This reverts commit ac52cca033.
Fixes#18815
the interest of providing no_std support, specifically no_atomic
support). That tradeoff isn't worth it, especially given that tracing is
likely to get no_atomic support.
Revert #18782
- Fixes#18781
- Moved `LogPlugin` into its own file gated behind a new `tracing`
feature.
- Used `log` instead of `tracing` where possible.
- Exposed a new `tracing` feature in `bevy` which enables
`bevy_log/tracing`.
- Gated `LogPlugin` from `DefaultPlugins` on `tracing` feature.
- CI
---
- If you were previously using `bevy_log` with default features
disabled, enable the new `std` and `tracing` features.
- If you were using `bevy` with the default features disabled, enable
the new `tracing` feature.
Almost all of the diffs in this PR come from moving `LogPlugin` into its
own file. This just makes the PR less noisy, since the alternative is
excessive `#[cfg(feature = "tracing")]` directives all over the plugin.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Fixes#18200
## Solution
- Ensure `bevy_utils` is included with `bevy_transform/std`
## Testing
- `cargo build --no-default-features --features std`
## Notes
Compilation failure was caused by `bevy_transform`'s new parallel
propagation system requiring `bevy_utils/std` when `bevy_transform/std`
was active, but it was left optional. Additionally,
`bevy_transform/async_executor` wasn't being enabled by
`bevy/async_executor`.
# Objective
- Fixes#15460 (will open new issues for further `no_std` efforts)
- Supersedes #17715
## Solution
- Threaded in new features as required
- Made certain crates optional but default enabled
- Removed `compile-check-no-std` from internal `ci` tool since GitHub CI
can now simply check `bevy` itself now
- Added CI task to check `bevy` on `thumbv6m-none-eabi` to ensure
`portable-atomic` support is still valid [^1]
[^1]: This may be controversial, since it could be interpreted as
implying Bevy will maintain support for `thumbv6m-none-eabi` going
forward. In reality, just like `x86_64-unknown-none`, this is a
[canary](https://en.wiktionary.org/wiki/canary_in_a_coal_mine) target to
make it clear when `portable-atomic` no longer works as intended (fixing
atomic support on atomically challenged platforms). If a PR comes
through and makes supporting this class of platforms impossible, then
this CI task can be removed. I however wager this won't be a problem.
## Testing
- CI
---
## Release Notes
Bevy now has support for `no_std` directly from the `bevy` crate.
Users can disable default features and enable a new `default_no_std`
feature instead, allowing `bevy` to be used in `no_std` applications and
libraries.
```toml
# Bevy for `no_std` platforms
bevy = { version = "0.16", default-features = false, features = ["default_no_std"] }
```
`default_no_std` enables certain required features, such as `libm` and
`critical-section`, and as many optional crates as possible (currently
just `bevy_state`). For atomically-challenged platforms such as the
Raspberry Pi Pico, `portable-atomic` will be used automatically.
For library authors, we recommend depending on `bevy` with
`default-features = false` to allow `std` and `no_std` users to both
depend on your crate. Here are some recommended features a library crate
may want to expose:
```toml
[features]
# Most users will be on a platform which has `std` and can use the more-powerful `async_executor`.
default = ["std", "async_executor"]
# Features for typical platforms.
std = ["bevy/std"]
async_executor = ["bevy/async_executor"]
# Features for `no_std` platforms.
libm = ["bevy/libm"]
critical-section = ["bevy/critical-section"]
[dependencies]
# We disable default features to ensure we don't accidentally enable `std` on `no_std` targets, for example.
bevy = { version = "0.16", default-features = false }
```
While this is verbose, it gives the maximum control to end-users to
decide how they wish to use Bevy on their platform.
We encourage library authors to experiment with `no_std` support. For
libraries relying exclusively on `bevy` and no other dependencies, it
may be as simple as adding `#![no_std]` to your `lib.rs` and exposing
features as above! Bevy can also provide many `std` types, such as
`HashMap`, `Mutex`, and `Instant` on all platforms. See
`bevy::platform_support` for details on what's available out of the box!
## Migration Guide
- If you were previously relying on `bevy` with default features
disabled, you may need to enable the `std` and `async_executor`
features.
- `bevy_reflect` has had its `bevy` feature removed. If you were relying
on this feature, simply enable `smallvec` and `smol_str` instead.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fixes#17960
## Solution
- Followed the [edition upgrade
guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html)
## Testing
- CI
---
## Summary of Changes
### Documentation Indentation
When using lists in documentation, proper indentation is now linted for.
This means subsequent lines within the same list item must start at the
same indentation level as the item.
```rust
/* Valid */
/// - Item 1
/// Run-on sentence.
/// - Item 2
struct Foo;
/* Invalid */
/// - Item 1
/// Run-on sentence.
/// - Item 2
struct Foo;
```
### Implicit `!` to `()` Conversion
`!` (the never return type, returned by `panic!`, etc.) no longer
implicitly converts to `()`. This is particularly painful for systems
with `todo!` or `panic!` statements, as they will no longer be functions
returning `()` (or `Result<()>`), making them invalid systems for
functions like `add_systems`. The ideal fix would be to accept functions
returning `!` (or rather, _not_ returning), but this is blocked on the
[stabilisation of the `!` type
itself](https://doc.rust-lang.org/std/primitive.never.html), which is
not done.
The "simple" fix would be to add an explicit `-> ()` to system
signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`).
However, this is _also_ banned, as there is an existing lint which (IMO,
incorrectly) marks this as an unnecessary annotation.
So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ...
}` closuers into variables and give the variable an explicit type (e.g.,
`fn()`).
```rust
// Valid
let system: fn() = || todo!("Not implemented yet!");
app.add_systems(..., system);
// Invalid
app.add_systems(..., || todo!("Not implemented yet!"));
```
### Temporary Variable Lifetimes
The order in which temporary variables are dropped has changed. The
simple fix here is _usually_ to just assign temporaries to a named
variable before use.
### `gen` is a keyword
We can no longer use the name `gen` as it is reserved for a future
generator syntax. This involved replacing uses of the name `gen` with
`r#gen` (the raw-identifier syntax).
### Formatting has changed
Use statements have had the order of imports changed, causing a
substantial +/-3,000 diff when applied. For now, I have opted-out of
this change by amending `rustfmt.toml`
```toml
style_edition = "2021"
```
This preserves the original formatting for now, reducing the size of
this PR. It would be a simple followup to update this to 2024 and run
`cargo fmt`.
### New `use<>` Opt-Out Syntax
Lifetimes are now implicitly included in RPIT types. There was a handful
of instances where it needed to be added to satisfy the borrow checker,
but there may be more cases where it _should_ be added to avoid
breakages in user code.
### `MyUnitStruct { .. }` is an invalid pattern
Previously, you could match against unit structs (and unit enum
variants) with a `{ .. }` destructuring. This is no longer valid.
### Pretty much every use of `ref` and `mut` are gone
Pattern binding has changed to the point where these terms are largely
unused now. They still serve a purpose, but it is far more niche now.
### `iter::repeat(...).take(...)` is bad
New lint recommends using the more explicit `iter::repeat_n(..., ...)`
instead.
## Migration Guide
The lifetimes of functions using return-position impl-trait (RPIT) are
likely _more_ conservative than they had been previously. If you
encounter lifetime issues with such a function, please create an issue
to investigate the addition of `+ use<...>`.
## Notes
- Check the individual commits for a clearer breakdown for what
_actually_ changed.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Make transform propagation faster.
## Solution
- Work sharing worker threads
- Parallel tree traversal excluding leaves
- Second cache friendly wide pass over all leaves
- 3-10x faster than main
## Testing
- Tracy
- Caldera hotel is showing 3-7x faster on my M4 Max. Timing for bevy's
existing transform system shifts wildly run to run, so I don't know that
I would advertise a particular number. But this implementation is faster
in a... statistically significant way.

---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
This adds support for one-to-many non-fragmenting relationships (with
planned paths for fragmenting and non-fragmenting many-to-many
relationships). "Non-fragmenting" means that entities with the same
relationship type, but different relationship targets, are not forced
into separate tables (which would cause "table fragmentation").
Functionally, this fills a similar niche as the current Parent/Children
system. The biggest differences are:
1. Relationships have simpler internals and significantly improved
performance and UX. Commands and specialized APIs are no longer
necessary to keep everything in sync. Just spawn entities with the
relationship components you want and everything "just works".
2. Relationships are generalized. Bevy can provide additional built in
relationships, and users can define their own.
**REQUEST TO REVIEWERS**: _please don't leave top level comments and
instead comment on specific lines of code. That way we can take
advantage of threaded discussions. Also dont leave comments simply
pointing out CI failures as I can read those just fine._
## Built on top of what we have
Relationships are implemented on top of the Bevy ECS features we already
have: components, immutability, and hooks. This makes them immediately
compatible with all of our existing (and future) APIs for querying,
spawning, removing, scenes, reflection, etc. The fewer specialized APIs
we need to build, maintain, and teach, the better.
## Why focus on one-to-many non-fragmenting first?
1. This allows us to improve Parent/Children relationships immediately,
in a way that is reasonably uncontroversial. Switching our hierarchy to
fragmenting relationships would have significant performance
implications. ~~Flecs is heavily considering a switch to non-fragmenting
relations after careful considerations of the performance tradeoffs.~~
_(Correction from @SanderMertens: Flecs is implementing non-fragmenting
storage specialized for asset hierarchies, where asset hierarchies are
many instances of small trees that have a well defined structure)_
2. Adding generalized one-to-many relationships is currently a priority
for the [Next Generation Scene / UI
effort](https://github.com/bevyengine/bevy/discussions/14437).
Specifically, we're interested in building reactions and observers on
top.
## The changes
This PR does the following:
1. Adds a generic one-to-many Relationship system
3. Ports the existing Parent/Children system to Relationships, which now
lives in `bevy_ecs::hierarchy`. The old `bevy_hierarchy` crate has been
removed.
4. Adds on_despawn component hooks
5. Relationships can opt-in to "despawn descendants" behavior, meaning
that the entire relationship hierarchy is despawned when
`entity.despawn()` is called. The built in Parent/Children hierarchies
enable this behavior, and `entity.despawn_recursive()` has been removed.
6. `world.spawn` now applies commands after spawning. This ensures that
relationship bookkeeping happens immediately and removes the need to
manually flush. This is in line with the equivalent behaviors recently
added to the other APIs (ex: insert).
7. Removes the ValidParentCheckPlugin (system-driven / poll based) in
favor of a `validate_parent_has_component` hook.
## Using Relationships
The `Relationship` trait looks like this:
```rust
pub trait Relationship: Component + Sized {
type RelationshipSources: RelationshipSources<Relationship = Self>;
fn get(&self) -> Entity;
fn from(entity: Entity) -> Self;
}
```
A relationship is a component that:
1. Is a simple wrapper over a "target" Entity.
2. Has a corresponding `RelationshipSources` component, which is a
simple wrapper over a collection of entities. Every "target entity"
targeted by a "source entity" with a `Relationship` has a
`RelationshipSources` component, which contains every "source entity"
that targets it.
For example, the `Parent` component (as it currently exists in Bevy) is
the `Relationship` component and the entity containing the Parent is the
"source entity". The entity _inside_ the `Parent(Entity)` component is
the "target entity". And that target entity has a `Children` component
(which implements `RelationshipSources`).
In practice, the Parent/Children relationship looks like this:
```rust
#[derive(Relationship)]
#[relationship(relationship_sources = Children)]
pub struct Parent(pub Entity);
#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent)]
pub struct Children(Vec<Entity>);
```
The Relationship and RelationshipSources derives automatically implement
Component with the relevant configuration (namely, the hooks necessary
to keep everything in sync).
The most direct way to add relationships is to spawn entities with
relationship components:
```rust
let a = world.spawn_empty().id();
let b = world.spawn(Parent(a)).id();
assert_eq!(world.entity(a).get::<Children>().unwrap(), &[b]);
```
There are also convenience APIs for spawning more than one entity with
the same relationship:
```rust
world.spawn_empty().with_related::<Children>(|s| {
s.spawn_empty();
s.spawn_empty();
})
```
The existing `with_children` API is now a simpler wrapper over
`with_related`. This makes this change largely non-breaking for existing
spawn patterns.
```rust
world.spawn_empty().with_children(|s| {
s.spawn_empty();
s.spawn_empty();
})
```
There are also other relationship APIs, such as `add_related` and
`despawn_related`.
## Automatic recursive despawn via the new on_despawn hook
`RelationshipSources` can opt-in to "despawn descendants" behavior,
which will despawn all related entities in the relationship hierarchy:
```rust
#[derive(RelationshipSources)]
#[relationship_sources(relationship = Parent, despawn_descendants)]
pub struct Children(Vec<Entity>);
```
This means that `entity.despawn_recursive()` is no longer required.
Instead, just use `entity.despawn()` and the relevant related entities
will also be despawned.
To despawn an entity _without_ despawning its parent/child descendants,
you should remove the `Children` component first, which will also remove
the related `Parent` components:
```rust
entity
.remove::<Children>()
.despawn()
```
This builds on the on_despawn hook introduced in this PR, which is fired
when an entity is despawned (before other hooks).
## Relationships are the source of truth
`Relationship` is the _single_ source of truth component.
`RelationshipSources` is merely a reflection of what all the
`Relationship` components say. By embracing this, we are able to
significantly improve the performance of the system as a whole. We can
rely on component lifecycles to protect us against duplicates, rather
than needing to scan at runtime to ensure entities don't already exist
(which results in quadratic runtime). A single source of truth gives us
constant-time inserts. This does mean that we cannot directly spawn
populated `Children` components (or directly add or remove entities from
those components). I personally think this is a worthwhile tradeoff,
both because it makes the performance much better _and_ because it means
theres exactly one way to do things (which is a philosophy we try to
employ for Bevy APIs).
As an aside: treating both sides of the relationship as "equivalent
source of truth relations" does enable building simple and flexible
many-to-many relationships. But this introduces an _inherent_ need to
scan (or hash) to protect against duplicates.
[`evergreen_relations`](https://github.com/EvergreenNest/evergreen_relations)
has a very nice implementation of the "symmetrical many-to-many"
approach. Unfortunately I think the performance issues inherent to that
approach make it a poor choice for Bevy's default relationship system.
## Followup Work
* Discuss renaming `Parent` to `ChildOf`. I refrained from doing that in
this PR to keep the diff reasonable, but I'm personally biased toward
this change (and using that naming pattern generally for relationships).
* [Improved spawning
ergonomics](https://github.com/bevyengine/bevy/discussions/16920)
* Consider adding relationship observers/triggers for "relationship
targets" whenever a source is added or removed. This would replace the
current "hierarchy events" system, which is unused upstream but may have
existing users downstream. I think triggers are the better fit for this
than a buffered event queue, and would prefer not to add that back.
* Fragmenting relations: My current idea hinges on the introduction of
"value components" (aka: components whose type _and_ value determines
their ComponentId, via something like Hashing / PartialEq). By labeling
a Relationship component such as `ChildOf(Entity)` as a "value
component", `ChildOf(e1)` and `ChildOf(e2)` would be considered
"different components". This makes the transition between fragmenting
and non-fragmenting a single flag, and everything else continues to work
as expected.
* Many-to-many support
* Non-fragmenting: We can expand Relationship to be a list of entities
instead of a single entity. I have largely already written the code for
this.
* Fragmenting: With the "value component" impl mentioned above, we get
many-to-many support "for free", as it would allow inserting multiple
copies of a Relationship component with different target entities.
Fixes#3742 (If this PR is merged, I think we should open more targeted
followup issues for the work above, with a fresh tracking issue free of
the large amount of less-directed historical context)
Fixes#17301Fixes#12235Fixes#15299Fixes#15308
## Migration Guide
* Replace `ChildBuilder` with `ChildSpawnerCommands`.
* Replace calls to `.set_parent(parent_id)` with
`.insert(Parent(parent_id))`.
* Replace calls to `.replace_children()` with `.remove::<Children>()`
followed by `.add_children()`. Note that you'll need to manually despawn
any children that are not carried over.
* Replace calls to `.despawn_recursive()` with `.despawn()`.
* Replace calls to `.despawn_descendants()` with
`.despawn_related::<Children>()`.
* If you have any calls to `.despawn()` which depend on the children
being preserved, you'll need to remove the `Children` component first.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Bump version after release
This PR has been auto-generated
---------
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
- Contributes to #15460
## Solution
- Added the following features:
- `std` (default)
- `alloc` (default)
- `bevy_reflect` (default)
- `libm`
## Testing
- CI
## Notes
- `alloc` feature added to allow using this crate in `no_alloc`
environments.
- `bevy_reflect` was previously always enabled when `bevy-support` was
enabled, which isn't how most other crates handle reflection. I've
brought this in line with how most crates gate `bevy_reflect`.
# Objective
- Remove `derive_more`'s error derivation and replace it with
`thiserror`
## Solution
- Added `derive_more`'s `error` feature to `deny.toml` to prevent it
sneaking back in.
- Reverted to `thiserror` error derivation
## Notes
Merge conflicts were too numerous to revert the individual changes, so
this reversion was done manually. Please scrutinise carefully during
review.
# Objective
- Fix issue #2611
## Solution
- Add `--generate-link-to-definition` to all the `rustdoc-args` arrays
in the `Cargo.toml`s (for docs.rs)
- Add `--generate-link-to-definition` to the `RUSTDOCFLAGS` environment
variable in the docs workflow (for dev-docs.bevyengine.org)
- Document all the workspace crates in the docs workflow (needed because
otherwise only the source code of the `bevy` package will be included,
making the argument useless)
- I think this also fixes#3662, since it fixes the bug on
dev-docs.bevyengine.org, while on docs.rs it has been fixed for a while
on their side.
---
## Changelog
- The source code viewer on docs.rs now includes links to the
definitions.
Bump version after release
This PR has been auto-generated
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François Mockers <mockersf@gmail.com>
# Objective
Fix missing `TextBundle` (and many others) which are present in the main
crate as default features but optional in the sub-crate. See:
- https://docs.rs/bevy/0.13.0/bevy/ui/node_bundles/index.html
- https://docs.rs/bevy_ui/0.13.0/bevy_ui/node_bundles/index.html
~~There are probably other instances in other crates that I could track
down, but maybe "all-features = true" should be used by default in all
sub-crates? Not sure.~~ (There were many.) I only noticed this because
rust-analyzer's "open docs" features takes me to the sub-crate, not the
main one.
## Solution
Add "all-features = true" to docs.rs metadata for crates that use
features.
## Changelog
### Changed
- Unified features documented on docs.rs between main crate and
sub-crates
# Objective
- Taplo in CI is not running. The link used to download taplo doesn't
work anymore.
## Solution
- Compile taplo directly with cargo
- Improve docs a little
- Run taplo
---------
Co-authored-by: François <mockersf@gmail.com>
Fixes#12016.
Bump version after release
This PR has been auto-generated
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
`bevy_math` re-exports Glam, but doesn't have a feature for enabling
`approx` for it. Many projects (including some of Bevy's own crates)
need `approx`, and it'd be nice if you didn't have to manually add Glam
to specify the feature for it.
## Solution
Add an `approx` feature to `bevy_math`.
# Objective
- Standardize fmt for toml files
## Solution
- Add [taplo](https://taplo.tamasfe.dev/) to CI (check for fmt and diff
for toml files), for context taplo is used by the most popular extension
in VScode [Even Better
TOML](https://marketplace.visualstudio.com/items?itemName=tamasfe.even-better-toml
- Add contribution section to explain toml fmt with taplo.
Now to pass CI you need to run `taplo fmt --option indent_string=" "` or
if you use vscode have the `Even Better TOML` extension with 4 spaces
for indent
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fix adding `#![allow(clippy::type_complexity)]` everywhere. like #9796
## Solution
- Use the new [lints] table that will land in 1.74
(https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#lints)
- inherit lint to the workspace, crates and examples.
```
[lints]
workspace = true
```
## Changelog
- Bump rust version to 1.74
- Enable lints table for the workspace
```toml
[workspace.lints.clippy]
type_complexity = "allow"
```
- Allow type complexity for all crates and examples
```toml
[lints]
workspace = true
```
---------
Co-authored-by: Martín Maita <47983254+mnmaita@users.noreply.github.com>
Preparing next release
This PR has been auto-generated
---------
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
# Objective
Align all error-like types to implement `Error`.
Fixes #10176
## Solution
- Derive `Error` on more types
- Refactor instances of manual implementations that could be derived
This adds thiserror as a dependency to bevy_transform, which might
increase compilation time -- but I don't know of any situation where you
might only use that but not any other crate that pulls in bevy_utils.
The `contributors` example has a `LoadContributorsError` type, but as
it's an example I have not updated it. Doing that would mean either
having a `use bevy_internal::utils::thiserror::Error;` in an example
file, or adding `thiserror` as a dev-dependency to the main `bevy`
crate.
---
## Changelog
- All `…Error` types now implement the `Error` trait
# Objective
Add a way to easily compute the up-to-date `GlobalTransform` of an
entity.
## Solution
Add the `TransformHelper`(Name pending) system parameter with the
`compute_global_transform` method that takes an `Entity` and returns a
`GlobalTransform` if successful.
## Changelog
- Added the `TransformHelper` system parameter for computing the
up-to-date `GlobalTransform` of an entity.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Noah <noahshomette@gmail.com>
CI-capable version of #9086
---------
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: François <mockersf@gmail.com>
I created this manually as Github didn't want to run CI for the
workflow-generated PR. I'm guessing we didn't hit this in previous
releases because we used bors.
Co-authored-by: Bevy Auto Releaser <41898282+github-actions[bot]@users.noreply.github.com>
# Objective
Fixes#4697. Hierarchical propagation of properties, currently only Transform -> GlobalTransform, can be a very expensive operation. Transform propagation is a strict dependency for anything positioned in world-space. In large worlds, this can take quite a bit of time, so limiting it to a single thread can result in poor CPU utilization as it bottlenecks the rest of the frame's systems.
## Solution
- Move transforms without a parent or a child (free-floating (Global)Transform) entities into a separate parallel system.
- Chunk the hierarchy based on the root entities and process it in parallel with `Query::par_for_each_mut`.
- Utilize the hierarchy's specific properties introduced in #4717 to allow for safe use of `Query::get_unchecked` on multiple threads. Assuming each child is unique in the hierarchy, it is impossible to have an aliased `&mut GlobalTransform` so long as we verify that the parent for a child is the same one propagated from.
---
## Changelog
Removed: `transform_propagate_system` is no longer `pub`.
# Objective
Fixes#6378
`bevy_transform` is missing a feature corresponding to the `serialize` feature on the `bevy` crate.
## Solution
Adds a `serialize` feature to `bevy_transform`.
Derives `serde::Serialize` and `Deserialize` when feature is enabled.
# Objective
- in #3851, a feature for tracing was added to bevy_transform
- usage of that feature was moved to bevy_hierarchy, but the feature was not updated
## Solution
- add the feature to bevy_hierarchy, remove it from bevy_transform
# Objective
- Provide more information when despawning an entity
## Solution
- Add a debug log when despawning an entity
- Add spans to the recursive ways of despawning an entity
```sh
RUST_LOG=debug cargo run --example panic --features trace
# RUST_LOG=debug needed to show debug logs from bevy_ecs
# --features trace needed to have the extra spans
...
DEBUG bevy_app:frame:stage{name=Update}:system_commands{name="panic::despawn_parent"}:command{name="DespawnRecursive" entity=0v0}: bevy_ecs::world: Despawning entity 1v0
DEBUG bevy_app:frame:stage{name=Update}:system_commands{name="panic::despawn_parent"}:command{name="DespawnRecursive" entity=0v0}: bevy_ecs::world: Despawning entity 0v0
```
# Objective
- Hierarchy tools are not just used for `Transform`: they are also used for scenes.
- In the future there's interest in using them for other features, such as visiibility inheritance.
- The fact that these tools are found in `bevy_transform` causes a great deal of user and developer confusion
- Fixes#2758.
## Solution
- Split `bevy_transform` into two!
- Make everything work again.
Note that this is a very tightly scoped PR: I *know* there are code quality and docs issues that existed in bevy_transform that I've just moved around. We should fix those in a seperate PR and try to merge this ASAP to reduce the bitrot involved in splitting an entire crate.
## Frustrations
The API around `GlobalTransform` is a mess: we have massive code and docs duplication, no link between the two types and no clear way to extend this to other forms of inheritance.
In the medium-term, I feel pretty strongly that `GlobalTransform` should be replaced by something like `Inherited<Transform>`, which lives in `bevy_hierarchy`:
- avoids code duplication
- makes the inheritance pattern extensible
- links the types at the type-level
- allows us to remove all references to inheritance from `bevy_transform`, making it more useful as a standalone crate and cleaning up its docs
## Additional context
- double-blessed by @cart in https://github.com/bevyengine/bevy/issues/4141#issuecomment-1063592414 and https://github.com/bevyengine/bevy/issues/2758#issuecomment-913810963
- preparation for more advanced / cleaner hierarchy tools: go read https://github.com/bevyengine/rfcs/pull/53 !
- originally attempted by @finegeometer in #2789. It was a great idea, just needed more discussion!
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
# Objective
- `bevy_ecs` exposes as an optional feature `bevy_reflect`. Disabling it doesn't compile.
- `bevy_asset` exposes as an optional feature `filesystem_watcher`. Disabling it doesn't compile. It is also not possible to disable this feature from Bevy
## Solution
- Fix compilation errors when disabling the default features. Make it possible to disable the feature `filesystem_watcher` from Bevy