaders (GLTF, etc) now load meshes and textures without `cpu_persistent_access`. These assets will be removed from `Assets<Mesh>` and `Assets<Image>` once `RenderAssets<Mesh>` and `RenderAssets<Image>` contain the GPU versions of these assets, in order to reduce memory usage. If you require access to the asset data from the CPU in future frames after the GLTF asset has been loaded, modify all dependent `Mesh` and `Image` assets and set `cpu_persistent_access` to `RenderAssetPersistencePolicy::Keep`. - `Mesh` now requires a new `cpu_persistent_access` field. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the previous behavior. - `Image` now requires a new `cpu_persistent_access` field. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the previous behavior. - `MorphTargetImage::new()` now requires a new `cpu_persistent_access` parameter. Set it to `RenderAssetPersistencePolicy::Keep` to mimic the previous behavior. - `DynamicTextureAtlasBuilder::add_texture()` now requires that the `TextureAtlas` you pass has an `Image` with `cpu_persistent_access: RenderAssetPersistencePolicy::Keep`. Ensure you construct the image properly for the texture atlas. - The `RenderAsset` trait has significantly changed, and requires adapting your existing implementations. - The trait now requires `Clone`. - The `ExtractedAsset` associated type has been removed (the type itself is now extracted). - The signature of `prepare_asset()` is slightly different - A new `persistence_policy()` method is now required (return RenderAssetPersistencePolicy::Unload to match the previous behavior). - Match on the new `NoLongerUsed` variant for exhaustive matches of `AssetEvent`. |
||
![]() |
70a592f31a
|
Update to wgpu 0.18 (#10266)
# Objective Keep up to date with wgpu. ## Solution Update the wgpu version. Currently blocked on naga_oil updating to naga 0.14 and releasing a new version. 3d scenes (or maybe any scene with lighting?) currently don't render anything due to ``` error: naga_oil bug, please file a report: composer failed to build a valid header: Type [2] '' is invalid = Capability Capabilities(CUBE_ARRAY_TEXTURES) is required ``` I'm not sure what should be passed in for `wgpu::InstanceFlags`, or if we want to make the gles3minorversion configurable (might be useful for debugging?) Currently blocked on https://github.com/bevyengine/naga_oil/pull/63, and https://github.com/gfx-rs/wgpu/issues/4569 to be fixed upstream in wgpu first. ## Known issues Amd+windows+vulkan has issues with texture_binding_arrays (see the image [here](https://github.com/bevyengine/bevy/pull/10266#issuecomment-1819946278)), but that'll be fixed in the next wgpu/naga version, and you can just use dx12 as a workaround for now (Amd+linux mesa+vulkan texture_binding_arrays are fixed though). --- ## Changelog Updated wgpu to 0.18, naga to 0.14.2, and naga_oil to 0.11. - Windows desktop GL should now be less painful as it no longer requires Angle. - You can now toggle shader validation and debug information for debug and release builds using `WgpuSettings.instance_flags` and [InstanceFlags](https://docs.rs/wgpu/0.18.0/wgpu/struct.InstanceFlags.html) ## Migration Guide - `RenderPassDescriptor` `color_attachments` (as well as `RenderPassColorAttachment`, and `RenderPassDepthStencilAttachment`) now use `StoreOp::Store` or `StoreOp::Discard` instead of a `boolean` to declare whether or not they should be stored. - `RenderPassDescriptor` now have `timestamp_writes` and `occlusion_query_set` fields. These can safely be set to `None`. - `ComputePassDescriptor` now have a `timestamp_writes` field. This can be set to `None` for now. - See the [wgpu changelog](https://github.com/gfx-rs/wgpu/blob/trunk/CHANGELOG.md#v0180-2023-10-25) for additional details |
||
![]() |
fd308571c4
|
Remove unnecessary path prefixes (#10749)
# Objective - Shorten paths by removing unnecessary prefixes ## Solution - Remove the prefixes from many paths which do not need them. Finding the paths was done automatically using built-in refactoring tools in Jetbrains RustRover. |
||
![]() |
6d0c11a28f
|
Bind group layout entries (#10224)
# Objective
- Follow up to #9694
## Solution
- Same api as #9694 but adapted for `BindGroupLayoutEntry`
- Use the same `ShaderStages` visibilty for all entries by default
- Add `BindingType` helper function that mirror the wgsl equivalent and
that make writing layouts much simpler.
Before:
```rust
let layout = render_device.create_bind_group_layout(&BindGroupLayoutDescriptor {
label: Some("post_process_bind_group_layout"),
entries: &[
BindGroupLayoutEntry {
binding: 0,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Texture {
sample_type: TextureSampleType::Float { filterable: true },
view_dimension: TextureViewDimension::D2,
multisampled: false,
},
count: None,
},
BindGroupLayoutEntry {
binding: 1,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Sampler(SamplerBindingType::Filtering),
count: None,
},
BindGroupLayoutEntry {
binding: 2,
visibility: ShaderStages::FRAGMENT,
ty: BindingType::Buffer {
ty: bevy::render::render_resource::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: Some(PostProcessSettings::min_size()),
},
count: None,
},
],
});
```
After:
```rust
let layout = render_device.create_bind_group_layout(
"post_process_bind_group_layout"),
&BindGroupLayoutEntries::sequential(
ShaderStages::FRAGMENT,
(
texture_2d_f32(),
sampler(SamplerBindingType::Filtering),
uniform_buffer(false, Some(PostProcessSettings::min_size())),
),
),
);
```
Here's a more extreme example in bevy_solari:
|
||
![]() |
450328d15e
|
Replaced parking_lot with std::sync (#9545)
# Objective - Fixes #4610 ## Solution - Replaced all instances of `parking_lot` locks with equivalents from `std::sync`. Acquiring locks within `std::sync` can fail, so `.expect("Lock Poisoned")` statements were added where required. ## Comments In [this comment](https://github.com/bevyengine/bevy/issues/4610#issuecomment-1592407881), the lack of deadlock detection was mentioned as a potential reason to not make this change. From what I can gather, Bevy doesn't appear to be using this functionality within the engine. Unless it was expected that a Bevy consumer was expected to enable and use this functionality, it appears to be a feature lost without consequence. Unfortunately, `cpal` and `wgpu` both still rely on `parking_lot`, leaving it in the dependency graph even after this change. From my basic experimentation, this change doesn't appear to have any performance impacts, positive or negative. I tested this using `bevymark` with 50,000 entities and observed 20ms of frame-time before and after the change. More extensive testing with larger/real projects should probably be done. |
||
![]() |
5eb292dc10
|
Bevy Asset V2 (#8624)
# Bevy Asset V2 Proposal ## Why Does Bevy Need A New Asset System? Asset pipelines are a central part of the gamedev process. Bevy's current asset system is missing a number of features that make it non-viable for many classes of gamedev. After plenty of discussions and [a long community feedback period](https://github.com/bevyengine/bevy/discussions/3972), we've identified a number missing features: * **Asset Preprocessing**: it should be possible to "preprocess" / "compile" / "crunch" assets at "development time" rather than when the game starts up. This enables offloading expensive work from deployed apps, faster asset loading, less runtime memory usage, etc. * **Per-Asset Loader Settings**: Individual assets cannot define their own loaders that override the defaults. Additionally, they cannot provide per-asset settings to their loaders. This is a huge limitation, as many asset types don't provide all information necessary for Bevy _inside_ the asset. For example, a raw PNG image says nothing about how it should be sampled (ex: linear vs nearest). * **Asset `.meta` files**: assets should have configuration files stored adjacent to the asset in question, which allows the user to configure asset-type-specific settings. These settings should be accessible during the pre-processing phase. Modifying a `.meta` file should trigger a re-processing / re-load of the asset. It should be possible to configure asset loaders from the meta file. * **Processed Asset Hot Reloading**: Changes to processed assets (or their dependencies) should result in re-processing them and re-loading the results in live Bevy Apps. * **Asset Dependency Tracking**: The current bevy_asset has no good way to wait for asset dependencies to load. It punts this as an exercise for consumers of the loader apis, which is unreasonable and error prone. There should be easy, ergonomic ways to wait for assets to load and block some logic on an asset's entire dependency tree loading. * **Runtime Asset Loading**: it should be (optionally) possible to load arbitrary assets dynamically at runtime. This necessitates being able to deploy and run the asset server alongside Bevy Apps on _all platforms_. For example, we should be able to invoke the shader compiler at runtime, stream scenes from sources like the internet, etc. To keep deployed binaries (and startup times) small, the runtime asset server configuration should be configurable with different settings compared to the "pre processor asset server". * **Multiple Backends**: It should be possible to load assets from arbitrary sources (filesystems, the internet, remote asset serves, etc). * **Asset Packing**: It should be possible to deploy assets in compressed "packs", which makes it easier and more efficient to distribute assets with Bevy Apps. * **Asset Handoff**: It should be possible to hold a "live" asset handle, which correlates to runtime data, without actually holding the asset in memory. Ex: it must be possible to hold a reference to a GPU mesh generated from a "mesh asset" without keeping the mesh data in CPU memory * **Per-Platform Processed Assets**: Different platforms and app distributions have different capabilities and requirements. Some platforms need lower asset resolutions or different asset formats to operate within the hardware constraints of the platform. It should be possible to define per-platform asset processing profiles. And it should be possible to deploy only the assets required for a given platform. These features have architectural implications that are significant enough to require a full rewrite. The current Bevy Asset implementation got us this far, but it can take us no farther. This PR defines a brand new asset system that implements most of these features, while laying the foundations for the remaining features to be built. ## Bevy Asset V2 Here is a quick overview of the features introduced in this PR. * **Asset Preprocessing**: Preprocess assets at development time into more efficient (and configurable) representations * **Dependency Aware**: Dependencies required to process an asset are tracked. If an asset's processed dependency changes, it will be reprocessed * **Hot Reprocessing/Reloading**: detect changes to asset source files, reprocess them if they have changed, and then hot-reload them in Bevy Apps. * **Only Process Changes**: Assets are only re-processed when their source file (or meta file) has changed. This uses hashing and timestamps to avoid processing assets that haven't changed. * **Transactional and Reliable**: Uses write-ahead logging (a technique commonly used by databases) to recover from crashes / forced-exits. Whenever possible it avoids full-reprocessing / only uncompleted transactions will be reprocessed. When the processor is running in parallel with a Bevy App, processor asset writes block Bevy App asset reads. Reading metadata + asset bytes is guaranteed to be transactional / correctly paired. * **Portable / Run anywhere / Database-free**: The processor does not rely on an in-memory database (although it uses some database techniques for reliability). This is important because pretty much all in-memory databases have unsupported platforms or build complications. * **Configure Processor Defaults Per File Type**: You can say "use this processor for all files of this type". * **Custom Processors**: The `Processor` trait is flexible and unopinionated. It can be implemented by downstream plugins. * **LoadAndSave Processors**: Most asset processing scenarios can be expressed as "run AssetLoader A, save the results using AssetSaver X, and then load the result using AssetLoader B". For example, load this png image using `PngImageLoader`, which produces an `Image` asset and then save it using `CompressedImageSaver` (which also produces an `Image` asset, but in a compressed format), which takes an `Image` asset as input. This means if you have an `AssetLoader` for an asset, you are already half way there! It also means that you can share AssetSavers across multiple loaders. Because `CompressedImageSaver` accepts Bevy's generic Image asset as input, it means you can also use it with some future `JpegImageLoader`. * **Loader and Saver Settings**: Asset Loaders and Savers can now define their own settings types, which are passed in as input when an asset is loaded / saved. Each asset can define its own settings. * **Asset `.meta` files**: configure asset loaders, their settings, enable/disable processing, and configure processor settings * **Runtime Asset Dependency Tracking** Runtime asset dependencies (ex: if an asset contains a `Handle<Image>`) are tracked by the asset server. An event is emitted when an asset and all of its dependencies have been loaded * **Unprocessed Asset Loading**: Assets do not require preprocessing. They can be loaded directly. A processed asset is just a "normal" asset with some extra metadata. Asset Loaders don't need to know or care about whether or not an asset was processed. * **Async Asset IO**: Asset readers/writers use async non-blocking interfaces. Note that because Rust doesn't yet support async traits, there is a bit of manual Boxing / Future boilerplate. This will hopefully be removed in the near future when Rust gets async traits. * **Pluggable Asset Readers and Writers**: Arbitrary asset source readers/writers are supported, both by the processor and the asset server. * **Better Asset Handles** * **Single Arc Tree**: Asset Handles now use a single arc tree that represents the lifetime of the asset. This makes their implementation simpler, more efficient, and allows us to cheaply attach metadata to handles. Ex: the AssetPath of a handle is now directly accessible on the handle itself! * **Const Typed Handles**: typed handles can be constructed in a const context. No more weird "const untyped converted to typed at runtime" patterns! * **Handles and Ids are Smaller / Faster To Hash / Compare**: Typed `Handle<T>` is now much smaller in memory and `AssetId<T>` is even smaller. * **Weak Handle Usage Reduction**: In general Handles are now considered to be "strong". Bevy features that previously used "weak `Handle<T>`" have been ported to `AssetId<T>`, which makes it statically clear that the features do not hold strong handles (while retaining strong type information). Currently Handle::Weak still exists, but it is very possible that we can remove that entirely. * **Efficient / Dense Asset Ids**: Assets now have efficient dense runtime asset ids, which means we can avoid expensive hash lookups. Assets are stored in Vecs instead of HashMaps. There are now typed and untyped ids, which means we no longer need to store dynamic type information in the ID for typed handles. "AssetPathId" (which was a nightmare from a performance and correctness standpoint) has been entirely removed in favor of dense ids (which are retrieved for a path on load) * **Direct Asset Loading, with Dependency Tracking**: Assets that are defined at runtime can still have their dependencies tracked by the Asset Server (ex: if you create a material at runtime, you can still wait for its textures to load). This is accomplished via the (currently optional) "asset dependency visitor" trait. This system can also be used to define a set of assets to load, then wait for those assets to load. * **Async folder loading**: Folder loading also uses this system and immediately returns a handle to the LoadedFolder asset, which means folder loading no longer blocks on directory traversals. * **Improved Loader Interface**: Loaders now have a specific "top level asset type", which makes returning the top-level asset simpler and statically typed. * **Basic Image Settings and Processing**: Image assets can now be processed into the gpu-friendly Basic Universal format. The ImageLoader now has a setting to define what format the image should be loaded as. Note that this is just a minimal MVP ... plenty of additional work to do here. To demo this, enable the `basis-universal` feature and turn on asset processing. * **Simpler Audio Play / AudioSink API**: Asset handle providers are cloneable, which means the Audio resource can mint its own handles. This means you can now do `let sink_handle = audio.play(music)` instead of `let sink_handle = audio_sinks.get_handle(audio.play(music))`. Note that this might still be replaced by https://github.com/bevyengine/bevy/pull/8424. **Removed Handle Casting From Engine Features**: Ex: FontAtlases no longer use casting between handle types ## Using The New Asset System ### Normal Unprocessed Asset Loading By default the `AssetPlugin` does not use processing. It behaves pretty much the same way as the old system. If you are defining a custom asset, first derive `Asset`: ```rust #[derive(Asset)] struct Thing { value: String, } ``` Initialize the asset: ```rust app.init_asset:<Thing>() ``` Implement a new `AssetLoader` for it: ```rust #[derive(Default)] struct ThingLoader; #[derive(Serialize, Deserialize, Default)] pub struct ThingSettings { some_setting: bool, } impl AssetLoader for ThingLoader { type Asset = Thing; type Settings = ThingSettings; fn load<'a>( &'a self, reader: &'a mut Reader, settings: &'a ThingSettings, load_context: &'a mut LoadContext, ) -> BoxedFuture<'a, Result<Thing, anyhow::Error>> { Box::pin(async move { let mut bytes = Vec::new(); reader.read_to_end(&mut bytes).await?; // convert bytes to value somehow Ok(Thing { value }) }) } fn extensions(&self) -> &[&str] { &["thing"] } } ``` Note that this interface will get much cleaner once Rust gets support for async traits. `Reader` is an async futures_io::AsyncRead. You can stream bytes as they come in or read them all into a `Vec<u8>`, depending on the context. You can use `let handle = load_context.load(path)` to kick off a dependency load, retrieve a handle, and register the dependency for the asset. Then just register the loader in your Bevy app: ```rust app.init_asset_loader::<ThingLoader>() ``` Now just add your `Thing` asset files into the `assets` folder and load them like this: ```rust fn system(asset_server: Res<AssetServer>) { let handle = Handle<Thing> = asset_server.load("cool.thing"); } ``` You can check load states directly via the asset server: ```rust if asset_server.load_state(&handle) == LoadState::Loaded { } ``` You can also listen for events: ```rust fn system(mut events: EventReader<AssetEvent<Thing>>, handle: Res<SomeThingHandle>) { for event in events.iter() { if event.is_loaded_with_dependencies(&handle) { } } } ``` Note the new `AssetEvent::LoadedWithDependencies`, which only fires when the asset is loaded _and_ all dependencies (and their dependencies) have loaded. Unlike the old asset system, for a given asset path all `Handle<T>` values point to the same underlying Arc. This means Handles can cheaply hold more asset information, such as the AssetPath: ```rust // prints the AssetPath of the handle info!("{:?}", handle.path()) ``` ### Processed Assets Asset processing can be enabled via the `AssetPlugin`. When developing Bevy Apps with processed assets, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev())) ``` This runs the `AssetProcessor` in the background with hot-reloading. It reads assets from the `assets` folder, processes them, and writes them to the `.imported_assets` folder. Asset loads in the Bevy App will wait for a processed version of the asset to become available. If an asset in the `assets` folder changes, it will be reprocessed and hot-reloaded in the Bevy App. When deploying processed Bevy apps, do this: ```rust app.add_plugins(DefaultPlugins.set(AssetPlugin::processed())) ``` This does not run the `AssetProcessor` in the background. It behaves like `AssetPlugin::unprocessed()`, but reads assets from `.imported_assets`. When the `AssetProcessor` is running, it will populate sibling `.meta` files for assets in the `assets` folder. Meta files for assets that do not have a processor configured look like this: ```rust ( meta_format_version: "1.0", asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` This is metadata for an image asset. For example, if you have `assets/my_sprite.png`, this could be the metadata stored at `assets/my_sprite.png.meta`. Meta files are totally optional. If no metadata exists, the default settings will be used. In short, this file says "load this asset with the ImageLoader and use the file extension to determine the image type". This type of meta file is supported in all AssetPlugin modes. If in `Unprocessed` mode, the asset (with the meta settings) will be loaded directly. If in `ProcessedDev` mode, the asset file will be copied directly to the `.imported_assets` folder. The meta will also be copied directly to the `.imported_assets` folder, but with one addition: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 12415480888597742505, full_hash: 14344495437905856884, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: FromExtension, ), ), ) ``` `processed_info` contains `hash` (a direct hash of the asset and meta bytes), `full_hash` (a hash of `hash` and the hashes of all `process_dependencies`), and `process_dependencies` (the `path` and `full_hash` of every process_dependency). A "process dependency" is an asset dependency that is _directly_ used when processing the asset. Images do not have process dependencies, so this is empty. When the processor is enabled, you can use the `Process` metadata config: ```rust ( meta_format_version: "1.0", asset: Process( processor: "bevy_asset::processor::process::LoadAndSave<bevy_render::texture::image_loader::ImageLoader, bevy_render::texture::compressed_image_saver::CompressedImageSaver>", settings: ( loader_settings: ( format: FromExtension, ), saver_settings: ( generate_mipmaps: true, ), ), ), ) ``` This configures the asset to use the `LoadAndSave` processor, which runs an AssetLoader and feeds the result into an AssetSaver (which saves the given Asset and defines a loader to load it with). (for terseness LoadAndSave will likely get a shorter/friendlier type name when [Stable Type Paths](#7184) lands). `LoadAndSave` is likely to be the most common processor type, but arbitrary processors are supported. `CompressedImageSaver` saves an `Image` in the Basis Universal format and configures the ImageLoader to load it as basis universal. The `AssetProcessor` will read this meta, run it through the LoadAndSave processor, and write the basis-universal version of the image to `.imported_assets`. The final metadata will look like this: ```rust ( meta_format_version: "1.0", processed_info: Some(( hash: 905599590923828066, full_hash: 9948823010183819117, process_dependencies: [], )), asset: Load( loader: "bevy_render::texture::image_loader::ImageLoader", settings: ( format: Format(Basis), ), ), ) ``` To try basis-universal processing out in Bevy examples, (for example `sprite.rs`), change `add_plugins(DefaultPlugins)` to `add_plugins(DefaultPlugins.set(AssetPlugin::processed_dev()))` and run with the `basis-universal` feature enabled: `cargo run --features=basis-universal --example sprite`. To create a custom processor, there are two main paths: 1. Use the `LoadAndSave` processor with an existing `AssetLoader`. Implement the `AssetSaver` trait, register the processor using `asset_processor.register_processor::<LoadAndSave<ImageLoader, CompressedImageSaver>>(image_saver.into())`. 2. Implement the `Process` trait directly and register it using: `asset_processor.register_processor(thing_processor)`. You can configure default processors for file extensions like this: ```rust asset_processor.set_default_processor::<ThingProcessor>("thing") ``` There is one more metadata type to be aware of: ```rust ( meta_format_version: "1.0", asset: Ignore, ) ``` This will ignore the asset during processing / prevent it from being written to `.imported_assets`. The AssetProcessor stores a transaction log at `.imported_assets/log` and uses it to gracefully recover from unexpected stops. This means you can force-quit the processor (and Bevy Apps running the processor in parallel) at arbitrary times! `.imported_assets` is "local state". It should _not_ be checked into source control. It should also be considered "read only". In practice, you _can_ modify processed assets and processed metadata if you really need to test something. But those modifications will not be represented in the hashes of the assets, so the processed state will be "out of sync" with the source assets. The processor _will not_ fix this for you. Either revert the change after you have tested it, or delete the processed files so they can be re-populated. ## Open Questions There are a number of open questions to be discussed. We should decide if they need to be addressed in this PR and if so, how we will address them: ### Implied Dependencies vs Dependency Enumeration There are currently two ways to populate asset dependencies: * **Implied via AssetLoaders**: if an AssetLoader loads an asset (and retrieves a handle), a dependency is added to the list. * **Explicit via the optional Asset::visit_dependencies**: if `server.load_asset(my_asset)` is called, it will call `my_asset.visit_dependencies`, which will grab dependencies that have been manually defined for the asset via the Asset trait impl (which can be derived). This means that defining explicit dependencies is optional for "loaded assets". And the list of dependencies is always accurate because loaders can only produce Handles if they register dependencies. If an asset was loaded with an AssetLoader, it only uses the implied dependencies. If an asset was created at runtime and added with `asset_server.load_asset(MyAsset)`, it will use `Asset::visit_dependencies`. However this can create a behavior mismatch between loaded assets and equivalent "created at runtime" assets if `Assets::visit_dependencies` doesn't exactly match the dependencies produced by the AssetLoader. This behavior mismatch can be resolved by completely removing "implied loader dependencies" and requiring `Asset::visit_dependencies` to supply dependency data. But this creates two problems: * It makes defining loaded assets harder and more error prone: Devs must remember to manually annotate asset dependencies with `#[dependency]` when deriving `Asset`. For more complicated assets (such as scenes), the derive likely wouldn't be sufficient and a manual `visit_dependencies` impl would be required. * Removes the ability to immediately kick off dependency loads: When AssetLoaders retrieve a Handle, they also immediately kick off an asset load for the handle, which means it can start loading in parallel _before_ the asset finishes loading. For large assets, this could be significant. (although this could be mitigated for processed assets if we store dependencies in the processed meta file and load them ahead of time) ### Eager ProcessorDev Asset Loading I made a controversial call in the interest of fast startup times ("time to first pixel") for the "processor dev mode configuration". When initializing the AssetProcessor, current processed versions of unchanged assets are yielded immediately, even if their dependencies haven't been checked yet for reprocessing. This means that non-current-state-of-filesystem-but-previously-valid assets might be returned to the App first, then hot-reloaded if/when their dependencies change and the asset is reprocessed. Is this behavior desirable? There is largely one alternative: do not yield an asset from the processor to the app until all of its dependencies have been checked for changes. In some common cases (load dependency has not changed since last run) this will increase startup time. The main question is "by how much" and is that slower startup time worth it in the interest of only yielding assets that are true to the current state of the filesystem. Should this be configurable? I'm starting to think we should only yield an asset after its (historical) dependencies have been checked for changes + processed as necessary, but I'm curious what you all think. ### Paths Are Currently The Only Canonical ID / Do We Want Asset UUIDs? In this implementation AssetPaths are the only canonical asset identifier (just like the previous Bevy Asset system and Godot). Moving assets will result in re-scans (and currently reprocessing, although reprocessing can easily be avoided with some changes). Asset renames/moves will break code and assets that rely on specific paths, unless those paths are fixed up. Do we want / need "stable asset uuids"? Introducing them is very possible: 1. Generate a UUID and include it in .meta files 2. Support UUID in AssetPath 3. Generate "asset indices" which are loaded on startup and map UUIDs to paths. 4 (maybe). Consider only supporting UUIDs for processed assets so we can generate quick-to-load indices instead of scanning meta files. The main "pro" is that assets referencing UUIDs don't need to be migrated when a path changes. The main "con" is that UUIDs cannot be "lazily resolved" like paths. They need a full view of all assets to answer the question "does this UUID exist". Which means UUIDs require the AssetProcessor to fully finish startup scans before saying an asset doesnt exist. And they essentially require asset pre-processing to use in apps, because scanning all asset metadata files at runtime to resolve a UUID is not viable for medium-to-large apps. It really requires a pre-generated UUID index, which must be loaded before querying for assets. I personally think this should be investigated in a separate PR. Paths aren't going anywhere ... _everyone_ uses filesystems (and filesystem-like apis) to manage their asset source files. I consider them permanent canonical asset information. Additionally, they behave well for both processed and unprocessed asset modes. Given that Bevy is supporting both, this feels like the right canonical ID to start with. UUIDS (and maybe even other indexed-identifier types) can be added later as necessary. ### Folder / File Naming Conventions All asset processing config currently lives in the `.imported_assets` folder. The processor transaction log is in `.imported_assets/log`. Processed assets are added to `.imported_assets/Default`, which will make migrating to processed asset profiles (ex: a `.imported_assets/Mobile` profile) a non-breaking change. It also allows us to create top-level files like `.imported_assets/log` without it being interpreted as an asset. Meta files currently have a `.meta` suffix. Do we like these names and conventions? ### Should the `AssetPlugin::processed_dev` configuration enable `watch_for_changes` automatically? Currently it does (which I think makes sense), but it does make it the only configuration that enables watch_for_changes by default. ### Discuss on_loaded High Level Interface: This PR includes a very rough "proof of concept" `on_loaded` system adapter that uses the `LoadedWithDependencies` event in combination with `asset_server.load_asset` dependency tracking to support this pattern ```rust fn main() { App::new() .init_asset::<MyAssets>() .add_systems(Update, on_loaded(create_array_texture)) .run(); } #[derive(Asset, Clone)] struct MyAssets { #[dependency] picture_of_my_cat: Handle<Image>, #[dependency] picture_of_my_other_cat: Handle<Image>, } impl FromWorld for ArrayTexture { fn from_world(world: &mut World) -> Self { picture_of_my_cat: server.load("meow.png"), picture_of_my_other_cat: server.load("meeeeeeeow.png"), } } fn spawn_cat(In(my_assets): In<MyAssets>, mut commands: Commands) { commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_cat.clone(), ..default() }); commands.spawn(SpriteBundle { texture: my_assets.picture_of_my_other_cat.clone(), ..default() }); } ``` The implementation is _very_ rough. And it is currently unsafe because `bevy_ecs` doesn't expose some internals to do this safely from inside `bevy_asset`. There are plenty of unanswered questions like: * "do we add a Loadable" derive? (effectively automate the FromWorld implementation above) * Should `MyAssets` even be an Asset? (largely implemented this way because it elegantly builds on `server.load_asset(MyAsset { .. })` dependency tracking). We should think hard about what our ideal API looks like (and if this is a pattern we want to support). Not necessarily something we need to solve in this PR. The current `on_loaded` impl should probably be removed from this PR before merging. ## Clarifying Questions ### What about Assets as Entities? This Bevy Asset V2 proposal implementation initially stored Assets as ECS Entities. Instead of `AssetId<T>` + the `Assets<T>` resource it used `Entity` as the asset id and Asset values were just ECS components. There are plenty of compelling reasons to do this: 1. Easier to inline assets in Bevy Scenes (as they are "just" normal entities + components) 2. More flexible queries: use the power of the ECS to filter assets (ex: `Query<Mesh, With<Tree>>`). 3. Extensible. Users can add arbitrary component data to assets. 4. Things like "component visualization tools" work out of the box to visualize asset data. However Assets as Entities has a ton of caveats right now: * We need to be able to allocate entity ids without a direct World reference (aka rework id allocator in Entities ... i worked around this in my prototypes by just pre allocating big chunks of entities) * We want asset change events in addition to ECS change tracking ... how do we populate them when mutations can come from anywhere? Do we use Changed queries? This would require iterating over the change data for all assets every frame. Is this acceptable or should we implement a new "event based" component change detection option? * Reconciling manually created assets with asset-system managed assets has some nuance (ex: are they "loaded" / do they also have that component metadata?) * "how do we handle "static" / default entity handles" (ties in to the Entity Indices discussion: https://github.com/bevyengine/bevy/discussions/8319). This is necessary for things like "built in" assets and default handles in things like SpriteBundle. * Storing asset information as a component makes it easy to "invalidate" asset state by removing the component (or forcing modifications). Ideally we have ways to lock this down (some combination of Rust type privacy and ECS validation) In practice, how we store and identify assets is a reasonably superficial change (porting off of Assets as Entities and implementing dedicated storage + ids took less than a day). So once we sort out the remaining challenges the flip should be straightforward. Additionally, I do still have "Assets as Entities" in my commit history, so we can reuse that work. I personally think "assets as entities" is a good endgame, but it also doesn't provide _significant_ value at the moment and it certainly isn't ready yet with the current state of things. ### Why not Distill? [Distill](https://github.com/amethyst/distill) is a high quality fully featured asset system built in Rust. It is very natural to ask "why not just use Distill?". It is also worth calling out that for awhile, [we planned on adopting Distill / I signed off on it](https://github.com/bevyengine/bevy/issues/708). However I think Bevy has a number of constraints that make Distill adoption suboptimal: * **Architectural Simplicity:** * Distill's processor requires an in-memory database (lmdb) and RPC networked API (using Cap'n Proto). Each of these introduces API complexity that increases maintenance burden and "code grokability". Ignoring tests, documentation, and examples, Distill has 24,237 lines of Rust code (including generated code for RPC + database interactions). If you ignore generated code, it has 11,499 lines. * Bevy builds the AssetProcessor and AssetServer using pluggable AssetReader/AssetWriter Rust traits with simple io interfaces. They do not necessitate databases or RPC interfaces (although Readers/Writers could use them if that is desired). Bevy Asset V2 (at the time of writing this PR) is 5,384 lines of Rust code (ignoring tests, documentation, and examples). Grain of salt: Distill does have more features currently (ex: Asset Packing, GUIDS, remote-out-of-process asset processor). I do plan to implement these features in Bevy Asset V2 and I personally highly doubt they will meaningfully close the 6115 lines-of-code gap. * This complexity gap (which while illustrated by lines of code, is much bigger than just that) is noteworthy to me. Bevy should be hackable and there are pillars of Distill that are very hard to understand and extend. This is a matter of opinion (and Bevy Asset V2 also has complicated areas), but I think Bevy Asset V2 is much more approachable for the average developer. * Necessary disclaimer: counting lines of code is an extremely rough complexity metric. Read the code and form your own opinions. * **Optional Asset Processing:** Not all Bevy Apps (or Bevy App developers) need / want asset preprocessing. Processing increases the complexity of the development environment by introducing things like meta files, imported asset storage, running processors in the background, waiting for processing to finish, etc. Distill _requires_ preprocessing to work. With Bevy Asset V2 processing is fully opt-in. The AssetServer isn't directly aware of asset processors at all. AssetLoaders only care about converting bytes to runtime Assets ... they don't know or care if the bytes were pre-processed or not. Processing is "elegantly" (forgive my self-congratulatory phrasing) layered on top and builds on the existing Asset system primitives. * **Direct Filesystem Access to Processed Asset State:** Distill stores processed assets in a database. This makes debugging / inspecting the processed outputs harder (either requires special tooling to query the database or they need to be "deployed" to be inspected). Bevy Asset V2, on the other hand, stores processed assets in the filesystem (by default ... this is configurable). This makes interacting with the processed state more natural. Note that both Godot and Unity's new asset system store processed assets in the filesystem. * **Portability**: Because Distill's processor uses lmdb and RPC networking, it cannot be run on certain platforms (ex: lmdb is a non-rust dependency that cannot run on the web, some platforms don't support running network servers). Bevy should be able to process assets everywhere (ex: run the Bevy Editor on the web, compile + process shaders on mobile, etc). Distill does partially mitigate this problem by supporting "streaming" assets via the RPC protocol, but this is not a full solve from my perspective. And Bevy Asset V2 can (in theory) also stream assets (without requiring RPC, although this isn't implemented yet) Note that I _do_ still think Distill would be a solid asset system for Bevy. But I think the approach in this PR is a better solve for Bevy's specific "asset system requirements". ### Doesn't async-fs just shim requests to "sync" `std::fs`? What is the point? "True async file io" has limited / spotty platform support. async-fs (and the rust async ecosystem generally ... ex Tokio) currently use async wrappers over std::fs that offload blocking requests to separate threads. This may feel unsatisfying, but it _does_ still provide value because it prevents our task pools from blocking on file system operations (which would prevent progress when there are many tasks to do, but all threads in a pool are currently blocking on file system ops). Additionally, using async APIs for our AssetReaders and AssetWriters also provides value because we can later add support for "true async file io" for platforms that support it. _And_ we can implement other "true async io" asset backends (such as networked asset io). ## Draft TODO - [x] Fill in missing filesystem event APIs: file removed event (which is expressed as dangling RenameFrom events in some cases), file/folder renamed event - [x] Assets without loaders are not moved to the processed folder. This breaks things like referenced `.bin` files for GLTFs. This should be configurable per-non-asset-type. - [x] Initial implementation of Reflect and FromReflect for Handle. The "deserialization" parity bar is low here as this only worked with static UUIDs in the old impl ... this is a non-trivial problem. Either we add a Handle::AssetPath variant that gets "upgraded" to a strong handle on scene load or we use a separate AssetRef type for Bevy scenes (which is converted to a runtime Handle on load). This deserves its own discussion in a different pr. - [x] Populate read_asset_bytes hash when run by the processor (a bit of a special case .. when run by the processor the processed meta will contain the hash so we don't need to compute it on the spot, but we don't want/need to read the meta when run by the main AssetServer) - [x] Delay hot reloading: currently filesystem events are handled immediately, which creates timing issues in some cases. For example hot reloading images can sometimes break because the image isn't finished writing. We should add a delay, likely similar to the [implementation in this PR](https://github.com/bevyengine/bevy/pull/8503). - [x] Port old platform-specific AssetIo implementations to the new AssetReader interface (currently missing Android and web) - [x] Resolve on_loaded unsafety (either by removing the API entirely or removing the unsafe) - [x] Runtime loader setting overrides - [x] Remove remaining unwraps that should be error-handled. There are number of TODOs here - [x] Pretty AssetPath Display impl - [x] Document more APIs - [x] Resolve spurious "reloading because it has changed" events (to repro run load_gltf with `processed_dev()`) - [x] load_dependency hot reloading currently only works for processed assets. If processing is disabled, load_dependency changes are not hot reloaded. - [x] Replace AssetInfo dependency load/fail counters with `loading_dependencies: HashSet<UntypedAssetId>` to prevent reloads from (potentially) breaking counters. Storing this will also enable "dependency reloaded" events (see [Next Steps](#next-steps)) - [x] Re-add filesystem watcher cargo feature gate (currently it is not optional) - [ ] Migration Guide - [ ] Changelog ## Followup TODO - [ ] Replace "eager unchanged processed asset loading" behavior with "don't returned unchanged processed asset until dependencies have been checked". - [ ] Add true `Ignore` AssetAction that does not copy the asset to the imported_assets folder. - [ ] Finish "live asset unloading" (ex: free up CPU asset memory after uploading an image to the GPU), rethink RenderAssets, and port renderer features. The `Assets` collection uses `Option<T>` for asset storage to support its removal. (1) the Option might not actually be necessary ... might be able to just remove from the collection entirely (2) need to finalize removal apis - [ ] Try replacing the "channel based" asset id recycling with something a bit more efficient (ex: we might be able to use raw atomic ints with some cleverness) - [ ] Consider adding UUIDs to processed assets (scoped just to helping identify moved assets ... not exposed to load queries ... see [Next Steps](#next-steps)) - [ ] Store "last modified" source asset and meta timestamps in processed meta files to enable skipping expensive hashing when the file wasn't changed - [ ] Fix "slow loop" handle drop fix - [ ] Migrate to TypeName - [x] Handle "loader preregistration". See #9429 ## Next Steps * **Configurable per-type defaults for AssetMeta**: It should be possible to add configuration like "all png image meta should default to using nearest sampling" (currently this hard-coded per-loader/processor Settings::default() impls). Also see the "Folder Meta" bullet point. * **Avoid Reprocessing on Asset Renames / Moves**: See the "canonical asset ids" discussion in [Open Questions](#open-questions) and the relevant bullet point in [Draft TODO](#draft-todo). Even without canonical ids, folder renames could avoid reprocessing in some cases. * **Multiple Asset Sources**: Expand AssetPath to support "asset source names" and support multiple AssetReaders in the asset server (ex: `webserver://some_path/image.png` backed by an Http webserver AssetReader). The "default" asset reader would use normal `some_path/image.png` paths. Ideally this works in combination with multiple AssetWatchers for hot-reloading * **Stable Type Names**: this pr removes the TypeUuid requirement from assets in favor of `std::any::type_name`. This makes defining assets easier (no need to generate a new uuid / use weird proc macro syntax). It also makes reading meta files easier (because things have "friendly names"). We also use type names for components in scene files. If they are good enough for components, they are good enough for assets. And consistency across Bevy pillars is desirable. However, `std::any::type_name` is not guaranteed to be stable (although in practice it is). We've developed a [stable type path](https://github.com/bevyengine/bevy/pull/7184) to resolve this, which should be adopted when it is ready. * **Command Line Interface**: It should be possible to run the asset processor in a separate process from the command line. This will also require building a network-server-backed AssetReader to communicate between the app and the processor. We've been planning to build a "bevy cli" for awhile. This seems like a good excuse to build it. * **Asset Packing**: This is largely an additive feature, so it made sense to me to punt this until we've laid the foundations in this PR. * **Per-Platform Processed Assets**: It should be possible to generate assets for multiple platforms by supporting multiple "processor profiles" per asset (ex: compress with format X on PC and Y on iOS). I think there should probably be arbitrary "profiles" (which can be separate from actual platforms), which are then assigned to a given platform when generating the final asset distribution for that platform. Ex: maybe devs want a "Mobile" profile that is shared between iOS and Android. Or a "LowEnd" profile shared between web and mobile. * **Versioning and Migrations**: Assets, Loaders, Savers, and Processors need to have versions to determine if their schema is valid. If an asset / loader version is incompatible with the current version expected at runtime, the processor should be able to migrate them. I think we should try using Bevy Reflect for this, as it would allow us to load the old version as a dynamic Reflect type without actually having the old Rust type. It would also allow us to define "patches" to migrate between versions (Bevy Reflect devs are currently working on patching). The `.meta` file already has its own format version. Migrating that to new versions should also be possible. * **Real Copy-on-write AssetPaths**: Rust's actual Cow (clone-on-write type) currently used by AssetPath can still result in String clones that aren't actually necessary (cloning an Owned Cow clones the contents). Bevy's asset system requires cloning AssetPaths in a number of places, which result in actual clones of the internal Strings. This is not efficient. AssetPath internals should be reworked to exhibit truer cow-like-behavior that reduces String clones to the absolute minimum. * **Consider processor-less processing**: In theory the AssetServer could run processors "inline" even if the background AssetProcessor is disabled. If we decide this is actually desirable, we could add this. But I don't think its a priority in the short or medium term. * **Pre-emptive dependency loading**: We could encode dependencies in processed meta files, which could then be used by the Asset Server to kick of dependency loads as early as possible (prior to starting the actual asset load). Is this desirable? How much time would this save in practice? * **Optimize Processor With UntypedAssetIds**: The processor exclusively uses AssetPath to identify assets currently. It might be possible to swap these out for UntypedAssetIds in some places, which are smaller / cheaper to hash and compare. * **One to Many Asset Processing**: An asset source file that produces many assets currently must be processed into a single "processed" asset source. If labeled assets can be written separately they can each have their own configured savers _and_ they could be loaded more granularly. Definitely worth exploring! * **Automatically Track "Runtime-only" Asset Dependencies**: Right now, tracking "created at runtime" asset dependencies requires adding them via `asset_server.load_asset(StandardMaterial::default())`. I think with some cleverness we could also do this for `materials.add(StandardMaterial::default())`, making tracking work "everywhere". There are challenges here relating to change detection / ensuring the server is made aware of dependency changes. This could be expensive in some cases. * **"Dependency Changed" events**: Some assets have runtime artifacts that need to be re-generated when one of their dependencies change (ex: regenerate a material's bind group when a Texture needs to change). We are generating the dependency graph so we can definitely produce these events. Buuuuut generating these events will have a cost / they could be high frequency for some assets, so we might want this to be opt-in for specific cases. * **Investigate Storing More Information In Handles**: Handles can now store arbitrary information, which makes it cheaper and easier to access. How much should we move into them? Canonical asset load states (via atomics)? (`handle.is_loaded()` would be very cool). Should we store the entire asset and remove the `Assets<T>` collection? (`Arc<RwLock<Option<Image>>>`?) * **Support processing and loading files without extensions**: This is a pretty arbitrary restriction and could be supported with very minimal changes. * **Folder Meta**: It would be nice if we could define per folder processor configuration defaults (likely in a `.meta` or `.folder_meta` file). Things like "default to linear filtering for all Images in this folder". * **Replace async_broadcast with event-listener?** This might be approximately drop-in for some uses and it feels more light weight * **Support Running the AssetProcessor on the Web**: Most of the hard work is done here, but there are some easy straggling TODOs (make the transaction log an interface instead of a direct file writer so we can write a web storage backend, implement an AssetReader/AssetWriter that reads/writes to something like LocalStorage). * **Consider identifying and preventing circular dependencies**: This is especially important for "processor dependencies", as processing will silently never finish in these cases. * **Built-in/Inlined Asset Hot Reloading**: This PR regresses "built-in/inlined" asset hot reloading (previously provided by the DebugAssetServer). I'm intentionally punting this because I think it can be cleanly implemented with "multiple asset sources" by registering a "debug asset source" (ex: `debug://bevy_pbr/src/render/pbr.wgsl` asset paths) in combination with an AssetWatcher for that asset source and support for "manually loading pats with asset bytes instead of AssetReaders". The old DebugAssetServer was quite nasty and I'd love to avoid that hackery going forward. * **Investigate ways to remove double-parsing meta files**: Parsing meta files currently involves parsing once with "minimal" versions of the meta file to extract the type name of the loader/processor config, then parsing again to parse the "full" meta. This is suboptimal. We should be able to define custom deserializers that (1) assume the loader/processor type name comes first (2) dynamically looks up the loader/processor registrations to deserialize settings in-line (similar to components in the bevy scene format). Another alternative: deserialize as dynamic Reflect objects and then convert. * **More runtime loading configuration**: Support using the Handle type as a hint to select an asset loader (instead of relying on AssetPath extensions) * **More high level Processor trait implementations**: For example, it might be worth adding support for arbitrary chains of "asset transforms" that modify an in-memory asset representation between loading and saving. (ex: load a Mesh, run a `subdivide_mesh` transform, followed by a `flip_normals` transform, then save the mesh to an efficient compressed format). * **Bevy Scene Handle Deserialization**: (see the relevant [Draft TODO item](#draft-todo) for context) * **Explore High Level Load Interfaces**: See [this discussion](#discuss-on_loaded-high-level-interface) for one prototype. * **Asset Streaming**: It would be great if we could stream Assets (ex: stream a long video file piece by piece) * **ID Exchanging**: In this PR Asset Handles/AssetIds are bigger than they need to be because they have a Uuid enum variant. If we implement an "id exchanging" system that trades Uuids for "efficient runtime ids", we can cut down on the size of AssetIds, making them more efficient. This has some open design questions, such as how to spawn entities with "default" handle values (as these wouldn't have access to the exchange api in the current system). * **Asset Path Fixup Tooling**: Assets that inline asset paths inside them will break when an asset moves. The asset system provides the functionality to detect when paths break. We should build a framework that enables formats to define "path migrations". This is especially important for scene files. For editor-generated files, we should also consider using UUIDs (see other bullet point) to avoid the need to migrate in these cases. --------- Co-authored-by: BeastLe9enD <beastle9end@outlook.de> Co-authored-by: Mike <mike.hsu@gmail.com> Co-authored-by: Nicola Papale <nicopap@users.noreply.github.com> |
||
![]() |
5e3ae770ac
|
Fix screenshots on Wayland + Nvidia (#8701)
# Objective Fix #8604 ## Solution Use `.add_srgb_suffix()` when creating the screenshot texture. Allow converting `Bgra8Unorm` images. Only a two line change for the fix, the `screenshot.rs` changes are just a bit of cleanup. |
||
![]() |
71842c5ac9
|
Webgpu support (#8336)
# Objective - Support WebGPU - alternative to #5027 that doesn't need any async / await - fixes #8315 - Surprise fix #7318 ## Solution ### For async renderer initialisation - Update the plugin lifecycle: - app builds the plugin - calls `plugin.build` - registers the plugin - app starts the event loop - event loop waits for `ready` of all registered plugins in the same order - returns `true` by default - then call all `finish` then all `cleanup` in the same order as registered - then execute the schedule In the case of the renderer, to avoid anything async: - building the renderer plugin creates a detached task that will send back the initialised renderer through a mutex in a resource - `ready` will wait for the renderer to be present in the resource - `finish` will take that renderer and place it in the expected resources by other plugins - other plugins (that expect the renderer to be available) `finish` are called and they are able to set up their pipelines - `cleanup` is called, only custom one is still for pipeline rendering ### For WebGPU support - update the `build-wasm-example` script to support passing `--api webgpu` that will build the example with WebGPU support - feature for webgl2 was always enabled when building for wasm. it's now in the default feature list and enabled on all platforms, so check for this feature must also check that the target_arch is `wasm32` --- ## Migration Guide - `Plugin::setup` has been renamed `Plugin::cleanup` - `Plugin::finish` has been added, and plugins adding pipelines should do it in this function instead of `Plugin::build` ```rust // Before impl Plugin for MyPlugin { fn build(&self, app: &mut App) { app.insert_resource::<MyResource> .add_systems(Update, my_system); let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<RenderResourceNeedingDevice>() .init_resource::<OtherRenderResource>(); } } // After impl Plugin for MyPlugin { fn build(&self, app: &mut App) { app.insert_resource::<MyResource> .add_systems(Update, my_system); let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<OtherRenderResource>(); } fn finish(&self, app: &mut App) { let render_app = match app.get_sub_app_mut(RenderApp) { Ok(render_app) => render_app, Err(_) => return, }; render_app .init_resource::<RenderResourceNeedingDevice>(); } } ``` |
||
![]() |
8070c29c21
|
Take example screenshots in CI (#8488)
# Objective - I want to take screenshots of examples in CI to help with validation of changes ## Solution - Can override how much time is updated per frame - Can specify on which frame to take a screenshots - Save screenshots in CI I reused the `TimeUpdateStrategy::ManualDuration` to be able to set the time update strategy to a fixed duration every frame. Its previous meaning didn't make much sense to me. This change makes it possible to have screenshots that are exactly the same across runs. If this gets merged, I'll add visual comparison of screenshots between runs to ensure nothing gets broken ## Migration Guide * `TimeUpdateStrategy::ManualDuration` meaning has changed. Instead of setting time to `Instant::now()` plus the given duration, it sets time to last update plus the given duration. |
||
![]() |
cb286e5b60
|
Screenshots in wasm (#8455)
# Objective - Enable taking a screenshot in wasm - Followup on #7163 ## Solution - Create a blob from the image data, generate a url to that blob, add an `a` element to the document linking to that url, click on that element, then revoke the url - This will automatically trigger a download of the screenshot file in the browser |
||
![]() |
4d54ce14aa
|
Updated to wgpu 0.16.0, wgpu-hal 0.16.0 and naga 0.12.0 (#8446)
# Objective - Updated to wgpu 0.16.0 and wgpu-hal 0.16.0 --- ## Changelog 1. Upgrade wgpu to 0.16.0 and wgpu-hal to 0.16.0 2. Fix the error in native when using a filterable `TextureSampleType::Float` on a multisample `BindingType::Texture`. ([https://github.com/gfx-rs/wgpu/pull/3686](https://github.com/gfx-rs/wgpu/pull/3686)) --------- Co-authored-by: François <mockersf@gmail.com> |
||
![]() |
9db70da96f
|
Add screenshot api (#7163)
Fixes https://github.com/bevyengine/bevy/issues/1207 # Objective Right now, it's impossible to capture a screenshot of the entire window without forking bevy. This is because - The swapchain texture never has the COPY_SRC usage - It can't be accessed without taking ownership of it - Taking ownership of it breaks *a lot* of stuff ## Solution - Introduce a dedicated api for taking a screenshot of a given bevy window, and guarantee this screenshot will always match up with what gets put on the screen. --- ## Changelog - Added the `ScreenshotManager` resource with two functions, `take_screenshot` and `save_screenshot_to_disk` |