use crate::{ component::{ComponentId, Tick}, prelude::FromWorld, query::FilteredAccessSet, schedule::{InternedSystemSet, SystemSet}, system::{ check_system_change_tick, ReadOnlySystemParam, System, SystemIn, SystemInput, SystemParam, SystemParamItem, }, world::{unsafe_world_cell::UnsafeWorldCell, DeferredWorld, World, WorldId}, }; use alloc::{borrow::Cow, vec, vec::Vec}; use core::marker::PhantomData; use variadics_please::all_tuples; #[cfg(feature = "trace")] use tracing::{info_span, Span}; use super::{ IntoSystem, ReadOnlySystem, SystemParamBuilder, SystemParamValidationError, SystemStateFlags, }; /// The metadata of a [`System`]. #[derive(Clone)] pub struct SystemMeta { pub(crate) name: Cow<'static, str>, /// The set of component accesses for this system. This is used to determine /// - soundness issues (e.g. multiple [`SystemParam`]s mutably accessing the same component) /// - ambiguities in the schedule (e.g. two systems that have some sort of conflicting access) pub(crate) component_access_set: FilteredAccessSet, // NOTE: this must be kept private. making a SystemMeta non-send is irreversible to prevent // SystemParams from overriding each other flags: SystemStateFlags, pub(crate) last_run: Tick, #[cfg(feature = "trace")] pub(crate) system_span: Span, #[cfg(feature = "trace")] pub(crate) commands_span: Span, } impl SystemMeta { pub(crate) fn new() -> Self { let name = core::any::type_name::(); Self { name: name.into(), component_access_set: FilteredAccessSet::default(), flags: SystemStateFlags::empty(), last_run: Tick::new(0), #[cfg(feature = "trace")] system_span: info_span!("system", name = name), #[cfg(feature = "trace")] commands_span: info_span!("system_commands", name = name), } } /// Returns the system's name #[inline] pub fn name(&self) -> &str { &self.name } /// Sets the name of this system. /// /// Useful to give closure systems more readable and unique names for debugging and tracing. #[inline] pub fn set_name(&mut self, new_name: impl Into>) { let new_name: Cow<'static, str> = new_name.into(); #[cfg(feature = "trace")] { let name = new_name.as_ref(); self.system_span = info_span!("system", name = name); self.commands_span = info_span!("system_commands", name = name); } self.name = new_name; } /// Returns true if the system is [`Send`]. #[inline] pub fn is_send(&self) -> bool { !self.flags.intersects(SystemStateFlags::NON_SEND) } /// Sets the system to be not [`Send`]. /// /// This is irreversible. #[inline] pub fn set_non_send(&mut self) { self.flags |= SystemStateFlags::NON_SEND; } /// Returns true if the system has deferred [`SystemParam`]'s #[inline] pub fn has_deferred(&self) -> bool { self.flags.intersects(SystemStateFlags::DEFERRED) } /// Marks the system as having deferred buffers like [`Commands`](`super::Commands`) /// This lets the scheduler insert [`ApplyDeferred`](`crate::prelude::ApplyDeferred`) systems automatically. #[inline] pub fn set_has_deferred(&mut self) { self.flags |= SystemStateFlags::DEFERRED; } /// Returns a reference to the [`FilteredAccessSet`] for [`ComponentId`]. /// Used to check if systems and/or system params have conflicting access. #[inline] pub fn component_access_set(&self) -> &FilteredAccessSet { &self.component_access_set } /// Returns a mutable reference to the [`FilteredAccessSet`] for [`ComponentId`]. /// Used internally to statically check if systems have conflicting access. /// /// # Safety /// /// No access can be removed from the returned [`FilteredAccessSet`]. #[inline] pub unsafe fn component_access_set_mut(&mut self) -> &mut FilteredAccessSet { &mut self.component_access_set } } // TODO: Actually use this in FunctionSystem. We should probably only do this once Systems are constructed using a World reference // (to avoid the need for unwrapping to retrieve SystemMeta) /// Holds on to persistent state required to drive [`SystemParam`] for a [`System`]. /// /// This is a powerful and convenient tool for working with exclusive world access, /// allowing you to fetch data from the [`World`] as if you were running a [`System`]. /// However, simply calling `world::run_system(my_system)` using a [`World::run_system`](World::run_system) /// can be significantly simpler and ensures that change detection and command flushing work as expected. /// /// Borrow-checking is handled for you, allowing you to mutably access multiple compatible system parameters at once, /// and arbitrary system parameters (like [`EventWriter`](crate::event::EventWriter)) can be conveniently fetched. /// /// For an alternative approach to split mutable access to the world, see [`World::resource_scope`]. /// /// # Warning /// /// [`SystemState`] values created can be cached to improve performance, /// and *must* be cached and reused in order for system parameters that rely on local state to work correctly. /// These include: /// - [`Added`](crate::query::Added), [`Changed`](crate::query::Changed) and [`Spawned`](crate::query::Spawned) query filters /// - [`Local`](crate::system::Local) variables that hold state /// - [`EventReader`](crate::event::EventReader) system parameters, which rely on a [`Local`](crate::system::Local) to track which events have been seen /// /// Note that this is automatically handled for you when using a [`World::run_system`](World::run_system). /// /// # Example /// /// Basic usage: /// ``` /// # use bevy_ecs::prelude::*; /// # use bevy_ecs::system::SystemState; /// # use bevy_ecs::event::Events; /// # /// # #[derive(Event)] /// # struct MyEvent; /// # #[derive(Resource)] /// # struct MyResource(u32); /// # /// # #[derive(Component)] /// # struct MyComponent; /// # /// // Work directly on the `World` /// let mut world = World::new(); /// world.init_resource::>(); /// /// // Construct a `SystemState` struct, passing in a tuple of `SystemParam` /// // as if you were writing an ordinary system. /// let mut system_state: SystemState<( /// EventWriter, /// Option>, /// Query<&MyComponent>, /// )> = SystemState::new(&mut world); /// /// // Use system_state.get_mut(&mut world) and unpack your system parameters into variables! /// // system_state.get(&world) provides read-only versions of your system parameters instead. /// let (event_writer, maybe_resource, query) = system_state.get_mut(&mut world); /// /// // If you are using `Commands`, you can choose when you want to apply them to the world. /// // You need to manually call `.apply(world)` on the `SystemState` to apply them. /// ``` /// Caching: /// ``` /// # use bevy_ecs::prelude::*; /// # use bevy_ecs::system::SystemState; /// # use bevy_ecs::event::Events; /// # /// # #[derive(Event)] /// # struct MyEvent; /// #[derive(Resource)] /// struct CachedSystemState { /// event_state: SystemState>, /// } /// /// // Create and store a system state once /// let mut world = World::new(); /// world.init_resource::>(); /// let initial_state: SystemState> = SystemState::new(&mut world); /// /// // The system state is cached in a resource /// world.insert_resource(CachedSystemState { /// event_state: initial_state, /// }); /// /// // Later, fetch the cached system state, saving on overhead /// world.resource_scope(|world, mut cached_state: Mut| { /// let mut event_reader = cached_state.event_state.get_mut(world); /// /// for events in event_reader.read() { /// println!("Hello World!"); /// } /// }); /// ``` pub struct SystemState { meta: SystemMeta, param_state: Param::State, world_id: WorldId, } // Allow closure arguments to be inferred. // For a closure to be used as a `SystemParamFunction`, it needs to be generic in any `'w` or `'s` lifetimes. // Rust will only infer a closure to be generic over lifetimes if it's passed to a function with a Fn constraint. // So, generate a function for each arity with an explicit `FnMut` constraint to enable higher-order lifetimes, // along with a regular `SystemParamFunction` constraint to allow the system to be built. macro_rules! impl_build_system { ($(#[$meta:meta])* $($param: ident),*) => { $(#[$meta])* impl<$($param: SystemParam),*> SystemState<($($param,)*)> { /// Create a [`FunctionSystem`] from a [`SystemState`]. /// This method signature allows type inference of closure parameters for a system with no input. /// You can use [`SystemState::build_system_with_input()`] if you have input, or [`SystemState::build_any_system()`] if you don't need type inference. pub fn build_system< Out: 'static, Marker, F: FnMut($(SystemParamItem<$param>),*) -> Out + SystemParamFunction > ( self, func: F, ) -> FunctionSystem { self.build_any_system(func) } /// Create a [`FunctionSystem`] from a [`SystemState`]. /// This method signature allows type inference of closure parameters for a system with input. /// You can use [`SystemState::build_system()`] if you have no input, or [`SystemState::build_any_system()`] if you don't need type inference. pub fn build_system_with_input< Input: SystemInput, Out: 'static, Marker, F: FnMut(Input, $(SystemParamItem<$param>),*) -> Out + SystemParamFunction, >( self, func: F, ) -> FunctionSystem { self.build_any_system(func) } } } } all_tuples!( #[doc(fake_variadic)] impl_build_system, 0, 16, P ); impl SystemState { /// Creates a new [`SystemState`] with default state. pub fn new(world: &mut World) -> Self { let mut meta = SystemMeta::new::(); meta.last_run = world.change_tick().relative_to(Tick::MAX); let param_state = Param::init_state(world, &mut meta); Self { meta, param_state, world_id: world.id(), } } /// Create a [`SystemState`] from a [`SystemParamBuilder`] pub(crate) fn from_builder(world: &mut World, builder: impl SystemParamBuilder) -> Self { let mut meta = SystemMeta::new::(); meta.last_run = world.change_tick().relative_to(Tick::MAX); let param_state = builder.build(world, &mut meta); Self { meta, param_state, world_id: world.id(), } } /// Create a [`FunctionSystem`] from a [`SystemState`]. /// This method signature allows any system function, but the compiler will not perform type inference on closure parameters. /// You can use [`SystemState::build_system()`] or [`SystemState::build_system_with_input()`] to get type inference on parameters. pub fn build_any_system>( self, func: F, ) -> FunctionSystem { FunctionSystem { func, #[cfg(feature = "hotpatching")] current_ptr: subsecond::HotFn::current(>::run) .ptr_address(), state: Some(FunctionSystemState { param: self.param_state, world_id: self.world_id, }), system_meta: self.meta, marker: PhantomData, } } /// Gets the metadata for this instance. #[inline] pub fn meta(&self) -> &SystemMeta { &self.meta } /// Gets the metadata for this instance. #[inline] pub fn meta_mut(&mut self) -> &mut SystemMeta { &mut self.meta } /// Retrieve the [`SystemParam`] values. This can only be called when all parameters are read-only. #[inline] pub fn get<'w, 's>(&'s mut self, world: &'w World) -> SystemParamItem<'w, 's, Param> where Param: ReadOnlySystemParam, { self.validate_world(world.id()); // SAFETY: Param is read-only and doesn't allow mutable access to World. // It also matches the World this SystemState was created with. unsafe { self.get_unchecked(world.as_unsafe_world_cell_readonly()) } } /// Retrieve the mutable [`SystemParam`] values. #[inline] pub fn get_mut<'w, 's>(&'s mut self, world: &'w mut World) -> SystemParamItem<'w, 's, Param> { self.validate_world(world.id()); // SAFETY: World is uniquely borrowed and matches the World this SystemState was created with. unsafe { self.get_unchecked(world.as_unsafe_world_cell()) } } /// Applies all state queued up for [`SystemParam`] values. For example, this will apply commands queued up /// by a [`Commands`](`super::Commands`) parameter to the given [`World`]. /// This function should be called manually after the values returned by [`SystemState::get`] and [`SystemState::get_mut`] /// are finished being used. pub fn apply(&mut self, world: &mut World) { Param::apply(&mut self.param_state, &self.meta, world); } /// Wrapper over [`SystemParam::validate_param`]. /// /// # Safety /// /// - The passed [`UnsafeWorldCell`] must have read-only access to /// world data in `component_access_set`. /// - `world` must be the same [`World`] that was used to initialize [`state`](SystemParam::init_state). pub unsafe fn validate_param( state: &mut Self, world: UnsafeWorldCell, ) -> Result<(), SystemParamValidationError> { // SAFETY: Delegated to existing `SystemParam` implementations. unsafe { Param::validate_param(&mut state.param_state, &state.meta, world) } } /// Returns `true` if `world_id` matches the [`World`] that was used to call [`SystemState::new`]. /// Otherwise, this returns false. #[inline] pub fn matches_world(&self, world_id: WorldId) -> bool { self.world_id == world_id } /// Asserts that the [`SystemState`] matches the provided world. #[inline] #[track_caller] fn validate_world(&self, world_id: WorldId) { #[inline(never)] #[track_caller] #[cold] fn panic_mismatched(this: WorldId, other: WorldId) -> ! { panic!("Encountered a mismatched World. This SystemState was created from {this:?}, but a method was called using {other:?}."); } if !self.matches_world(world_id) { panic_mismatched(self.world_id, world_id); } } /// Has no effect #[inline] #[deprecated( since = "0.17.0", note = "No longer has any effect. Calls may be removed." )] pub fn update_archetypes(&mut self, _world: &World) {} /// Has no effect #[inline] #[deprecated( since = "0.17.0", note = "No longer has any effect. Calls may be removed." )] pub fn update_archetypes_unsafe_world_cell(&mut self, _world: UnsafeWorldCell) {} /// Identical to [`SystemState::get`]. #[inline] #[deprecated(since = "0.17.0", note = "Call `SystemState::get` instead.")] pub fn get_manual<'w, 's>(&'s mut self, world: &'w World) -> SystemParamItem<'w, 's, Param> where Param: ReadOnlySystemParam, { self.get(world) } /// Identical to [`SystemState::get_mut`]. #[inline] #[deprecated(since = "0.17.0", note = "Call `SystemState::get_mut` instead.")] pub fn get_manual_mut<'w, 's>( &'s mut self, world: &'w mut World, ) -> SystemParamItem<'w, 's, Param> { self.get_mut(world) } /// Identical to [`SystemState::get_unchecked`]. /// /// # Safety /// This call might access any of the input parameters in a way that violates Rust's mutability rules. Make sure the data /// access is safe in the context of global [`World`] access. The passed-in [`World`] _must_ be the [`World`] the [`SystemState`] was /// created with. #[inline] #[deprecated(since = "0.17.0", note = "Call `SystemState::get_unchecked` instead.")] pub unsafe fn get_unchecked_manual<'w, 's>( &'s mut self, world: UnsafeWorldCell<'w>, ) -> SystemParamItem<'w, 's, Param> { // SAFETY: Caller ensures safety requirements unsafe { self.get_unchecked(world) } } /// Retrieve the [`SystemParam`] values. /// /// # Safety /// This call might access any of the input parameters in a way that violates Rust's mutability rules. Make sure the data /// access is safe in the context of global [`World`] access. The passed-in [`World`] _must_ be the [`World`] the [`SystemState`] was /// created with. #[inline] pub unsafe fn get_unchecked<'w, 's>( &'s mut self, world: UnsafeWorldCell<'w>, ) -> SystemParamItem<'w, 's, Param> { let change_tick = world.increment_change_tick(); // SAFETY: The invariants are upheld by the caller. unsafe { self.fetch(world, change_tick) } } /// # Safety /// This call might access any of the input parameters in a way that violates Rust's mutability rules. Make sure the data /// access is safe in the context of global [`World`] access. The passed-in [`World`] _must_ be the [`World`] the [`SystemState`] was /// created with. #[inline] unsafe fn fetch<'w, 's>( &'s mut self, world: UnsafeWorldCell<'w>, change_tick: Tick, ) -> SystemParamItem<'w, 's, Param> { // SAFETY: The invariants are upheld by the caller. let param = unsafe { Param::get_param(&mut self.param_state, &self.meta, world, change_tick) }; self.meta.last_run = change_tick; param } /// Returns a reference to the current system param states. pub fn param_state(&self) -> &Param::State { &self.param_state } /// Returns a mutable reference to the current system param states. /// Marked as unsafe because modifying the system states may result in violation to certain /// assumptions made by the [`SystemParam`]. Use with care. /// /// # Safety /// Modifying the system param states may have unintended consequences. /// The param state is generally considered to be owned by the [`SystemParam`]. Modifications /// should respect any invariants as required by the [`SystemParam`]. /// For example, modifying the system state of [`ResMut`](crate::system::ResMut) without also /// updating [`SystemMeta::component_access_set`] will obviously create issues. pub unsafe fn param_state_mut(&mut self) -> &mut Param::State { &mut self.param_state } } impl FromWorld for SystemState { fn from_world(world: &mut World) -> Self { Self::new(world) } } /// The [`System`] counter part of an ordinary function. /// /// You get this by calling [`IntoSystem::into_system`] on a function that only accepts /// [`SystemParam`]s. The output of the system becomes the functions return type, while the input /// becomes the functions first parameter or `()` if no such parameter exists. /// /// [`FunctionSystem`] must be `.initialized` before they can be run. /// /// The [`Clone`] implementation for [`FunctionSystem`] returns a new instance which /// is NOT initialized. The cloned system must also be `.initialized` before it can be run. pub struct FunctionSystem where F: SystemParamFunction, { func: F, #[cfg(feature = "hotpatching")] current_ptr: subsecond::HotFnPtr, state: Option>, system_meta: SystemMeta, // NOTE: PhantomData T> gives this safe Send/Sync impls marker: PhantomData Marker>, } /// The state of a [`FunctionSystem`], which must be initialized with /// [`System::initialize`] before the system can be run. A panic will occur if /// the system is run without being initialized. struct FunctionSystemState { /// The cached state of the system's [`SystemParam`]s. param: P::State, /// The id of the [`World`] this system was initialized with. If the world /// passed to [`System::run_unsafe`] or [`System::validate_param_unsafe`] does not match /// this id, a panic will occur. world_id: WorldId, } impl FunctionSystem where F: SystemParamFunction, { /// Return this system with a new name. /// /// Useful to give closure systems more readable and unique names for debugging and tracing. pub fn with_name(mut self, new_name: impl Into>) -> Self { self.system_meta.set_name(new_name.into()); self } } // De-initializes the cloned system. impl Clone for FunctionSystem where F: SystemParamFunction + Clone, { fn clone(&self) -> Self { Self { func: self.func.clone(), #[cfg(feature = "hotpatching")] current_ptr: subsecond::HotFn::current(>::run) .ptr_address(), state: None, system_meta: SystemMeta::new::(), marker: PhantomData, } } } /// A marker type used to distinguish regular function systems from exclusive function systems. #[doc(hidden)] pub struct IsFunctionSystem; impl IntoSystem for F where Marker: 'static, F: SystemParamFunction, { type System = FunctionSystem; fn into_system(func: Self) -> Self::System { FunctionSystem { func, #[cfg(feature = "hotpatching")] current_ptr: subsecond::HotFn::current(>::run) .ptr_address(), state: None, system_meta: SystemMeta::new::(), marker: PhantomData, } } } impl FunctionSystem where F: SystemParamFunction, { /// Message shown when a system isn't initialized // When lines get too long, rustfmt can sometimes refuse to format them. // Work around this by storing the message separately. const ERROR_UNINITIALIZED: &'static str = "System's state was not found. Did you forget to initialize this system before running it?"; } impl System for FunctionSystem where Marker: 'static, F: SystemParamFunction, { type In = F::In; type Out = F::Out; #[inline] fn name(&self) -> Cow<'static, str> { self.system_meta.name.clone() } #[inline] fn component_access_set(&self) -> &FilteredAccessSet { &self.system_meta.component_access_set } #[inline] fn flags(&self) -> SystemStateFlags { self.system_meta.flags } #[inline] unsafe fn run_unsafe( &mut self, input: SystemIn<'_, Self>, world: UnsafeWorldCell, ) -> Self::Out { #[cfg(feature = "trace")] let _span_guard = self.system_meta.system_span.enter(); let change_tick = world.increment_change_tick(); let state = self.state.as_mut().expect(Self::ERROR_UNINITIALIZED); assert_eq!(state.world_id, world.id(), "Encountered a mismatched World. A System cannot be used with Worlds other than the one it was initialized with."); // SAFETY: // - The above assert ensures the world matches. // - All world accesses used by `F::Param` have been registered, so the caller // will ensure that there are no data access conflicts. let params = unsafe { F::Param::get_param(&mut state.param, &self.system_meta, world, change_tick) }; #[cfg(feature = "hotpatching")] let out = { let mut hot_fn = subsecond::HotFn::current(>::run); // SAFETY: // - pointer used to call is from the current jump table unsafe { hot_fn .try_call_with_ptr(self.current_ptr, (&mut self.func, input, params)) .expect("Error calling hotpatched system. Run a full rebuild") } }; #[cfg(not(feature = "hotpatching"))] let out = self.func.run(input, params); self.system_meta.last_run = change_tick; out } #[cfg(feature = "hotpatching")] #[inline] fn refresh_hotpatch(&mut self) { let new = subsecond::HotFn::current(>::run).ptr_address(); if new != self.current_ptr { log::debug!("system {} hotpatched", self.name()); } self.current_ptr = new; } #[inline] fn apply_deferred(&mut self, world: &mut World) { let param_state = &mut self.state.as_mut().expect(Self::ERROR_UNINITIALIZED).param; F::Param::apply(param_state, &self.system_meta, world); } #[inline] fn queue_deferred(&mut self, world: DeferredWorld) { let param_state = &mut self.state.as_mut().expect(Self::ERROR_UNINITIALIZED).param; F::Param::queue(param_state, &self.system_meta, world); } #[inline] unsafe fn validate_param_unsafe( &mut self, world: UnsafeWorldCell, ) -> Result<(), SystemParamValidationError> { let state = self.state.as_mut().expect(Self::ERROR_UNINITIALIZED); assert_eq!(state.world_id, world.id(), "Encountered a mismatched World. A System cannot be used with Worlds other than the one it was initialized with."); // SAFETY: // - The above assert ensures the world matches. // - All world accesses used by `F::Param` have been registered, so the caller // will ensure that there are no data access conflicts. unsafe { F::Param::validate_param(&mut state.param, &self.system_meta, world) } } #[inline] fn initialize(&mut self, world: &mut World) { if let Some(state) = &self.state { assert_eq!( state.world_id, world.id(), "System built with a different world than the one it was added to.", ); } else { self.state = Some(FunctionSystemState { param: F::Param::init_state(world, &mut self.system_meta), world_id: world.id(), }); } self.system_meta.last_run = world.change_tick().relative_to(Tick::MAX); } #[inline] fn check_change_tick(&mut self, change_tick: Tick) { check_system_change_tick( &mut self.system_meta.last_run, change_tick, self.system_meta.name.as_ref(), ); } fn default_system_sets(&self) -> Vec { let set = crate::schedule::SystemTypeSet::::new(); vec![set.intern()] } fn get_last_run(&self) -> Tick { self.system_meta.last_run } fn set_last_run(&mut self, last_run: Tick) { self.system_meta.last_run = last_run; } } /// SAFETY: `F`'s param is [`ReadOnlySystemParam`], so this system will only read from the world. unsafe impl ReadOnlySystem for FunctionSystem where Marker: 'static, F: SystemParamFunction, F::Param: ReadOnlySystemParam, { } /// A trait implemented for all functions that can be used as [`System`]s. /// /// This trait can be useful for making your own systems which accept other systems, /// sometimes called higher order systems. /// /// This should be used in combination with [`ParamSet`] when calling other systems /// within your system. /// Using [`ParamSet`] in this case avoids [`SystemParam`] collisions. /// /// # Example /// /// To create something like [`PipeSystem`], but in entirely safe code. /// /// ``` /// use std::num::ParseIntError; /// /// use bevy_ecs::prelude::*; /// use bevy_ecs::system::StaticSystemInput; /// /// /// Pipe creates a new system which calls `a`, then calls `b` with the output of `a` /// pub fn pipe( /// mut a: A, /// mut b: B, /// ) -> impl FnMut(StaticSystemInput, ParamSet<(A::Param, B::Param)>) -> B::Out /// where /// // We need A and B to be systems, add those bounds /// A: SystemParamFunction, /// B: SystemParamFunction, /// for<'a> B::In: SystemInput = A::Out>, /// { /// // The type of `params` is inferred based on the return of this function above /// move |StaticSystemInput(a_in), mut params| { /// let shared = a.run(a_in, params.p0()); /// b.run(shared, params.p1()) /// } /// } /// /// // Usage example for `pipe`: /// fn main() { /// let mut world = World::default(); /// world.insert_resource(Message("42".to_string())); /// /// // pipe the `parse_message_system`'s output into the `filter_system`s input /// let mut piped_system = IntoSystem::into_system(pipe(parse_message, filter)); /// piped_system.initialize(&mut world); /// assert_eq!(piped_system.run((), &mut world), Some(42)); /// } /// /// #[derive(Resource)] /// struct Message(String); /// /// fn parse_message(message: Res) -> Result { /// message.0.parse::() /// } /// /// fn filter(In(result): In>) -> Option { /// result.ok().filter(|&n| n < 100) /// } /// ``` /// [`PipeSystem`]: crate::system::PipeSystem /// [`ParamSet`]: crate::system::ParamSet #[diagnostic::on_unimplemented( message = "`{Self}` is not a valid system", label = "invalid system" )] pub trait SystemParamFunction: Send + Sync + 'static { /// The input type of this system. See [`System::In`]. type In: SystemInput; /// The return type of this system. See [`System::Out`]. type Out; /// The [`SystemParam`]/s used by this system to access the [`World`]. type Param: SystemParam; /// Executes this system once. See [`System::run`] or [`System::run_unsafe`]. fn run( &mut self, input: ::Inner<'_>, param_value: SystemParamItem, ) -> Self::Out; } /// A marker type used to distinguish function systems with and without input. #[doc(hidden)] pub struct HasSystemInput; macro_rules! impl_system_function { ($($param: ident),*) => { #[expect( clippy::allow_attributes, reason = "This is within a macro, and as such, the below lints may not always apply." )] #[allow( non_snake_case, reason = "Certain variable names are provided by the caller, not by us." )] impl SystemParamFunction Out> for Func where Func: Send + Sync + 'static, for <'a> &'a mut Func: FnMut($($param),*) -> Out + FnMut($(SystemParamItem<$param>),*) -> Out, Out: 'static { type In = (); type Out = Out; type Param = ($($param,)*); #[inline] fn run(&mut self, _input: (), param_value: SystemParamItem< ($($param,)*)>) -> Out { // Yes, this is strange, but `rustc` fails to compile this impl // without using this function. It fails to recognize that `func` // is a function, potentially because of the multiple impls of `FnMut` fn call_inner( mut f: impl FnMut($($param,)*)->Out, $($param: $param,)* )->Out{ f($($param,)*) } let ($($param,)*) = param_value; call_inner(self, $($param),*) } } #[expect( clippy::allow_attributes, reason = "This is within a macro, and as such, the below lints may not always apply." )] #[allow( non_snake_case, reason = "Certain variable names are provided by the caller, not by us." )] impl SystemParamFunction<(HasSystemInput, fn(In, $($param,)*) -> Out)> for Func where Func: Send + Sync + 'static, for <'a> &'a mut Func: FnMut(In, $($param),*) -> Out + FnMut(In::Param<'_>, $(SystemParamItem<$param>),*) -> Out, In: SystemInput + 'static, Out: 'static { type In = In; type Out = Out; type Param = ($($param,)*); #[inline] fn run(&mut self, input: In::Inner<'_>, param_value: SystemParamItem< ($($param,)*)>) -> Out { fn call_inner( _: PhantomData, mut f: impl FnMut(In::Param<'_>, $($param,)*)->Out, input: In::Inner<'_>, $($param: $param,)* )->Out{ f(In::wrap(input), $($param,)*) } let ($($param,)*) = param_value; call_inner(PhantomData::, self, input, $($param),*) } } }; } // Note that we rely on the highest impl to be <= the highest order of the tuple impls // of `SystemParam` created. all_tuples!(impl_system_function, 0, 16, F); #[cfg(test)] mod tests { use super::*; #[test] fn into_system_type_id_consistency() { fn test(function: T) where T: IntoSystem + Copy, { fn reference_system() {} use core::any::TypeId; let system = IntoSystem::into_system(function); assert_eq!( system.type_id(), function.system_type_id(), "System::type_id should be consistent with IntoSystem::system_type_id" ); assert_eq!( system.type_id(), TypeId::of::(), "System::type_id should be consistent with TypeId::of::()" ); assert_ne!( system.type_id(), IntoSystem::into_system(reference_system).type_id(), "Different systems should have different TypeIds" ); } fn function_system() {} test(function_system); } }