# Objective
This is the first step of #19430 and is a follow up for #19132.
Now that `ArchetypeRow` has a niche, we can use `Option` instead of
needing `INVALID` everywhere.
This was especially concerning since `INVALID` *really was valid!*
Using options here made the code clearer and more data-driven.
## Solution
Replace all uses of `INVALID` entity locations (and archetype/table
rows) with `None`.
## Testing
CI
---------
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
Co-authored-by: François Mockers <francois.mockers@vleue.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Remove `ArchetypeComponentId` and `archetype_component_access`.
Following #16885, they are no longer used by the engine, so we can stop
spending time calculating them or space storing them.
## Solution
Remove `ArchetypeComponentId` and everything that touches it.
The `System::update_archetype_component_access` method no longer needs
to update `archetype_component_access`. We do still need to update query
caches, but we no longer need to do so *before* running the system. We'd
have to touch every caller anyway if we gave the method a better name,
so just remove `System::update_archetype_component_access` and
`SystemParam::new_archetype` entirely, and update the query cache in
`Query::get_param`.
The `Single` and `Populated` params also need their query caches updated
in `SystemParam::validate_param`, so change `validate_param` to take
`&mut Self::State` instead of `&Self::State`.
# Objective
Since #18704 is done, we can track the length of unique entity row
collections with only a `u32` and identify an index within that
collection with only a `NonMaxU32`. This leaves an opportunity for
performance improvements.
## Solution
- Use `EntityRow` in sparse sets.
- Change table, entity, and query lengths to be `u32` instead of
`usize`.
- Keep `batching` module `usize` based since that is reused for events,
which may exceed `u32::MAX`.
- Change according `Range<usize>` to `Range<u32>`. This is more
efficient and helps justify safety.
- Change `ArchetypeRow` and `TableRow` to wrap `NonMaxU32` instead of
`u32`.
Justifying `NonMaxU32::new_unchecked` everywhere is predicated on this
safety comment in `Entities::set`: "`location` must be valid for the
entity at `index` or immediately made valid afterwards before handing
control to unknown code." This ensures no entity is in two table rows
for example. That fact is used to argue uniqueness of the entity rows in
each table, archetype, sparse set, query, etc. So if there's no
duplicates, and a maximum total entities of `u32::MAX` none of the
corresponding row ids / indexes can exceed `NonMaxU32`.
## Testing
CI
---------
Co-authored-by: Christian Hughes <9044780+ItsDoot@users.noreply.github.com>
# Objective
There are two problems this aims to solve.
First, `Entity::index` is currently a `u32`. That means there are
`u32::MAX + 1` possible entities. Not only is that awkward, but it also
make `Entity` allocation more difficult. I discovered this while working
on remote entity reservation, but even on main, `Entities` doesn't
handle the `u32::MAX + 1` entity very well. It can not be batch reserved
because that iterator uses exclusive ranges, which has a maximum upper
bound of `u32::MAX - 1`. In other words, having `u32::MAX` as a valid
index can be thought of as a bug right now. We either need to make that
invalid (this PR), which makes Entity allocation cleaner and makes
remote reservation easier (because the length only needs to be u32
instead of u64, which, in atomics is a big deal), or we need to take
another pass at `Entities` to make it handle the `u32::MAX` index
properly.
Second, `TableRow`, `ArchetypeRow` and `EntityIndex` (a type alias for
u32) all have `u32` as the underlying type. That means using these as
the index type in a `SparseSet` uses 64 bits for the sparse list because
it stores `Option<IndexType>`. By using `NonMaxU32` here, we cut the
memory of that list in half. To my knowledge, `EntityIndex` is the only
thing that would really benefit from this niche. `TableRow` and
`ArchetypeRow` I think are not stored in an `Option` in bulk. But if
they ever are, this would help. Additionally this ensures
`TableRow::INVALID` and `ArchetypeRow::INVALID` never conflict with an
actual row, which in a nice bonus.
As a related note, if we do components as entities where `ComponentId`
becomes `Entity`, the the `SparseSet<ComponentId>` will see a similar
memory improvement too.
## Solution
Create a new type `EntityRow` that wraps `NonMaxU32`, similar to
`TableRow` and `ArchetypeRow`.
Change `Entity::index` to this type.
## Downsides
`NonMax` is implemented as a `NonZero` with a binary inversion. That
means accessing and storing the value takes one more instruction. I
don't think that's a big deal, but it's worth mentioning.
As a consequence, `to_bits` uses `transmute` to skip the inversion which
keeps it a nop. But that also means that ordering has now flipped. In
other words, higher indices are considered less than lower indices. I
don't think that's a problem, but it's also worth mentioning.
## Alternatives
We could keep the index as a u32 type and just document that `u32::MAX`
is invalid, modifying `Entities` to ensure it never gets handed out.
(But that's not enforced by the type system.) We could still take
advantage of the niche here in `ComponentSparseSet`. We'd just need some
unsafe manual conversions, which is probably fine, but opens up the
possibility for correctness problems later.
We could change `Entities` to fully support the `u32::MAX` index. (But
that makes `Entities` more complex and potentially slightly slower.)
## Testing
- CI
- A few tests were changed because they depend on different ordering and
`to_bits` values.
## Future Work
- It might be worth removing the niche on `Entity::generation` since
there is now a different niche.
- We could move `Entity::generation` into it's own type too for clarity.
- We should change `ComponentSparseSet` to take advantage of the new
niche. (This PR doesn't change that yet.)
- Consider removing or updating `Identifier`. This is only used for
`Entity`, so it might be worth combining since `Entity` is now more
unique.
---------
Co-authored-by: atlv <email@atlasdostal.com>
Co-authored-by: Zachary Harrold <zac@harrold.com.au>
# Objective
I've been tinkering with ECS insertion/removal lately, and noticed that
sparse sets just... don't interact with `InsertMode` at all. Sure
enough, using `insert_if_new` with a sparse component does the same
thing as `insert`.
# Solution
- Add a check in `BundleInfo::write_components` to drop the new value if
the entity already has the component and `InsertMode` is `Keep`.
- Add necessary methods to sparse set internals to fetch the drop
function.
# Testing
Minimal reproduction:
<details>
<summary>Code</summary>
```
use bevy::prelude::*;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(PostStartup, component_print)
.run();
}
#[derive(Component)]
#[component(storage = "SparseSet")]
struct SparseComponent(u32);
fn setup(mut commands: Commands) {
let mut entity = commands.spawn_empty();
entity.insert(SparseComponent(1));
entity.insert(SparseComponent(2));
let mut entity = commands.spawn_empty();
entity.insert(SparseComponent(3));
entity.insert_if_new(SparseComponent(4));
}
fn component_print(query: Query<&SparseComponent>) {
for component in &query {
info!("{}", component.0);
}
}
```
</details>
Here it is on Bevy Playground (0.15.3):
https://learnbevy.com/playground?share=2a96a68a81e804d3fdd644a833c1d51f7fa8dd33fc6192fbfd077b082a6b1a41
Output on `main`:
```
2025-05-04T17:50:50.401328Z INFO system{name="fork::component_print"}: fork: 2
2025-05-04T17:50:50.401583Z INFO system{name="fork::component_print"}: fork: 4
```
Output with this PR :
```
2025-05-04T17:51:33.461835Z INFO system{name="fork::component_print"}: fork: 2
2025-05-04T17:51:33.462091Z INFO system{name="fork::component_print"}: fork: 3
```
# Objective
The goal of `bevy_platform_support` is to provide a set of platform
agnostic APIs, alongside platform-specific functionality. This is a high
traffic crate (providing things like HashMap and Instant). Especially in
light of https://github.com/bevyengine/bevy/discussions/18799, it
deserves a friendlier / shorter name.
Given that it hasn't had a full release yet, getting this change in
before Bevy 0.16 makes sense.
## Solution
- Rename `bevy_platform_support` to `bevy_platform`.
# Objective
- `bevy_ecs` has lint errors without some features
## Solution
- Fix `clippy::allow-attributes-without-reason` when `bevy_reflect` is
disabled by adding a reason
- Fix `clippy::needless_return` when `std` is disabled by adding a gated
`expect` attribute and a comment to remove it when the `no_std` stuff is
addressed
## Testing
- `cargo clippy -p bevy_ecs --no-default-features --no-deps -- --D
warnings`
- CI
# Objective
This is an alternative to #17871 and #17701 for tracking issue #18155.
This thanks to @maniwani for help with this design.
The goal is to enable component ids to be reserved from multiple threads
concurrently and with only `&World`. This contributes to assets as
entities, read-only query and system parameter initialization, etc.
## What's wrong with #17871 ?
In #17871, I used my proposed staging utilities to allow *fully*
registering components from any thread concurrently with only
`&Components`. However, if we want to pursue components as entities
(which is desirable for a great many reasons. See
[here](https://discord.com/channels/691052431525675048/692572690833473578/1346499196655505534)
on discord), this staging isn't going to work. After all, if registering
a component requires spawning an entity, and spawning an entity requires
`&mut World`, it is impossible to register a component fully with only
`&World`.
## Solution
But what if we don't have to register it all the way? What if it's
enough to just know the `ComponentId` it will have once it is registered
and to queue it to be registered at a later time? Spoiler alert: That is
all we need for these features.
Here's the basic design:
Queue a registration:
1. Check if it has already been registered.
2. Check if it has already been queued.
3. Reserve a `ComponentId`.
4. Queue the registration at that id.
Direct (normal) registration:
1. Check if this registration has been queued.
2. If it has, use the queued registration instead.
3. Otherwise, proceed like normal.
Appllying the queue:
1. Pop queued items off one by one.
2. Register them directly.
One other change:
The whole point of this design over #17871 is to facilitate coupling
component registration with the World. To ensure that this would fully
work with that, I went ahead and moved the `ComponentId` generator onto
the world itself. That stemmed a couple of minor organizational changes
(see migration guide). As we do components as entities, we will replace
this generator with `Entities`, which lives on `World` too. Doing this
move early let me verify the design and will reduce migration headaches
in the future. If components as entities is as close as I think it is, I
don't think splitting this up into different PRs is worth it. If it is
not as close as it is, it might make sense to still do #17871 in the
meantime (see the risks section). I'll leave it up to y'all what we end
up doing though.
## Risks and Testing
The biggest downside of this compared to #17871 is that now we have to
deal with correct but invalid `ComponentId`s. They are invalid because
the component still isn't registered, but they are correct because, once
registered, the component will have exactly that id.
However, the only time this becomes a problem is if some code violates
safety rules by queuing a registration and using the returned id as if
it was valid. As this is a new feature though, nothing in Bevy does
this, so no new tests were added for it. When we do use it, I left
detailed docs to help mitigate issues here, and we can test those
usages. Ex: we will want some tests on using queries initialized from
queued registrations.
## Migration Guide
Component registration can now be queued with only `&World`. To
facilitate this, a few APIs needed to be moved around.
The following functions have moved from `Components` to
`ComponentsRegistrator`:
- `register_component`
- `register_component_with_descriptor`
- `register_resource_with_descriptor`
- `register_non_send`
- `register_resource`
- `register_required_components_manual`
Accordingly, functions in `Bundle` and `Component` now take
`ComponentsRegistrator` instead of `Components`.
You can obtain `ComponentsRegistrator` from the new
`World::components_registrator`.
You can obtain `ComponentsQueuedRegistrator` from the new
`World::components_queue`, and use it to stage component registration if
desired.
# Open Question
Can we verify that it is enough to queue registration with `&World`? I
don't think it would be too difficult to package this up into a
`Arc<MyComponentsManager>` type thing if we need to, but keeping this on
`&World` certainly simplifies things. If we do need the `Arc`, we'll
need to look into partitioning `Entities` for components as entities, so
we can keep most of the allocation fast on `World` and only keep a
smaller partition in the `Arc`. I'd love an SME on assets as entities to
shed some light on this.
---------
Co-authored-by: andriyDev <andriydzikh@gmail.com>
# Objective
* Fixes https://github.com/bevyengine/bevy/issues/14074
* Applies CI fixes for #16326
It is currently not possible to issues a trigger that targets a specific
list of components AND a specific list of entities
## Solution
We can now use `((A, B), (entity_1, entity_2))` as a trigger target, as
well as the reverse
## Testing
Added a unit test.
The triggering rules for observers are quite confusing:
Triggers once per entity target
For each entity target, an observer system triggers if any of its
components matches the trigger target components (but it triggers at
most once, since we use an internal counter to make sure that an
observer can run at most once per entity target)
(copied from #14563)
(copied from #16326)
## Notes
All credit to @BenjaminBrienen and @cBournhonesque! Just applying a
small fix to this PR so it can be merged.
---------
Co-authored-by: Benjamin Brienen <Benjamin.Brienen@outlook.com>
Co-authored-by: Christian Hughes <xdotdash@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
- Fixes#17960
## Solution
- Followed the [edition upgrade
guide](https://doc.rust-lang.org/edition-guide/editions/transitioning-an-existing-project-to-a-new-edition.html)
## Testing
- CI
---
## Summary of Changes
### Documentation Indentation
When using lists in documentation, proper indentation is now linted for.
This means subsequent lines within the same list item must start at the
same indentation level as the item.
```rust
/* Valid */
/// - Item 1
/// Run-on sentence.
/// - Item 2
struct Foo;
/* Invalid */
/// - Item 1
/// Run-on sentence.
/// - Item 2
struct Foo;
```
### Implicit `!` to `()` Conversion
`!` (the never return type, returned by `panic!`, etc.) no longer
implicitly converts to `()`. This is particularly painful for systems
with `todo!` or `panic!` statements, as they will no longer be functions
returning `()` (or `Result<()>`), making them invalid systems for
functions like `add_systems`. The ideal fix would be to accept functions
returning `!` (or rather, _not_ returning), but this is blocked on the
[stabilisation of the `!` type
itself](https://doc.rust-lang.org/std/primitive.never.html), which is
not done.
The "simple" fix would be to add an explicit `-> ()` to system
signatures (e.g., `|| { todo!() }` becomes `|| -> () { todo!() }`).
However, this is _also_ banned, as there is an existing lint which (IMO,
incorrectly) marks this as an unnecessary annotation.
So, the "fix" (read: workaround) is to put these kinds of `|| -> ! { ...
}` closuers into variables and give the variable an explicit type (e.g.,
`fn()`).
```rust
// Valid
let system: fn() = || todo!("Not implemented yet!");
app.add_systems(..., system);
// Invalid
app.add_systems(..., || todo!("Not implemented yet!"));
```
### Temporary Variable Lifetimes
The order in which temporary variables are dropped has changed. The
simple fix here is _usually_ to just assign temporaries to a named
variable before use.
### `gen` is a keyword
We can no longer use the name `gen` as it is reserved for a future
generator syntax. This involved replacing uses of the name `gen` with
`r#gen` (the raw-identifier syntax).
### Formatting has changed
Use statements have had the order of imports changed, causing a
substantial +/-3,000 diff when applied. For now, I have opted-out of
this change by amending `rustfmt.toml`
```toml
style_edition = "2021"
```
This preserves the original formatting for now, reducing the size of
this PR. It would be a simple followup to update this to 2024 and run
`cargo fmt`.
### New `use<>` Opt-Out Syntax
Lifetimes are now implicitly included in RPIT types. There was a handful
of instances where it needed to be added to satisfy the borrow checker,
but there may be more cases where it _should_ be added to avoid
breakages in user code.
### `MyUnitStruct { .. }` is an invalid pattern
Previously, you could match against unit structs (and unit enum
variants) with a `{ .. }` destructuring. This is no longer valid.
### Pretty much every use of `ref` and `mut` are gone
Pattern binding has changed to the point where these terms are largely
unused now. They still serve a purpose, but it is far more niche now.
### `iter::repeat(...).take(...)` is bad
New lint recommends using the more explicit `iter::repeat_n(..., ...)`
instead.
## Migration Guide
The lifetimes of functions using return-position impl-trait (RPIT) are
likely _more_ conservative than they had been previously. If you
encounter lifetime issues with such a function, please create an issue
to investigate the addition of `+ use<...>`.
## Notes
- Check the individual commits for a clearer breakdown for what
_actually_ changed.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
Fix#17924
## Solution
Use fully qualified syntax (`usize::from` rather than `.into()`).
## Testing
Ran a build for the platform specified in the issue.
---------
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
Eliminate the need to write `cfg(feature = "track_location")` every time
one uses an API that may use location tracking. It's verbose, and a
little intimidating. And it requires code outside of `bevy_ecs` that
wants to use location tracking needs to either unconditionally enable
the feature, or include conditional compilation of its own. It would be
good for users to be able to log locations when they are available
without needing to add feature flags to their own crates.
Reduce the number of cases where code compiles with the `track_location`
feature enabled, but not with it disabled, or vice versa. It can be hard
to remember to test it both ways!
Remove the need to store a `None` in `HookContext` when the
`track_location` feature is disabled.
## Solution
Create an `MaybeLocation<T>` type that contains a `T` if the
`track_location` feature is enabled, and is a ZST if it is not. The
overall API is similar to `Option`, but whether the value is `Some` or
`None` is set at compile time and is the same for all values.
Default `T` to `&'static Location<'static>`, since that is the most
common case.
Remove all `cfg(feature = "track_location")` blocks outside of the
implementation of that type, and instead call methods on it.
When `track_location` is disabled, `MaybeLocation` is a ZST and all
methods are `#[inline]` and empty, so they should be entirely removed by
the compiler. But the code will still be visible to the compiler and
checked, so if it compiles with the feature disabled then it should also
compile with it enabled, and vice versa.
## Open Questions
Where should these types live? I put them in `change_detection` because
that's where the existing `MaybeLocation` types were, but we now use
these outside of change detection.
While I believe that the compiler should be able to remove all of these
calls, I have not actually tested anything. If we want to take this
approach, what testing is required to ensure it doesn't impact
performance?
## Migration Guide
Methods like `Ref::changed_by()` that return a `&'static
Location<'static>` will now be available even when the `track_location`
feature is disabled, but they will return a new `MaybeLocation` type.
`MaybeLocation` wraps a `&'static Location<'static>` when the feature is
enabled, and is a ZST when the feature is disabled.
Existing code that needs a `&Location` can call `into_option().unwrap()`
to recover it. Many trait impls are forwarded, so if you only need
`Display` then no changes will be necessary.
If that code was conditionally compiled, you may instead want to use the
methods on `MaybeLocation` to remove the need for conditional
compilation.
Code that constructs a `Ref`, `Mut`, `Res`, or `ResMut` will now need to
provide location information unconditionally. If you are creating them
from existing Bevy types, you can obtain a `MaybeLocation` from methods
like `Table::get_changed_by_slice_for()` or
`ComponentSparseSet::get_with_ticks`. Otherwise, you will need to store
a `MaybeLocation` next to your data and use methods like `as_ref()` or
`as_mut()` to obtain wrapped references.
This pr uses the `extern crate self as` trick to make proc macros behave
the same way inside and outside bevy.
# Objective
- Removes noise introduced by `crate as` in the whole bevy repo.
- Fixes#17004.
- Hardens proc macro path resolution.
## TODO
- [x] `BevyManifest` needs cleanup.
- [x] Cleanup remaining `crate as`.
- [x] Add proper integration tests to the ci.
## Notes
- `cargo-manifest-proc-macros` is written by me and based/inspired by
the old `BevyManifest` implementation and
[`bkchr/proc-macro-crate`](https://github.com/bkchr/proc-macro-crate).
- What do you think about the new integration test machinery I added to
the `ci`?
More and better integration tests can be added at a later stage.
The goal of these integration tests is to simulate an actual separate
crate that uses bevy. Ideally they would lightly touch all bevy crates.
## Testing
- Needs RA test
- Needs testing from other users
- Others need to run at least `cargo run -p ci integration-test` and
verify that they work.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
# Objective
Progresses #17569. The end goal here is to synchronize component
registration. See the other PR for details for the motivation behind
that.
For this PR specifically, the objective is to decouple `Components` from
`Storages`. What components are registered etc should have nothing to do
with what Storages looks like. Storages should only care about what
entity archetypes have been spawned.
## Solution
Previously, this was used to create sparse sets for relevant components
when those components were registered. Now, we do that when the
component is inserted/spawned.
This PR proposes doing that in `BundleInfo::new`, but there may be a
better place.
## Testing
In theory, this shouldn't have changed any functionality, so no new
tests were created. I'm not aware of any examples that make heavy use of
sparse set components either.
## Migration Guide
- Remove storages from functions where it is no longer needed.
- Note that SparseSets are no longer present for all registered sparse
set components, only those that have been spawned.
---------
Co-authored-by: SpecificProtagonist <vincentjunge@posteo.net>
Co-authored-by: Chris Russell <8494645+chescock@users.noreply.github.com>
# Objective
- Contributes to #16877
## Solution
- Moved `hashbrown`, `foldhash`, and related types out of `bevy_utils`
and into `bevy_platform_support`
- Refactored the above to match the layout of these types in `std`.
- Updated crates as required.
## Testing
- CI
---
## Migration Guide
- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::hash`:
- `FixedState`
- `DefaultHasher`
- `RandomState`
- `FixedHasher`
- `Hashed`
- `PassHash`
- `PassHasher`
- `NoOpHash`
- The following items were moved out of `bevy_utils` and into
`bevy_platform_support::collections`:
- `HashMap`
- `HashSet`
- `bevy_utils::hashbrown` has been removed. Instead, import from
`bevy_platform_support::collections` _or_ take a dependency on
`hashbrown` directly.
- `bevy_utils::Entry` has been removed. Instead, import from
`bevy_platform_support::collections::hash_map` or
`bevy_platform_support::collections::hash_set` as appropriate.
- All of the above equally apply to `bevy::utils` and
`bevy::platform_support`.
## Notes
- I left `PreHashMap`, `PreHashMapExt`, and `TypeIdMap` in `bevy_utils`
as they might be candidates for micro-crating. They can always be moved
into `bevy_platform_support` at a later date if desired.
# Objective
`bevy_ecs`'s `system` module is something of a grab bag, and *very*
large. This is particularly true for the `system_param` module, which is
more than 2k lines long!
While it could be defensible to put `Res` and `ResMut` there (lol no
they're in change_detection.rs, obviously), it doesn't make any sense to
put the `Resource` trait there. This is confusing to navigate (and
painful to work on and review).
## Solution
- Create a root level `bevy_ecs/resource.rs` module to mirror
`bevy_ecs/component.rs`
- move the `Resource` trait to that module
- move the `Resource` derive macro to that module as well (Rust really
likes when you pun on the names of the derive macro and trait and put
them in the same path)
- fix all of the imports
## Notes to reviewers
- We could probably move more stuff into here, but I wanted to keep this
PR as small as possible given the absurd level of import changes.
- This PR is ground work for my upcoming attempts to store resource data
on components (resources-as-entities). Splitting this code out will make
the work and review a bit easier, and is the sort of overdue refactor
that's good to do as part of more meaningful work.
## Testing
cargo build works!
## Migration Guide
`bevy_ecs::system::Resource` has been moved to
`bevy_ecs::resource::Resource`.
# Objective
Stumbled upon a `from <-> form` transposition while reviewing a PR,
thought it was interesting, and went down a bit of a rabbit hole.
## Solution
Fix em
# Background
In `no_std` compatible crates, there is often an `std` feature which
will allow access to the standard library. Currently, with the `std`
feature _enabled_, the
[`std::prelude`](https://doc.rust-lang.org/std/prelude/index.html) is
implicitly imported in all modules. With the feature _disabled_, instead
the [`core::prelude`](https://doc.rust-lang.org/core/prelude/index.html)
is implicitly imported. This creates a subtle and pervasive issue where
`alloc` items _may_ be implicitly included (if `std` is enabled), or
must be explicitly included (if `std` is not enabled).
# Objective
- Make the implicit imports for `no_std` crates consistent regardless of
what features are/not enabled.
## Solution
- Replace the `cfg_attr` "double negative" `no_std` attribute with
conditional compilation to _include_ `std` as an external crate.
```rust
// Before
#![cfg_attr(not(feature = "std"), no_std)]
// After
#![no_std]
#[cfg(feature = "std")]
extern crate std;
```
- Fix imports that are currently broken but are only now visible with
the above fix.
## Testing
- CI
## Notes
I had previously used the "double negative" version of `no_std` based on
general consensus that it was "cleaner" within the Rust embedded
community. However, this implicit prelude issue likely was considered
when forming this consensus. I believe the reason why is the items most
affected by this issue are provided by the `alloc` crate, which is
rarely used within embedded but extensively used within Bevy.
# Objective
Just being fussy but I hate this `.map(|v|
v.is_some()).unwrap_or(false)` stuff.
## Solution
Reduce it using `and_then`.
---------
Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
# Objective
- As stated in the related issue, this PR is to better align the feature
flag name with what it actually does and the plans for the future.
- Fixes#16852
## Solution
- Simple find / replace
## Testing
- Local run of `cargo run -p ci`
## Migration Guide
The `track_change_detection` feature flag has been renamed to
`track_location` to better reflect its extended capabilities.
# Objective
- To fix a tiny bug in `bevy_ecs::storage::Tables` that, in one case,
means it accidentally allocates an additional "empty" `Table`, resulting
in two "empty" `Table`s:
- The one pre-allocated empty table at index 0 whose index is designed
to match up with `TableId::empty()`
- One extra empty table, at some non-0 index, that does not match up
with `TableId::empty()`.
- This PR aims to prevent this extraneous `Table`, ensuring that
entities with no components in table-storage reliably have their
archetype's table ID be equal to `TableId::empty()`.
## Solution
### Background
The issue occurs because:
- `Tables` contains:
- `tables: Vec<Table>` - The set of all `Table`s allocated in the world.
- `table_ids: HashMap<Box<[ComponentId]>, TableId>` - An index to
rapidly lookup the `Table` in `tables` by a set of `ComponentId`s.
- When `Tables` is constructed it pre-populates the `tables` `Vec` with
an empty `Table`.
- This ensures that the first entry (index 0) is always the `Table` for
entities with no components in table storage.
- In particular, `TableId::empty()` is a utility that returns a
`TableId` of `0`.
- However, the `table_ids` map is not initialised to associate an empty
`[ComponentId]` with `TableId` `0`.
- This means, the first time a structural change tries to access a
`Table` for an archetype with 0 table components:
- `Tables::get_id_or_insert` is used to retrieve the target `Table`
- The function attempts to lookup the entry in the `table_ids` `HashMap`
whose key is the empty `ComponentId` set
- The empty `Table` created at startup won't be found, because it was
never inserted into `table_ids`
- It will instead create a new table, insert it into the `HashMap`
(preventing further instances of this issue), and return it.
### Changes
- I considered simply initialising the `table_ids` `HashMap` to know
about the pre-allocated `Table`
- However, I ended up using the proposed solution discussed on Discord
[#ecs-dev](https://discord.com/channels/691052431525675048/749335865876021248/1320430933152759958):
- Make `Tables::get_id_or_insert` simply early-exit if the requested
`component_ids` was empty.
- This avoids unnecessarily hashing the empty slice and looking it up in
the `HashMap`.
- The `table_ids` `HashMap` is not exposed outside this struct, and is
only used within `get_id_or_insert`, so it seems wasteful to defensively
populate it with the empty `Table`.
## Testing
This is my first Bevy contribution, so I don't really know the processes
that well. That said:
- I have introduced a little test that exercises the original issue and
shows that it is now resolved.
- I have run the `bevy_ecs` tests locally, so I have reasonable
confidence I haven't broken that.
- I haven't run any further test suites, mostly as when I tried to run
test suites for the whole project it filled my entire SSD with >600GB of
target directory output 😱😱😱
# Objective
- Contributes to #15460
## Solution
- Added the following features:
- `std` (default)
- `async_executor` (default)
- `edge_executor`
- `critical-section`
- `portable-atomic`
- Gated `tracing` in `bevy_utils` to allow compilation on certain
platforms
- Switched from `tracing` to `log` for simple message logging within
`bevy_ecs`. Note that `tracing` supports capturing from `log` so this
should be an uncontroversial change.
- Fixed imports and added feature gates as required
- Made `bevy_tasks` optional within `bevy_ecs`. Turns out it's only
needed for parallel operations which are already gated behind
`multi_threaded` anyway.
## Testing
- Added to `compile-check-no-std` CI command
- `cargo check -p bevy_ecs --no-default-features --features
edge_executor,critical-section,portable-atomic --target
thumbv6m-none-eabi`
- `cargo check -p bevy_ecs --no-default-features --features
edge_executor,critical-section`
- `cargo check -p bevy_ecs --no-default-features`
## Draft Release Notes
Bevy's core ECS now supports `no_std` platforms.
In prior versions of Bevy, it was not possible to work with embedded or
niche platforms due to our reliance on the standard library, `std`. This
has blocked a number of novel use-cases for Bevy, such as an embedded
database for IoT devices, or for creating games on retro consoles.
With this release, `bevy_ecs` no longer requires `std`. To use Bevy on a
`no_std` platform, you must disable default features and enable the new
`edge_executor` and `critical-section` features. You may also need to
enable `portable-atomic` and `critical-section` if your platform does
not natively support all atomic types and operations used by Bevy.
```toml
[dependencies]
bevy_ecs = { version = "0.16", default-features = false, features = [
# Required for platforms with incomplete atomics (e.g., Raspberry Pi Pico)
"portable-atomic",
"critical-section",
# Optional
"bevy_reflect",
"serialize",
"bevy_debug_stepping",
"edge_executor"
] }
```
Currently, this has been tested on bare-metal x86 and the Raspberry Pi
Pico. If you have trouble using `bevy_ecs` on a particular platform,
please reach out either through a GitHub issue or in the `no_std`
working group on the Bevy Discord server.
Keep an eye out for future `no_std` updates as we continue to improve
the parity between `std` and `no_std`. We look forward to seeing what
kinds of applications are now possible with Bevy!
## Notes
- Creating PR in draft to ensure CI is passing before requesting
reviews.
- This implementation has no support for multithreading in `no_std`,
especially due to `NonSend` being unsound if allowed in multithreading.
The reason is we cannot check the `ThreadId` in `no_std`, so we have no
mechanism to at-runtime determine if access is sound.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Vic <59878206+Victoronz@users.noreply.github.com>
# Objective
Fixes typos in bevy project, following suggestion in
https://github.com/bevyengine/bevy-website/pull/1912#pullrequestreview-2483499337
## Solution
I used https://github.com/crate-ci/typos to find them.
I included only the ones that feel undebatable too me, but I am not in
game engine so maybe some terms are expected.
I left out the following typos:
- `reparametrize` => `reparameterize`: There are a lot of occurences, I
believe this was expected
- `semicircles` => `hemicircles`: 2 occurences, may mean something
specific in geometry
- `invertation` => `inversion`: may mean something specific
- `unparented` => `parentless`: may mean something specific
- `metalness` => `metallicity`: may mean something specific
## Testing
- Did you test these changes? If so, how? I did not test the changes,
most changes are related to raw text. I expect the others to be tested
by the CI.
- Are there any parts that need more testing? I do not think
- How can other people (reviewers) test your changes? Is there anything
specific they need to know? To me there is nothing to test
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
---
## Migration Guide
> This section is optional. If there are no breaking changes, you can
delete this section.
(kept in case I include the `reparameterize` change here)
- If this PR is a breaking change (relative to the last release of
Bevy), describe how a user might need to migrate their code to support
these changes
- Simply adding new functionality is not a breaking change.
- Fixing behavior that was definitely a bug, rather than a questionable
design choice is not a breaking change.
## Questions
- [x] Should I include the above typos? No
(https://github.com/bevyengine/bevy/pull/16702#issuecomment-2525271152)
- [ ] Should I add `typos` to the CI? (I will check how to configure it
properly)
This project looks awesome, I really enjoy reading the progress made,
thanks to everyone involved.
# Objective
`flush_and_reserve_invalid_assuming_no_entities` was made for the old
rendering world (which was reset every frame) and is usused since the
0.15 retained rendering world, but wasn't removed yet. It is pub, but is
undocumented apart from the safety comment.
## Solution
Remove `flush_and_reserve_invalid_assuming_no_entities` and the safety
invariants this method required for `EntityMeta`, `EntityLocation`,
`TableId` and `TableRow`. This reduces the amount of unsafe code &
safety invariants and makes #16047 easier.
## Alternatives
- Document `flush_and_reserve_invalid_assuming_no_entities` and keep it
unchanged
- Document `flush_and_reserve_invalid_assuming_no_entities` and change
it to be based on `EntityMeta::INVALID`
## Migration Guide
- exchange `Entities::flush_and_reserve_invalid_assuming_no_entities`
for `reserve` and `flush_as_invalid` and notify us if that's
insufficient
---------
Co-authored-by: Benjamin Brienen <benjamin.brienen@outlook.com>
# Objective
- Closes#14774
## Solution
Added:
```rust
impl<'w, E, B: Bundle> Trigger<'w, E, B> {
pub fn components(&self) -> &[ComponentId];
}
```
I went with storing it in the trigger as a `SmallVec<[Component; 1]>`
because a singular target component will be the most common case, and it
remains the same size as `Vec<ComponentId>`.
## Testing
Added a test.
# Objective
- Fixes#6370
- Closes#6581
## Solution
- Added the following lints to the workspace:
- `std_instead_of_core`
- `std_instead_of_alloc`
- `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.
## Testing
- Ran CI locally
## Migration Guide
The MSRV is now 1.81. Please update to this version or higher.
## Notes
- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.
---------
Co-authored-by: François Mockers <francois.mockers@vleue.com>
# Objective
- Fixes#15451
## Migration Guide
- `World::init_component` has been renamed to `register_component`.
- `World::init_component_with_descriptor` has been renamed to
`register_component_with_descriptor`.
- `World::init_bundle` has been renamed to `register_bundle`.
- `Components::init_component` has been renamed to `register_component`.
- `Components::init_component_with_descriptor` has been renamed to
`register_component_with_descriptor`.
- `Components::init_resource` has been renamed to `register_resource`.
- `Components::init_non_send` had been renamed to `register_non_send`.
Enabled `check-private-items` in `clippy.toml` and then fixed the
resulting errors. Most of these were simply misformatted and of the
remaining:
- ~Added `#[allow(clippy::missing_safety_doc)]` to~ Removed unsafe from
a pair of functions in `bevy_utils/futures` which are only unsafe so
that they can be passed to a function which requires `unsafe fn`
- Removed `unsafe` from `UnsafeWorldCell::observers` as from what I can
tell it is always safe like `components`, `bundles` etc. (this should be
checked)
- Added safety docs to:
- `Bundles::get_storage_unchecked`: Based on the function that writes to
`dynamic_component_storages`
- `Bundles::get_storages_unchecked`: Based on the function that writes
to `dynamic_bundle_storages`
- `QueryIterationCursor::init_empty`: Duplicated from `init`
- `QueryIterationCursor::peek_last`: Thanks Giooschi (also added
internal unsafe blocks)
- `tests::drop_ptr`: Moved safety comment out to the doc string
This lint would also apply to `missing_errors_doc`, `missing_panics_doc`
and `unnecessary_safety_doc` if we chose to enable any of those at some
point, although there is an open
[issue](https://github.com/rust-lang/rust-clippy/issues/13074) to
separate these options.
# Objective
Currently the resource doesn't get dropped if thread panics. This is
presumably to prevent !SEND resource from being dropped by wrong thread.
But, this logic is not needed for SEND resources. So we don't need this
check for SEND resource.
Fixes#15144
## Solution
We check if resource is !SEND before, validating that correct thread is
dropping the resource.
## Testing
- Did you test these changes? If so, how?
I did run cargo test on bevy.
- Are there any parts that need more testing?
No
- How can other people (reviewers) test your changes? Is there anything
specific they need to know?
Nothing special
- If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?
x86_64 desktop
# Objective
- fix#12853
- Make `Table::allocate` faster
## Solution
The PR consists of multiple steps:
1) For the component data: create a new data-structure that's similar to
`BlobVec` but doesn't store `len` & `capacity` inside of it: "BlobArray"
(name suggestions welcome)
2) For the `Tick` data: create a new data-structure that's similar to
`ThinSlicePtr` but supports dynamic reallocation: "ThinArrayPtr" (name
suggestions welcome)
3) Create a new data-structure that's very similar to `Column` that
doesn't store `len` & `capacity` inside of it: "ThinColumn"
4) Adjust the `Table` implementation to use `ThinColumn` instead of
`Column`
The result is that only one set of `len` & `capacity` is stored in
`Table`, in `Table::entities`
### Notes Regarding Performance
Apart from shaving off some excess memory in `Table`, the changes have
also brought noteworthy performance improvements:
The previous implementation relied on `Vec::reserve` &
`BlobVec::reserve`, but that redundantly repeated the same if statement
(`capacity` == `len`). Now that check could be made at the `Table` level
because the capacity and length of all the columns are synchronized;
saving N branches per allocation. The result is a respectable
performance improvement per every `Table::reserve` (and subsequently
`Table::allocate`) call.
I'm hesitant to give exact numbers because I don't have a lot of
experience in profiling and benchmarking, but these are the results I
got so far:
*`add_remove_big/table` benchmark after the implementation:*

*`add_remove_big/table` benchmark in main branch (measured in comparison
to the implementation):*

*`add_remove_very_big/table` benchmark after the implementation:*

*`add_remove_very_big/table` benchmark in main branch (measured in
comparison to the implementation):*

cc @james7132 to verify
---
## Changelog
- New data-structure that's similar to `BlobVec` but doesn't store `len`
& `capacity` inside of it: `BlobArray`
- New data-structure that's similar to `ThinSlicePtr` but supports
dynamic allocation:`ThinArrayPtr`
- New data-structure that's very similar to `Column` that doesn't store
`len` & `capacity` inside of it: `ThinColumn`
- Adjust the `Table` implementation to use `ThinColumn` instead of
`Column`
- New benchmark: `add_remove_very_big` to benchmark the performance of
spawning a lot of entities with a lot of components (15) each
## Migration Guide
`Table` now uses `ThinColumn` instead of `Column`. That means that
methods that previously returned `Column`, will now return `ThinColumn`
instead.
`ThinColumn` has a much more limited and low-level API, but you can
still achieve the same things in `ThinColumn` as you did in `Column`.
For example, instead of calling `Column::get_added_tick`, you'd call
`ThinColumn::get_added_ticks_slice` and index it to get the specific
added tick.
---------
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
- Fixes#14974
## Solution
- Replace all* instances of `NonZero*` with `NonZero<*>`
## Testing
- CI passed locally.
---
## Notes
Within the `bevy_reflect` implementations for `std` types,
`impl_reflect_value!()` will continue to use the type aliases instead,
as it inappropriately parses the concrete type parameter as a generic
argument. If the `ZeroablePrimitive` trait was stable, or the macro
could be modified to accept a finite list of types, then we could fully
migrate.
# Objective
Fixes#14782
## Solution
Enable the lint and fix all upcoming hints (`--fix`). Also tried to
figure out the false-positive (see review comment). Maybe split this PR
up into multiple parts where only the last one enables the lint, so some
can already be merged resulting in less many files touched / less
potential for merge conflicts?
Currently, there are some cases where it might be easier to read the
code with the qualifier, so perhaps remove the import of it and adapt
its cases? In the current stage it's just a plain adoption of the
suggestions in order to have a base to discuss.
## Testing
`cargo clippy` and `cargo run -p ci` are happy.
# Objective
Often there are reasons to insert some components (e.g. Transform)
separately from the rest of a bundle (e.g. PbrBundle). However `insert`
overwrites existing components, making this difficult.
See also issue #14397Fixes#2054.
## Solution
This PR adds the method `insert_if_new` to EntityMut and Commands, which
is the same as `insert` except that the old component is kept in case of
conflicts.
It also renames some internal enums (from `ComponentStatus::Mutated` to
`Existing`), to reflect the possible change in meaning.
## Testing
*Did you test these changes? If so, how?*
Added basic unit tests; used the new behavior in my project.
*Are there any parts that need more testing?*
There should be a test that the change time isn't set if a component is
not overwritten; I wasn't sure how to write a test for that case.
*How can other people (reviewers) test your changes? Is there anything
specific they need to know?*
`cargo test` in the bevy_ecs project.
*If relevant, what platforms did you test these changes on, and are
there any important ones you can't test?*
Only tested on Windows, but it doesn't touch anything platform-specific.
---------
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com>
# Objective
- Make it possible to know *what* changed your component or resource.
- Common need when debugging, when you want to know the last code
location that mutated a value in the ECS.
- This feature would be very useful for the editor alongside system
stepping.
## Solution
- Adds the caller location to column data.
- Mutations now `track_caller` all the way up to the public API.
- Commands that invoke these functions immediately call
`Location::caller`, and pass this into the functions, instead of the
functions themselves attempting to get the caller. This would not work
for commands which are deferred, as the commands are executed by the
scheduler, not the user's code.
## Testing
- The `component_change_detection` example now shows where the component
was mutated:
```
2024-07-28T06:57:48.946022Z INFO component_change_detection: Entity { index: 1, generation: 1 }: New value: MyComponent(0.0)
2024-07-28T06:57:49.004371Z INFO component_change_detection: Entity { index: 1, generation: 1 }: New value: MyComponent(1.0)
2024-07-28T06:57:49.012738Z WARN component_change_detection: Change detected!
-> value: Ref(MyComponent(1.0))
-> added: false
-> changed: true
-> changed by: examples/ecs/component_change_detection.rs:36:23
```
- It's also possible to inspect change location from a debugger:
<img width="608" alt="image"
src="https://github.com/user-attachments/assets/c90ecc7a-0462-457a-80ae-42e7f5d346b4">
---
## Changelog
- Added source locations to ECS change detection behind the
`track_change_detection` flag.
## Migration Guide
- Added `changed_by` field to many internal ECS functions used with
change detection when the `track_change_detection` feature flag is
enabled. Use Location::caller() to provide the source of the function
call.
---------
Co-authored-by: BD103 <59022059+BD103@users.noreply.github.com>
Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com>
# Objective
- Fixes#12976
## Solution
This one is a doozy.
- Run `cargo +beta clippy --workspace --all-targets --all-features` and
fix all issues
- This includes:
- Moving inner attributes to be outer attributes, when the item in
question has both inner and outer attributes
- Use `ptr::from_ref` in more scenarios
- Extend the valid idents list used by `clippy:doc_markdown` with more
names
- Use `Clone::clone_from` when possible
- Remove redundant `ron` import
- Add backticks to **so many** identifiers and items
- I'm sorry whoever has to review this
---
## Changelog
- Added links to more identifiers in documentation.
# Objective
- Since #10811,Bevy uses `assert `in the hot path of iteration. The
`for_each `method has an assert in the outer loop to help the compiler
remove unnecessary branching in the internal loop.
- However , ` for` style iterations do not receive the same treatment.
it still have a branch check in the internal loop, which could
potentially hurt performance.
## Solution
- use `TableRow::from_u32 ` instead of ` TableRow::from_usize` to avoid
unnecessary branch.
Before

After
----------------------------------------------------------------------------

# Objective
Adoption of #2104 and #11843. The `Option<usize>` wastes 3-7 bytes of
memory per potential entry, and represents a scaling memory overhead as
the ID space grows.
The goal of this PR is to reduce memory usage without significantly
impacting common use cases.
Co-Authored By: @NathanSWard
Co-Authored By: @tygyh
## Solution
Replace `usize` in `SparseSet`'s sparse array with
`nonmax::NonMaxUsize`. NonMaxUsize wraps a NonZeroUsize, and applies a
bitwise NOT to the value when accessing it. This allows the compiler to
niche the value and eliminate the extra padding used for the `Option`
inside the sparse array, while moving the niche value from 0 to
usize::MAX instead.
Checking the [diff in x86 generated
assembly](6e4da653cc),
this change actually results in fewer instructions generated. One
potential downside is that it seems to have moved a load before a
branch, which means we may be incurring a cache miss even if the element
is not there.
Note: unlike #2104 and #11843, this PR only targets the metadata stores
for the ECS and not the component storage itself. Due to #9907 targeting
`Entity::generation` instead of `Entity::index`, `ComponentSparseSet`
storing only up to `u32::MAX` elements would become a correctness issue.
This will come with a cost when inserting items into the SparseSet, as
now there is a potential for a panic. These cost are really only
incurred when constructing a new Table, Archetype, or Resource that has
never been seen before by the World. All operations that are fairly cold
and not on any particular hotpath, even for command application.
---
## Changelog
Changed: `SparseSet` now can only store up to `usize::MAX - 1` elements
instead of `usize::MAX`.
Changed: `SparseSet` now uses 33-50% less memory overhead per stored
item.
# Objective
Memory usage optimisation
## Solution
`HashMap` and `HashSet`'s keys are immutable. So using mutable types
like `String`, `Vec<T>`, or `PathBuf` as a key is a waste of memory:
they have an extra `usize` for their capacity and may have spare
capacity.
This PR replaces these types by their immutable equivalents `Box<str>`,
`Box<[T]>`, and `Box<Path>`.
For more context, I recommend watching the [Use Arc Instead of
Vec](https://www.youtube.com/watch?v=A4cKi7PTJSs) video.
---------
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
- Part of #11590
- Fix `unsafe_op_in_unsafe_fn` for trivial cases in bevy_ecs
## Solution
Fix `unsafe_op_in_unsafe_fn` in bevy_ecs for trivial cases, i.e., add an
`unsafe` block when the safety comment already exists or add a comment
like "The invariants are uphold by the caller".
---------
Co-authored-by: James Liu <contact@jamessliu.com>
# Objective
`Column` unconditionally requires three separate allocations: one for
the data, and two for the tick Vecs. The tick Vecs aren't really needed
for Resources, so we're allocating a bunch of one-element Vecs, and it
costs two extra dereferences when fetching/inserting/removing resources.
## Solution
Drop one level lower in `ResourceData` and directly store a `BlobVec`
and two `UnsafeCell<Tick>`s. This should significantly shrink
`ResourceData` (exchanging 6 usizes for 2 u32s), removes the need to
dereference two separate ticks when inserting/removing/fetching
resources, and can significantly decrease the number of small
allocations the ECS makes by default.
This tentatively might have a non-insignificant impact on the CPU cost
for rendering since we're constantly fetching resources in draw
functions, depending on how aggressively inlined the functions are.
This requires reimplementing some of the unsafe functions that `Column`
wraps, but it also allows us to delete a few Column APIs that were only
used for Resources, so the total amount of unsafe we're maintaining
shouldn't change significantly.
---------
Co-authored-by: Joseph <21144246+JoJoJet@users.noreply.github.com>
# Objective
When `BlobVec::reserve` is called with an argument causing capacity
overflow, in release build capacity overflow is ignored, and capacity is
decreased.
I'm not sure it is possible to exploit this issue using public API of
`bevy_ecs`, but better fix it anyway.
## Solution
Check for capacity overflow.