eed3085a37
9 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
![]() |
7b1c9f192e
|
Adopt consistent FooSystems naming convention for system sets (#18900)
# Objective Fixes a part of #14274. Bevy has an incredibly inconsistent naming convention for its system sets, both internally and across the ecosystem. <img alt="System sets in Bevy" src="https://github.com/user-attachments/assets/d16e2027-793f-4ba4-9cc9-e780b14a5a1b" width="450" /> *Names of public system set types in Bevy* Most Bevy types use a naming of `FooSystem` or just `Foo`, but there are also a few `FooSystems` and `FooSet` types. In ecosystem crates on the other hand, `FooSet` is perhaps the most commonly used name in general. Conventions being so wildly inconsistent can make it harder for users to pick names for their own types, to search for system sets on docs.rs, or to even discern which types *are* system sets. To reign in the inconsistency a bit and help unify the ecosystem, it would be good to establish a common recommended naming convention for system sets in Bevy itself, similar to how plugins are commonly suffixed with `Plugin` (ex: `TimePlugin`). By adopting a consistent naming convention in first-party Bevy, we can softly nudge ecosystem crates to follow suit (for types where it makes sense to do so). Choosing a naming convention is also relevant now, as the [`bevy_cli` recently adopted lints](https://github.com/TheBevyFlock/bevy_cli/pull/345) to enforce naming for plugins and system sets, and the recommended naming used for system sets is still a bit open. ## Which Name To Use? Now the contentious part: what naming convention should we actually adopt? This was discussed on the Bevy Discord at the end of last year, starting [here](<https://discord.com/channels/691052431525675048/692572690833473578/1310659954683936789>). `FooSet` and `FooSystems` were the clear favorites, with `FooSet` very narrowly winning an unofficial poll. However, it seems to me like the consensus was broadly moving towards `FooSystems` at the end and after the poll, with Cart ([source](https://discord.com/channels/691052431525675048/692572690833473578/1311140204974706708)) and later Alice ([source](https://discord.com/channels/691052431525675048/692572690833473578/1311092530732859533)) and also me being in favor of it. Let's do a quick pros and cons list! Of course these are just what I thought of, so take it with a grain of salt. `FooSet`: - Pro: Nice and short! - Pro: Used by many ecosystem crates. - Pro: The `Set` suffix comes directly from the trait name `SystemSet`. - Pro: Pairs nicely with existing APIs like `in_set` and `configure_sets`. - Con: `Set` by itself doesn't actually indicate that it's related to systems *at all*, apart from the implemented trait. A set of what? - Con: Is `FooSet` a set of `Foo`s or a system set related to `Foo`? Ex: `ContactSet`, `MeshSet`, `EnemySet`... `FooSystems`: - Pro: Very clearly indicates that the type represents a collection of systems. The actual core concept, system(s), is in the name. - Pro: Parallels nicely with `FooPlugins` for plugin groups. - Pro: Low risk of conflicts with other names or misunderstandings about what the type is. - Pro: In most cases, reads *very* nicely and clearly. Ex: `PhysicsSystems` and `AnimationSystems` as opposed to `PhysicsSet` and `AnimationSet`. - Pro: Easy to search for on docs.rs. - Con: Usually results in longer names. - Con: Not yet as widely used. Really the big problem with `FooSet` is that it doesn't actually describe what it is. It describes what *kind of thing* it is (a set of something), but not *what it is a set of*, unless you know the type or check its docs or implemented traits. `FooSystems` on the other hand is much more self-descriptive in this regard, at the cost of being a bit longer to type. Ultimately, in some ways it comes down to preference and how you think of system sets. Personally, I was originally in favor of `FooSet`, but have been increasingly on the side of `FooSystems`, especially after seeing what the new names would actually look like in Avian and now Bevy. I prefer it because it usually reads better, is much more clearly related to groups of systems than `FooSet`, and overall *feels* more correct and natural to me in the long term. For these reasons, and because Alice and Cart also seemed to share a preference for it when it was previously being discussed, I propose that we adopt a `FooSystems` naming convention where applicable. ## Solution Rename Bevy's system set types to use a consistent `FooSet` naming where applicable. - `AccessibilitySystem` → `AccessibilitySystems` - `GizmoRenderSystem` → `GizmoRenderSystems` - `PickSet` → `PickingSystems` - `RunFixedMainLoopSystem` → `RunFixedMainLoopSystems` - `TransformSystem` → `TransformSystems` - `RemoteSet` → `RemoteSystems` - `RenderSet` → `RenderSystems` - `SpriteSystem` → `SpriteSystems` - `StateTransitionSteps` → `StateTransitionSystems` - `RenderUiSystem` → `RenderUiSystems` - `UiSystem` → `UiSystems` - `Animation` → `AnimationSystems` - `AssetEvents` → `AssetEventSystems` - `TrackAssets` → `AssetTrackingSystems` - `UpdateGizmoMeshes` → `GizmoMeshSystems` - `InputSystem` → `InputSystems` - `InputFocusSet` → `InputFocusSystems` - `ExtractMaterialsSet` → `MaterialExtractionSystems` - `ExtractMeshesSet` → `MeshExtractionSystems` - `RumbleSystem` → `RumbleSystems` - `CameraUpdateSystem` → `CameraUpdateSystems` - `ExtractAssetsSet` → `AssetExtractionSystems` - `Update2dText` → `Text2dUpdateSystems` - `TimeSystem` → `TimeSystems` - `AudioPlaySet` → `AudioPlaybackSystems` - `SendEvents` → `EventSenderSystems` - `EventUpdates` → `EventUpdateSystems` A lot of the names got slightly longer, but they are also a lot more consistent, and in my opinion the majority of them read much better. For a few of the names I took the liberty of rewording things a bit; definitely open to any further naming improvements. There are still also cases where the `FooSystems` naming doesn't really make sense, and those I left alone. This primarily includes system sets like `Interned<dyn SystemSet>`, `EnterSchedules<S>`, `ExitSchedules<S>`, or `TransitionSchedules<S>`, where the type has some special purpose and semantics. ## Todo - [x] Should I keep all the old names as deprecated type aliases? I can do this, but to avoid wasting work I'd prefer to first reach consensus on whether these renames are even desired. - [x] Migration guide - [x] Release notes |
||
![]() |
9b32e09551
|
bevy_reflect: Add clone registrations project-wide (#18307)
# Objective Now that #13432 has been merged, it's important we update our reflected types to properly opt into this feature. If we do not, then this could cause issues for users downstream who want to make use of reflection-based cloning. ## Solution This PR is broken into 4 commits: 1. Add `#[reflect(Clone)]` on all types marked `#[reflect(opaque)]` that are also `Clone`. This is mandatory as these types would otherwise cause the cloning operation to fail for any type that contains it at any depth. 2. Update the reflection example to suggest adding `#[reflect(Clone)]` on opaque types. 3. Add `#[reflect(clone)]` attributes on all fields marked `#[reflect(ignore)]` that are also `Clone`. This prevents the ignored field from causing the cloning operation to fail. Note that some of the types that contain these fields are also `Clone`, and thus can be marked `#[reflect(Clone)]`. This makes the `#[reflect(clone)]` attribute redundant. However, I think it's safer to keep it marked in the case that the `Clone` impl/derive is ever removed. I'm open to removing them, though, if people disagree. 4. Finally, I added `#[reflect(Clone)]` on all types that are also `Clone`. While not strictly necessary, it enables us to reduce the generated output since we can just call `Clone::clone` directly instead of calling `PartialReflect::reflect_clone` on each variant/field. It also means we benefit from any optimizations or customizations made in the `Clone` impl, including directly dereferencing `Copy` values and increasing reference counters. Along with that change I also took the liberty of adding any missing registrations that I saw could be applied to the type as well, such as `Default`, `PartialEq`, and `Hash`. There were hundreds of these to edit, though, so it's possible I missed quite a few. That last commit is **_massive_**. There were nearly 700 types to update. So it's recommended to review the first three before moving onto that last one. Additionally, I can break the last commit off into its own PR or into smaller PRs, but I figured this would be the easiest way of doing it (and in a timely manner since I unfortunately don't have as much time as I used to for code contributions). ## Testing You can test locally with a `cargo check`: ``` cargo check --workspace --all-features ``` |
||
![]() |
3c829d7f68
|
Remove everything except Instant from bevy_utils::time (#17158)
# Objective - Contributes to #11478 - Contributes to #16877 ## Solution - Removed everything except `Instant` from `bevy_utils::time` ## Testing - CI --- ## Migration Guide If you relied on any of the following from `bevy_utils::time`: - `Duration` - `TryFromFloatSecsError` Import these directly from `core::time` regardless of platform target (WASM, mobile, etc.) If you relied on any of the following from `bevy_utils::time`: - `SystemTime` - `SystemTimeError` Instead import these directly from either `std::time` or `web_time` as appropriate for your target platform. ## Notes `Duration` and `TryFromFloatSecsError` are both re-exports from `core::time` regardless of whether they are used from `web_time` or `std::time`, so there is no value gained from re-exporting them from `bevy_utils::time` as well. As for `SystemTime` and `SystemTimeError`, no Bevy internal crates or examples rely on these types. Since Bevy doesn't have a `Time<Wall>` resource for interacting with wall-time (and likely shouldn't need one), I think removing these from `bevy_utils` entirely and waiting for a use-case to justify inclusion is a reasonable path forward. |
||
![]() |
c92ee31779
|
Allow ordering variable timesteps around fixed timesteps (#14881)
# Objective - Fixes #14873, see that issue for a whole lot of context ## Solution - Add a blessed system set for this stuff. See [this Discord discussion](https://discord.com/channels/691052431525675048/749335865876021248/1276262931327094908). Note that the gizmo systems, [LWIM](https://github.com/Leafwing-Studios/leafwing-input-manager/pull/522/files#diff-9b59ee4899ad0a5d008889ea89a124a7291316532e42f9f3d6ae842b906fb095R154) and now a new plugin I'm working on are all already ordering against `run_fixed_main_schedule`, so having a dedicated system set should be more robust and hopefully also more discoverable. --- ## ~~Showcase~~ ~~I can add a little video of a smooth camera later if this gets merged :)~~ Apparently a release note is not needed, so I'll leave it out. See the changes in the fixed timestep example for usage showcase and the video in #14873 for a more or less accurate video of the effect (it does not use the same solution though, so it is not quite the same) ## Migration Guide [run_fixed_main_schedule](https://docs.rs/bevy/latest/bevy/time/fn.run_fixed_main_schedule.html) is no longer public. If you used to order against it, use the new dedicated `RunFixedMainLoopSystem` system set instead. You can replace your usage of `run_fixed_main_schedule` one for one by `RunFixedMainLoopSystem::FixedMainLoop`, but it is now more idiomatic to place your systems in either `RunFixedMainLoopSystem::BeforeFixedMainLoop` or `RunFixedMainLoopSystem::AfterFixedMainLoop` Old: ```rust app.add_systems( RunFixedMainLoop, some_system.before(run_fixed_main_schedule) ); ``` New: ```rust app.add_systems( RunFixedMainLoop, some_system.in_set(RunFixedMainLoopSystem::BeforeFixedMainLoop) ); ``` --------- Co-authored-by: Tau Gärtli <git@tau.garden> |
||
![]() |
de7ff295e1
|
Make bevy_time optionally depend on bevy_reflect (#13263)
# Objective Fixes #13246. |
||
![]() |
fe28e0ec32
|
Add First/Pre/Post/Last schedules to the Fixed timestep (#10977)
Fixes https://github.com/bevyengine/bevy/issues/10974 # Objective Duplicate the ordering logic of the `Main` schedule into the `FixedMain` schedule. --- ## Changelog - `FixedUpdate` is no longer the main schedule ran in `RunFixedUpdateLoop`, `FixedMain` has replaced this and has a similar structure to `Main`. ## Migration Guide - Usage of `RunFixedUpdateLoop` should be renamed to `RunFixedMainLoop`. |
||
![]() |
1d3ae677df
|
Add discard_overstep function to Time<Fixed> (#10453)
# Objective There is no easy way to discard some amount for `Time<Fixed>`'s overstep. This can be useful for online games when the client receives information about a tick (which happens when you get a FPS drop or the ping changes for example) it has not yet processed, it can discard overstep equal to the number of ticks it can jump ahead. Currently the workaround would be to create a new `Time<Fixed>` copy the old timestep, advance it by the overstep amount that would remain after subtracting the discarded amount, and using `.context_mut()` to overwrite the old context with the new one. If you overwrite the whole `Time<Fixed>` or forget to copy over the timestep you can introduce undesirable side effects. ## Solution Introduce a `discard_overstep` method, which discards the provided amount of overstep. It uses satuarting_sub to avoid errors (negative `Duration`s do not exist). --- ## Changelog - Added `discard_overstep` function to `Time<Fixed>` --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> |
||
![]() |
54b7cabc7b
|
Rename Time::<Fixed>::overstep_percentage() and Time::<Fixed>::overstep_percentage_f64() (#10448)
# Objective This is similar to #10439. `Time::<Fixed>::overstep_percentage()` and `Time::<Fixed>::overstep_percentage_f64()` returns values from 0.0 to 1.0, but their names use the word "percentage". These function names make it easy to misunderstand that they return values from 0.0 to 100.0. To avoid confusion, these functions should be renamed to "`overstep_fraction(_f64)`". ## Solution Rename them. --- ## Changelog ### Changed - Renamed `Time::<Fixed>::overstep_percentage()` to `Time::<Fixed>::overstep_fraction()` - Renamed `Time::<Fixed>::overstep_percentage_f64()` to `Time::<Fixed>::overstep_fraction_f64()` ## Migration Guide - `Time::<Fixed>::overstep_percentage()` has been renamed to `Time::<Fixed>::overstep_fraction()` - `Time::<Fixed>::overstep_percentage_f64()` has been renamed to `Time::<Fixed>::overstep_fraction_f64()` |
||
![]() |
3d79dc4cdc
|
Unify FixedTime and Time while fixing several problems (#8964)
# Objective Current `FixedTime` and `Time` have several problems. This pull aims to fix many of them at once. - If there is a longer pause between app updates, time will jump forward a lot at once and fixed time will iterate on `FixedUpdate` for a large number of steps. If the pause is merely seconds, then this will just mean jerkiness and possible unexpected behaviour in gameplay. If the pause is hours/days as with OS suspend, the game will appear to freeze until it has caught up with real time. - If calculating a fixed step takes longer than specified fixed step period, the game will enter a death spiral where rendering each frame takes longer and longer due to more and more fixed step updates being run per frame and the game appears to freeze. - There is no way to see current fixed step elapsed time inside fixed steps. In order to track this, the game designer needs to add a custom system inside `FixedUpdate` that calculates elapsed or step count in a resource. - Access to delta time inside fixed step is `FixedStep::period` rather than `Time::delta`. This, coupled with the issue that `Time::elapsed` isn't available at all for fixed steps, makes it that time requiring systems are either implemented to be run in `FixedUpdate` or `Update`, but rarely work in both. - Fixes #8800 - Fixes #8543 - Fixes #7439 - Fixes #5692 ## Solution - Create a generic `Time<T>` clock that has no processing logic but which can be instantiated for multiple usages. This is also exposed for users to add custom clocks. - Create three standard clocks, `Time<Real>`, `Time<Virtual>` and `Time<Fixed>`, all of which contain their individual logic. - Create one "default" clock, which is just `Time` (or `Time<()>`), which will be overwritten from `Time<Virtual>` on each update, and `Time<Fixed>` inside `FixedUpdate` schedule. This way systems that do not care specifically which time they track can work both in `Update` and `FixedUpdate` without changes and the behaviour is intuitive. - Add `max_delta` to virtual time update, which limits how much can be added to virtual time by a single update. This fixes both the behaviour after a long freeze, and also the death spiral by limiting how many fixed timestep iterations there can be per update. Possible future work could be adding `max_accumulator` to add a sort of "leaky bucket" time processing to possibly smooth out jumps in time while keeping frame rate stable. - Many minor tweaks and clarifications to the time functions and their documentation. ## Changelog - `Time::raw_delta()`, `Time::raw_elapsed()` and related methods are moved to `Time<Real>::delta()` and `Time<Real>::elapsed()` and now match `Time` API - `FixedTime` is now `Time<Fixed>` and matches `Time` API. - `Time<Fixed>` default timestep is now 64 Hz, or 15625 microseconds. - `Time` inside `FixedUpdate` now reflects fixed timestep time, making systems portable between `Update ` and `FixedUpdate`. - `Time::pause()`, `Time::set_relative_speed()` and related methods must now be called as `Time<Virtual>::pause()` etc. - There is a new `max_delta` setting in `Time<Virtual>` that limits how much the clock can jump by a single update. The default value is 0.25 seconds. - Removed `on_fixed_timer()` condition as `on_timer()` does the right thing inside `FixedUpdate` now. ## Migration Guide - Change all `Res<Time>` instances that access `raw_delta()`, `raw_elapsed()` and related methods to `Res<Time<Real>>` and `delta()`, `elapsed()`, etc. - Change access to `period` from `Res<FixedTime>` to `Res<Time<Fixed>>` and use `delta()`. - The default timestep has been changed from 60 Hz to 64 Hz. If you wish to restore the old behaviour, use `app.insert_resource(Time::<Fixed>::from_hz(60.0))`. - Change `app.insert_resource(FixedTime::new(duration))` to `app.insert_resource(Time::<Fixed>::from_duration(duration))` - Change `app.insert_resource(FixedTime::new_from_secs(secs))` to `app.insert_resource(Time::<Fixed>::from_seconds(secs))` - Change `system.on_fixed_timer(duration)` to `system.on_timer(duration)`. Timers in systems placed in `FixedUpdate` schedule automatically use the fixed time clock. - Change `ResMut<Time>` calls to `pause()`, `is_paused()`, `set_relative_speed()` and related methods to `ResMut<Time<Virtual>>` calls. The API is the same, with the exception that `relative_speed()` will return the actual last ste relative speed, while `effective_relative_speed()` returns 0.0 if the time is paused and corresponds to the speed that was set when the update for the current frame started. ## Todo - [x] Update pull name and description - [x] Top level documentation on usage - [x] Fix examples - [x] Decide on default `max_delta` value - [x] Decide naming of the three clocks: is `Real`, `Virtual`, `Fixed` good? - [x] Decide if the three clock inner structures should be in prelude - [x] Decide on best way to configure values at startup: is manually inserting a new clock instance okay, or should there be config struct separately? - [x] Fix links in docs - [x] Decide what should be public and what not - [x] Decide how `wrap_period` should be handled when it is changed - [x] ~~Add toggles to disable setting the clock as default?~~ No, separate pull if needed. - [x] Add tests - [x] Reformat, ensure adheres to conventions etc. - [x] Build documentation and see that it looks correct ## Contributors Huge thanks to @alice-i-cecile and @maniwani while building this pull. It was a shared effort! --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: Cameron <51241057+maniwani@users.noreply.github.com> Co-authored-by: Jerome Humbert <djeedai@gmail.com> |