# Objective
There are several uninlined format args (seems to be in more formatting
macros and in more crates) that are not detected on stable, but are on
nightly.
## Solution
Fix them.
# Objective
A fair few items were deprecated in 0.16. Let's delete them now that
we're in the 0.17 development cycle!
## Solution
- Deleted items marked deprecated in 0.16.
## Testing
- CI
---
## Notes
I'm making the assumption that _everything_ deprecated in 0.16 should be
removed in 0.17. That may be a false assumption in certain cases. Please
check the items to be removed to see if there are any exceptions we
should keep around for another cycle!
# Objective
The goal of `bevy_platform_support` is to provide a set of platform
agnostic APIs, alongside platform-specific functionality. This is a high
traffic crate (providing things like HashMap and Instant). Especially in
light of https://github.com/bevyengine/bevy/discussions/18799, it
deserves a friendlier / shorter name.
Given that it hasn't had a full release yet, getting this change in
before Bevy 0.16 makes sense.
## Solution
- Rename `bevy_platform_support` to `bevy_platform`.
# Objective
#13432 added proper reflection-based cloning. This is a better method
than cloning via `clone_value` for reasons detailed in the description
of that PR. However, it may not be immediately apparent to users why one
should be used over the other, and what the gotchas of `clone_value`
are.
## Solution
This PR marks `PartialReflect::clone_value` as deprecated, with the
deprecation notice pointing users to `PartialReflect::reflect_clone`.
However, it also suggests using a new method introduced in this PR:
`PartialReflect::to_dynamic`.
`PartialReflect::to_dynamic` is essentially a renaming of
`PartialReflect::clone_value`. By naming it `to_dynamic`, we make it
very obvious that what's returned is a dynamic type. The one caveat to
this is that opaque types still use `reflect_clone` as they have no
corresponding dynamic type.
Along with changing the name, the method is now optional, and comes with
a default implementation that calls out to the respective reflection
subtrait method. This was done because there was really no reason to
require manual implementors provide a method that almost always calls
out to a known set of methods.
Lastly, to make this default implementation work, this PR also did a
similar thing with the `clone_dynamic ` methods on the reflection
subtraits. For example, `Struct::clone_dynamic` has been marked
deprecated and is superseded by `Struct::to_dynamic_struct`. This was
necessary to avoid the "multiple names in scope" issue.
### Open Questions
This PR maintains the original signature of `clone_value` on
`to_dynamic`. That is, it takes `&self` and returns `Box<dyn
PartialReflect>`.
However, in order for this to work, it introduces a panic if the value
is opaque and doesn't override the default `reflect_clone`
implementation.
One thing we could do to avoid the panic would be to make the conversion
fallible, either returning `Option<Box<dyn PartialReflect>>` or
`Result<Box<dyn PartialReflect>, ReflectCloneError>`.
This makes using the method a little more involved (i.e. users have to
either unwrap or handle the rare possibility of an error), but it would
set us up for a world where opaque types don't strictly need to be
`Clone`. Right now this bound is sort of implied by the fact that
`clone_value` is a required trait method, and the default behavior of
the macro is to use `Clone` for opaque types.
Alternatively, we could keep the signature but make the method required.
This maintains that implied bound where manual implementors must provide
some way of cloning the value (or YOLO it and just panic), but also
makes the API simpler to use.
Finally, we could just leave it with the panic. It's unlikely this would
occur in practice since our macro still requires `Clone` for opaque
types, and thus this would only ever be an issue if someone were to
manually implement `PartialReflect` without a valid `to_dynamic` or
`reflect_clone` method.
## Testing
You can test locally using the following command:
```
cargo test --package bevy_reflect --all-features
```
---
## Migration Guide
`PartialReflect::clone_value` is being deprecated. Instead, use
`PartialReflect::to_dynamic` if wanting to create a new dynamic instance
of the reflected value. Alternatively, use
`PartialReflect::reflect_clone` to attempt to create a true clone of the
underlying value.
Similarly, the following methods have been deprecated and should be
replaced with these alternatives:
- `Array::clone_dynamic` → `Array::to_dynamic_array`
- `Enum::clone_dynamic` → `Enum::to_dynamic_enum`
- `List::clone_dynamic` → `List::to_dynamic_list`
- `Map::clone_dynamic` → `Map::to_dynamic_map`
- `Set::clone_dynamic` → `Set::to_dynamic_set`
- `Struct::clone_dynamic` → `Struct::to_dynamic_struct`
- `Tuple::clone_dynamic` → `Tuple::to_dynamic_tuple`
- `TupleStruct::clone_dynamic` → `TupleStruct::to_dynamic_tuple_struct`
# Objective
- Fixes#17960
## Solution
- Followed the [edition upgrade
guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html)
## Testing
- CI
---
## Summary of Changes
### Documentation Indentation
When using lists in documentation, proper indentation is now linted for.
This means subsequent lines within the same list item must start at the
same indentation level as the item.
```rust
/* Valid */
/// - Item 1
/// Run-on sentence.
/// - Item 2
struct Foo;
/* Invalid */
/// - Item 1
/// Run-on sentence.
/// - Item 2
struct Foo;
```
### Implicit `!` to `()` Conversion
`!` (the never return type, returned by `panic!`, etc.) no longer
implicitly converts to `()`. This is particularly painful for systems
with `todo!` or `panic!` statements, as they will no longer be functions
returning `()` (or `Result<()>`), making them invalid systems for
functions like `add_systems`. The ideal fix would be to accept functions
returning `!` (or rather, _not_ returning), but this is blocked on the
[stabilisation of the `!` type
itself](https://doc.rust-lang.org/std/primitive.never.html), which is
not done.
The "simple" fix would be to add an explicit `-> ()` to system
signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`).
However, this is _also_ banned, as there is an existing lint which (IMO,
incorrectly) marks this as an unnecessary annotation.
So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ...
}` closuers into variables and give the variable an explicit type (e.g.,
`fn()`).
```rust
// Valid
let system: fn() = || todo!("Not implemented yet!");
app.add_systems(..., system);
// Invalid
app.add_systems(..., || todo!("Not implemented yet!"));
```
### Temporary Variable Lifetimes
The order in which temporary variables are dropped has changed. The
simple fix here is _usually_ to just assign temporaries to a named
variable before use.
### `gen` is a keyword
We can no longer use the name `gen` as it is reserved for a future
generator syntax. This involved replacing uses of the name `gen` with
`r#gen` (the raw-identifier syntax).
### Formatting has changed
Use statements have had the order of imports changed, causing a
substantial +/-3,000 diff when applied. For now, I have opted-out of
this change by amending `rustfmt.toml`
```toml
style_edition = "2021"
```
This preserves the original formatting for now, reducing the size of
this PR. It would be a simple followup to update this to 2024 and run
`cargo fmt`.
### New `use<>` Opt-Out Syntax
Lifetimes are now implicitly included in RPIT types. There was a handful
of instances where it needed to be added to satisfy the borrow checker,
but there may be more cases where it _should_ be added to avoid
breakages in user code.
### `MyUnitStruct { .. }` is an invalid pattern
Previously, you could match against unit structs (and unit enum
variants) with a `{ .. }` destructuring. This is no longer valid.
### Pretty much every use of `ref` and `mut` are gone
Pattern binding has changed to the point where these terms are largely
unused now. They still serve a purpose, but it is far more niche now.
### `iter::repeat(...).take(...)` is bad
New lint recommends using the more explicit `iter::repeat_n(..., ...)`
instead.
## Migration Guide
The lifetimes of functions using return-position impl-trait (RPIT) are
likely _more_ conservative than they had been previously. If you
encounter lifetime issues with such a function, please create an issue
to investigate the addition of `+ use<...>`.
## Notes
- Check the individual commits for a clearer breakdown for what
_actually_ changed.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
This pr uses the `extern crate self as` trick to make proc macros behave
the same way inside and outside bevy.
# Objective
- Removes noise introduced by `crate as` in the whole bevy repo.
- Fixes#17004.
- Hardens proc macro path resolution.
## TODO
- [x] `BevyManifest` needs cleanup.
- [x] Cleanup remaining `crate as`.
- [x] Add proper integration tests to the ci.
## Notes
- `cargo-manifest-proc-macros` is written by me and based/inspired by
the old `BevyManifest` implementation and
[`bkchr/proc-macro-crate`](https://github.com/bkchr/proc-macro-crate).
- What do you think about the new integration test machinery I added to
the `ci`?
More and better integration tests can be added at a later stage.
The goal of these integration tests is to simulate an actual separate
crate that uses bevy. Ideally they would lightly touch all bevy crates.
## Testing
- Needs RA test
- Needs testing from other users
- Others need to run at least `cargo run -p ci integration-test` and
verify that they work.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Contributes to #16877
## Solution
- Moved `hashbrown`, `foldhash`, and related types out of `bevy_utils`
and into `bevy_platform_support`
- Refactored the above to match the layout of these types in `std`.
- Updated crates as required.
## Testing
- CI
---
## Migration Guide
- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::hash`:
- `FixedState`
- `DefaultHasher`
- `RandomState`
- `FixedHasher`
- `Hashed`
- `PassHash`
- `PassHasher`
- `NoOpHash`
- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::collections`:
- `HashMap`
- `HashSet`
- `bevy_utils::hashbrown` has been removed. Instead, import from
`bevy_platform_support::collections` _or_ take a dependency on
`hashbrown` directly.
- `bevy_utils::Entry` has been removed. Instead, import from
`bevy_platform_support::collections::hash_map` or
`bevy_platform_support::collections::hash_set` as appropriate.
- All of the above equally apply to `bevy::utils` and
`bevy::platform_support`.
## Notes
- I left `PreHashMap`, `PreHashMapExt`, and `TypeIdMap` in `bevy_utils`
as they might be candidates for micro-crating. They can always be moved
into `bevy_platform_support` at a later date if desired.
# Background
In `no_std` compatible crates, there is often an `std` feature which
will allow access to the standard library. Currently, with the `std`
feature _enabled_, the
[`std::prelude`](https://doc.rust-lang.org/std/prelude/index.html) is
implicitly imported in all modules. With the feature _disabled_, instead
the [`core::prelude`](https://doc.rust-lang.org/core/prelude/index.html)
is implicitly imported. This creates a subtle and pervasive issue where
`alloc` items _may_ be implicitly included (if `std` is enabled), or
must be explicitly included (if `std` is not enabled).
# Objective
- Make the implicit imports for `no_std` crates consistent regardless of
what features are/not enabled.
## Solution
- Replace the `cfg_attr` "double negative" `no_std` attribute with
conditional compilation to _include_ `std` as an external crate.
```rust
// Before
#![cfg_attr(not(feature = "std"), no_std)]
// After
#![no_std]
#[cfg(feature = "std")]
extern crate std;
```
- Fix imports that are currently broken but are only now visible with
the above fix.
## Testing
- CI
## Notes
I had previously used the "double negative" version of `no_std` based on
general consensus that it was "cleaner" within the Rust embedded
community. However, this implicit prelude issue likely was considered
when forming this consensus. I believe the reason why is the items most
affected by this issue are provided by the `alloc` crate, which is
rarely used within embedded but extensively used within Bevy.
Updating dependencies; adopted version of #15696. (Supercedes #15696.)
Long answer: hashbrown is no longer using ahash by default, meaning that
we can't use the default-hasher methods with ahasher. So, we have to use
the longer-winded versions instead. This takes the opportunity to also
switch our default hasher as well, but without actually enabling the
default-hasher feature for hashbrown, meaning that we'll be able to
change our hasher more easily at the cost of all of these method calls
being obnoxious forever.
One large change from 0.15 is that `insert_unique_unchecked` is now
`unsafe`, and for cases where unsafe code was denied at the crate level,
I replaced it with `insert`.
## Migration Guide
`bevy_utils` has updated its version of `hashbrown` to 0.15 and now
defaults to `foldhash` instead of `ahash`. This means that if you've
hard-coded your hasher to `bevy_utils::AHasher` or separately used the
`ahash` crate in your code, you may need to switch to `foldhash` to
ensure that everything works like it does in Bevy.
# Objective
- Contributes to #15460
## Solution
- Added `std` feature (enabled by default)
## Testing
- CI
- `cargo check -p bevy_reflect --no-default-features --target
"x86_64-unknown-none"`
- UEFI demo application runs with this branch of `bevy_reflect`,
allowing `derive(Reflect)`
## Notes
- The [`spin`](https://crates.io/crates/spin) crate has been included to
provide `RwLock` and `Once` (as an alternative to `OnceLock`) when the
`std` feature is not enabled. Another alternative may be more desirable,
please provide feedback if you have a strong opinion here!
- Certain items (`Box`, `String`, `ToString`) provided by `alloc` have
been added to `__macro_exports` as a way to avoid `alloc` vs `std`
namespacing. I'm personally quite annoyed that we can't rely on `alloc`
as a crate name in `std` environments within macros. I'd love an
alternative to my approach here, but I suspect it's the least-bad
option.
- I would've liked to have an `alloc` feature (for allocation-free
`bevy_reflect`), unfortunately, `erased_serde` unconditionally requires
access to `Box`. Maybe one day we could design around this, but for now
it just means `bevy_reflect` requires `alloc`.
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Currently, reflecting a generic type provides no information about the
generic parameters. This means that you can't get access to the type of
`T` in `Foo<T>` without creating custom type data (we do this for
[`ReflectHandle`](https://docs.rs/bevy/0.14.2/bevy/asset/struct.ReflectHandle.html#method.asset_type_id)).
## Solution
This PR makes it so that generic type parameters and generic const
parameters are tracked in a `Generics` struct stored on the `TypeInfo`
for a type.
For example, `struct Foo<T, const N: usize>` will store `T` and `N` as a
`TypeParamInfo` and `ConstParamInfo`, respectively.
The stored information includes:
- The name of the generic parameter (i.e. `T`, `N`, etc.)
- The type of the generic parameter (remember that we're dealing with
monomorphized types, so this will actually be a concrete type)
- The default type/value, if any (e.g. `f32` in `T = f32` or `10` in
`const N: usize = 10`)
### Caveats
The only requirement for this to work is that the user does not opt-out
of the automatic `TypePath` derive with `#[reflect(type_path = false)]`.
Doing so prevents the macro code from 100% knowing that the generic type
implements `TypePath`. This in turn means the generated `Typed` impl
can't add generics to the type.
There are two solutions for this—both of which I think we should explore
in a future PR:
1. We could just not use `TypePath`. This would mean that we can't store
the `Type` of the generic, but we can at least store the `TypeId`.
2. We could provide a way to opt out of the automatic `Typed` derive
with a `#[reflect(typed = false)]` attribute. This would allow users to
manually implement `Typed` to add whatever generic information they need
(e.g. skipping a parameter that can't implement `TypePath` while the
rest can).
I originally thought about making `Generics` an enum with `Generic`,
`NonGeneric`, and `Unavailable` variants to signify whether there are
generics, no generics, or generics that cannot be added due to opting
out of `TypePath`. I ultimately decided against this as I think it adds
a bit too much complexity for such an uncommon problem.
Additionally, user's don't necessarily _have_ to know the generics of a
type, so just skipping them should generally be fine for now.
## Testing
You can test locally by running:
```
cargo test --package bevy_reflect
```
---
## Showcase
You can now access generic parameters via `TypeInfo`!
```rust
#[derive(Reflect)]
struct MyStruct<T, const N: usize>([T; N]);
let generics = MyStruct::<f32, 10>::type_info().generics();
// Get by index:
let t = generics.get(0).unwrap();
assert_eq!(t.name(), "T");
assert!(t.ty().is::<f32>());
assert!(!t.is_const());
// Or by name:
let n = generics.get_named("N").unwrap();
assert_eq!(n.name(), "N");
assert!(n.ty().is::<usize>());
assert!(n.is_const());
```
You can even access parameter defaults:
```rust
#[derive(Reflect)]
struct MyStruct<T = String, const N: usize = 10>([T; N]);
let generics = MyStruct::<f32, 5>::type_info().generics();
let GenericInfo::Type(info) = generics.get_named("T").unwrap() else {
panic!("expected a type parameter");
};
let default = info.default().unwrap();
assert!(default.is::<String>());
let GenericInfo::Const(info) = generics.get_named("N").unwrap() else {
panic!("expected a const parameter");
};
let default = info.default().unwrap();
assert_eq!(default.downcast_ref::<usize>().unwrap(), &10);
```
# Objective
Fixes#15185.
# Solution
Change `drain` to take a `&mut self` for most reflected types.
Some notable exceptions to this change are `Array` and `Tuple`. These
types don't make sense with `drain` taking a mutable borrow since they
can't get "smaller". Also `BTreeMap` doesn't have a `drain` function, so
we have to pop elements off one at a time.
## Testing
- The existing tests are sufficient.
---
## Migration Guide
- `reflect::Map`, `reflect::List`, and `reflect::Set` all now take a
`&mut self` instead of a `Box<Self>`. Callers of these traits should add
`&mut` before their boxes, and implementers of these traits should
update to match.
# Objective
- `DynamicMap` currently uses an `HashMap` from a `u64` hash to the
entry index in a `Vec`. This is incorrect in the presence of hash
collisions, so let's fix it;
- `DynamicMap::remove` was also buggy, as it didn't fix up the indexes
of the other elements after removal. Fix that up as well and add a
regression test.
## Solution
- Use `HashTable` in `DynamicMap` to distinguish entries that have the
same hash by using `reflect_partial_eq`, bringing it more in line with
what `DynamicSet` does;
- Reimplement `DynamicMap::remove` to properly fix up the index of moved
elements after the removal.
## Testing
- A regression test was added for the `DynamicMap::remove` issue.
---
Some kinda related considerations: the use of a separate `Vec` for
storing the entries adds some complications that I'm not sure are worth.
This is mainly used to implement an efficient `get_at`, which is relied
upon by `MapIter`. However both `HashMap` and `BTreeMap` implement
`get_at` inefficiently (and cannot do so efficiently), leading to a
`O(N^2)` complexity for iterating them. This could be removed in favor
of a `Box<dyn Iterator>` like it's done in `DynamicSet`.
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
#13320 added convenience methods for casting a `TypeInfo` into its
respective variant:
```rust
let info: &TypeInfo = <Vec<i32> as Typed>::type_info();
// We know `info` contains a `ListInfo`, so we can simply cast it:
let list_info: &ListInfo = info.as_list().unwrap();
```
This is especially helpful when you have already verified a type is a
certain kind via `ReflectRef`, `ReflectMut`, `ReflectOwned`, or
`ReflectKind`.
As mentioned in that PR, though, it would be useful to add similar
convenience methods to those types as well.
## Solution
Added convenience casting methods to `ReflectRef`, `ReflectMut`, and
`ReflectOwned`.
With these methods, I was able to reduce our nesting in certain places
throughout the crate.
Additionally, I took this opportunity to move these types (and
`ReflectKind`) to their own module to help clean up the `reflect`
module.
## Testing
You can test locally by running:
```
cargo test --package bevy_reflect --all-features
```
---
## Showcase
Convenience methods for casting `ReflectRef`, `ReflectMut`, and
`ReflectOwned` into their respective variants has been added! This
allows you to write cleaner code if you already know the kind of your
reflected data:
```rust
// BEFORE
let ReflectRef::List(list) = list.reflect_ref() else {
panic!("expected list");
};
// AFTER
let list = list.reflect_ref().as_list().unwrap();
```
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Pablo Reinhardt <126117294+pablo-lua@users.noreply.github.com>
# Objective
Closes#7622.
I was working on adding support for reflecting generic functions and
found that I wanted to use an argument's `TypeId` for hashing and
comparison, but its `TypePath` for debugging and error messaging.
While I could just keep them separate, place them in a tuple or a local
struct or something, I think I see an opportunity to make a dedicate
type for this.
Additionally, we can use this type to clean up some duplication amongst
the type info structs in a manner similar to #7622.
## Solution
Added the `Type` type. This should be seen as the most basic
representation of a type apart from `TypeId`. It stores both the
`TypeId` of the type as well as its `TypePathTable`.
The `Hash` and `PartialEq` implementations rely on the `TypeId`, while
the `Debug` implementation relies on the `TypePath`.
This makes it especially useful as a key in a `HashMap` since we get the
speed of the `TypeId` hashing/comparisons with the readability of
`TypePath`.
With this type, we're able to reduce the duplication across the type
info structs by removing individual fields for `TypeId` and
`TypePathTable`, replacing them with a single `Type` field. Similarly,
we can remove many duplicate methods and replace it with a macro that
delegates to the stored `Type`.
### Caveats
It should be noted that this type is currently 3x larger than `TypeId`.
On my machine, it's 48 bytes compared to `TypeId`'s 16. While this
doesn't matter for `TypeInfo` since it would contain that data
regardless, it is something to keep in mind when using elsewhere.
## Testing
All tests should pass as normal:
```
cargo test --package bevy_reflect
```
---
## Showcase
`bevy_reflect` now exports a `Type` struct. This type contains both the
`TypeId` and the `TypePathTable` of the given type, allowing it to be
used like `TypeId` but have the debuggability of `TypePath`.
```rust
// We can create this for any type implementing `TypePath`:
let ty = Type::of::<String>();
// It has `Hash` and `Eq` impls powered by `TypeId`, making it useful for maps:
let mut map = HashMap::<Type, i32>::new();
map.insert(ty, 25);
// And it has a human-readable `Debug` representation:
let debug = format!("{:?}", map);
assert_eq!(debug, "{alloc::string::String: 25}");
```
## Migration Guide
Certain type info structs now only return their item types as `Type`
instead of exposing direct methods on them.
The following methods have been removed:
- `ArrayInfo::item_type_path_table`
- `ArrayInfo::item_type_id`
- `ArrayInfo::item_is`
- `ListInfo::item_type_path_table`
- `ListInfo::item_type_id`
- `ListInfo::item_is`
- `SetInfo::value_type_path_table`
- `SetInfo::value_type_id`
- `SetInfo::value_is`
- `MapInfo::key_type_path_table`
- `MapInfo::key_type_id`
- `MapInfo::key_is`
- `MapInfo::value_type_path_table`
- `MapInfo::value_type_id`
- `MapInfo::value_is`
Instead, access the `Type` directly using one of the new methods:
- `ArrayInfo::item_ty`
- `ListInfo::item_ty`
- `SetInfo::value_ty`
- `MapInfo::key_ty`
- `MapInfo::value_ty`
For example:
```rust
// BEFORE
let type_id = array_info.item_type_id();
// AFTER
let type_id = array_info.item_ty().id();
```
# Objective
- Implements the [Unique Reflect
RFC](https://github.com/nicopap/rfcs/blob/bevy-reflect-api/rfcs/56-better-reflect.md).
## Solution
- Implements the RFC.
- This implementation differs in some ways from the RFC:
- In the RFC, it was suggested `Reflect: Any` but `PartialReflect:
?Any`. During initial implementation I tried this, but we assume the
`PartialReflect: 'static` in a lot of places and the changes required
crept out of the scope of this PR.
- `PartialReflect::try_into_reflect` originally returned `Option<Box<dyn
Reflect>>` but i changed this to `Result<Box<dyn Reflect>, Box<dyn
PartialReflect>>` since the method takes by value and otherwise there
would be no way to recover the type. `as_full` and `as_full_mut` both
still return `Option<&(mut) dyn Reflect>`.
---
## Changelog
- Added `PartialReflect`.
- `Reflect` is now a subtrait of `PartialReflect`.
- Moved most methods on `Reflect` to the new `PartialReflect`.
- Added `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect}`.
- Added `PartialReflect::{try_as_reflect, try_as_reflect_mut,
try_into_reflect}`.
- Added `<dyn PartialReflect>::{try_downcast_ref, try_downcast_mut,
try_downcast, try_take}` supplementing the methods on `dyn Reflect`.
## Migration Guide
- Most instances of `dyn Reflect` should be changed to `dyn
PartialReflect` which is less restrictive, however trait bounds should
generally stay as `T: Reflect`.
- The new `PartialReflect::{as_partial_reflect, as_partial_reflect_mut,
into_partial_reflect, try_as_reflect, try_as_reflect_mut,
try_into_reflect}` methods as well as `Reflect::{as_reflect,
as_reflect_mut, into_reflect}` will need to be implemented for manual
implementors of `Reflect`.
## Future Work
- This PR is designed to be followed up by another "Unique Reflect Phase
2" that addresses the following points:
- Investigate making serialization revolve around `Reflect` instead of
`PartialReflect`.
- [Remove the `try_*` methods on `dyn PartialReflect` since they are
stop
gaps](https://github.com/bevyengine/bevy/pull/7207#discussion_r1083476050).
- Investigate usages like `ReflectComponent`. In the places they
currently use `PartialReflect`, should they be changed to use `Reflect`?
- Merging this opens the door to lots of reflection features we haven't
been able to implement.
- We could re-add [the `Reflectable`
trait](8e3488c880/crates/bevy_reflect/src/reflect.rs (L337-L342))
and make `FromReflect` a requirement to improve [`FromReflect`
ergonomics](https://github.com/bevyengine/rfcs/pull/59). This is
currently not possible because dynamic types cannot sensibly be
`FromReflect`.
- Since this is an alternative to #5772, #5781 would be made cleaner.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
The `dynamic_types` example was missing a reference to the newly added
`DynamicSet` type.
## Solution
Add `DynamicSet` to the `dynamic_types` example.
For parity with the other dynamic types, I also implemented
`FromIterator<T: Reflect>`, `FromIterator<Box<dyn Reflect>>`, and
`IntoIterator for &DynamicSet`.
## Testing
You can run the example locally:
```
cargo run --example dynamic_types
```
# Objective
I just wanted to inspect `HashSet`s in `bevy-inspector-egui` but I
noticed that it didn't work for some reason. A few minutes later I found
myself looking into the bevy reflect impls noticing that `HashSet`s have
been covered only rudimentary up until now.
## Solution
I'm not sure if this is overkill (especially the first bullet), but
here's a list of the changes:
- created a whole new trait and enum variants for `ReflectRef` and the
like called `Set`
- mostly oriented myself at the `Map` trait and made the necessary
changes until RA was happy
- create macro `impl_reflect_for_hashset!` and call it on `std::HashSet`
and `hashbrown::HashSet`
Extra notes:
- no `get_mut` or `get_mut_at` mirroring the `std::HashSet`
- `insert[_boxed]` and `remove` return `bool` mirroring `std::HashSet`,
additionally that bool is reflect as I thought that would be how we
handle things in bevy reflect, but I'm not sure on this
- ser/de are handled via `SeqAccess`
- I'm not sure about the general deduplication property of this impl of
`Set` that is generally expected? I'm also not sure yet if `Map` does
provide this. This mainly refers to the `Dynamic[...]` structs
- I'm not sure if there are other methods missing from the `trait`, I
felt like `contains` or the set-operations (union/diff/...) could've
been helpful, but I wanted to get out the bare minimum for feedback
first
---
## Changelog
### Added
- `Set` trait for `bevy_reflect`
### Changed
- `std::collections::HashSet` and `bevy_utils::hashbrown::HashSet` now
implement a more complete set of reflect functionalities instead of
"just" `reflect_value`
- `TypeInfo` contains a new variant `Set` that contains `SetInfo`
- `ReflectKind` contains a new variant `Set`
- `ReflectRef` contains a new variant `Set`
- `ReflectMut` contains a new variant `Set`
- `ReflectOwned` contains a new variant `Set`
## Migration Guide
- The new `Set` variants on the enums listed in the change section
should probably be considered by people working with this level of the
lib
### Help wanted!
I'm not sure if this change is able to break code. From my understanding
it shouldn't since we just add functionality but I'm not sure yet if
theres anything missing from my impl that would be normally provided by
`impl_reflect_value!`