#[cfg(target_pointer_width = "16")] compile_error!("bevy_render cannot compile for a 16-bit platform."); extern crate core; pub mod camera; pub mod color; pub mod extract_component; mod extract_param; pub mod extract_resource; pub mod globals; pub mod mesh; pub mod pipelined_rendering; pub mod primitives; pub mod render_asset; pub mod render_graph; pub mod render_phase; pub mod render_resource; pub mod renderer; pub mod settings; mod spatial_bundle; pub mod texture; pub mod view; use bevy_hierarchy::ValidParentCheckPlugin; pub use extract_param::Extract; pub mod prelude { #[doc(hidden)] pub use crate::{ camera::{Camera, OrthographicProjection, PerspectiveProjection, Projection}, color::Color, mesh::{shape, Mesh}, render_resource::Shader, spatial_bundle::SpatialBundle, texture::{Image, ImagePlugin}, view::{ComputedVisibility, Msaa, Visibility, VisibilityBundle}, ExtractSchedule, }; } use bevy_window::{PrimaryWindow, RawHandleWrapper}; use globals::GlobalsPlugin; pub use once_cell; use crate::{ camera::CameraPlugin, mesh::MeshPlugin, render_resource::{PipelineCache, Shader, ShaderLoader}, renderer::{render_system, RenderInstance}, settings::WgpuSettings, view::{ViewPlugin, WindowRenderPlugin}, }; use bevy_app::{App, AppLabel, CoreSchedule, Plugin, SubApp}; use bevy_asset::{AddAsset, AssetServer}; use bevy_ecs::{prelude::*, schedule::ScheduleLabel, system::SystemState}; use bevy_utils::tracing::debug; use std::ops::{Deref, DerefMut}; /// Contains the default Bevy rendering backend based on wgpu. #[derive(Default)] pub struct RenderPlugin { pub wgpu_settings: WgpuSettings, } /// The labels of the default App rendering sets. /// /// The sets run in the order listed, with [`apply_system_buffers`] inserted between each set. /// /// The `*Flush` sets are assigned to the copy of [`apply_system_buffers`] /// that runs immediately after the matching system set. /// These can be useful for ordering, but you almost never want to add your systems to these sets. #[derive(Debug, Hash, PartialEq, Eq, Clone, SystemSet)] pub enum RenderSet { /// The copy of [`apply_system_buffers`] that runs at the begining of this schedule. /// This is used for applying the commands from the [`ExtractSchedule`] ExtractCommands, /// Prepare render resources from the extracted data for the GPU. Prepare, /// The copy of [`apply_system_buffers`] that runs immediately after `Prepare`. PrepareFlush, /// Create [`BindGroups`](crate::render_resource::BindGroup) that depend on /// [`Prepare`](RenderSet::Prepare) data and queue up draw calls to run during the /// [`Render`](RenderSet::Render) step. Queue, /// The copy of [`apply_system_buffers`] that runs immediately after `Queue`. QueueFlush, // TODO: This could probably be moved in favor of a system ordering abstraction in Render or Queue /// Sort the [`RenderPhases`](crate::render_phase::RenderPhase) here. PhaseSort, /// The copy of [`apply_system_buffers`] that runs immediately after `PhaseSort`. PhaseSortFlush, /// Actual rendering happens here. /// In most cases, only the render backend should insert resources here. Render, /// The copy of [`apply_system_buffers`] that runs immediately after `Render`. RenderFlush, /// Cleanup render resources here. Cleanup, /// The copy of [`apply_system_buffers`] that runs immediately after `Cleanup`. CleanupFlush, } impl RenderSet { /// Sets up the base structure of the rendering [`Schedule`]. /// /// The sets defined in this enum are configured to run in order, /// and a copy of [`apply_system_buffers`] is inserted into each `*Flush` set. pub fn base_schedule() -> Schedule { use RenderSet::*; let mut schedule = Schedule::new(); // Create "stage-like" structure using buffer flushes + ordering schedule.add_system(apply_system_buffers.in_set(PrepareFlush)); schedule.add_system(apply_system_buffers.in_set(QueueFlush)); schedule.add_system(apply_system_buffers.in_set(PhaseSortFlush)); schedule.add_system(apply_system_buffers.in_set(RenderFlush)); schedule.add_system(apply_system_buffers.in_set(CleanupFlush)); schedule.configure_set(ExtractCommands.before(Prepare)); schedule.configure_set(Prepare.after(ExtractCommands).before(PrepareFlush)); schedule.configure_set(Queue.after(PrepareFlush).before(QueueFlush)); schedule.configure_set(PhaseSort.after(QueueFlush).before(PhaseSortFlush)); schedule.configure_set(Render.after(PhaseSortFlush).before(RenderFlush)); schedule.configure_set(Cleanup.after(RenderFlush).before(CleanupFlush)); schedule } } /// Schedule which extract data from the main world and inserts it into the render world. /// /// This step should be kept as short as possible to increase the "pipelining potential" for /// running the next frame while rendering the current frame. /// /// This schedule is run on the main world, but its buffers are not applied /// via [`Schedule::apply_system_buffers`](bevy_ecs::schedule::Schedule) until it is returned to the render world. #[derive(ScheduleLabel, PartialEq, Eq, Debug, Clone, Hash)] pub struct ExtractSchedule; /// The simulation [`World`] of the application, stored as a resource. /// This resource is only available during [`ExtractSchedule`] and not /// during command application of that schedule. /// See [`Extract`] for more details. #[derive(Resource, Default)] pub struct MainWorld(World); impl Deref for MainWorld { type Target = World; fn deref(&self) -> &Self::Target { &self.0 } } impl DerefMut for MainWorld { fn deref_mut(&mut self) -> &mut Self::Target { &mut self.0 } } pub mod main_graph { pub mod node { pub const CAMERA_DRIVER: &str = "camera_driver"; } } /// A Label for the rendering sub-app. #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, AppLabel)] pub struct RenderApp; impl Plugin for RenderPlugin { /// Initializes the renderer, sets up the [`RenderSet`](RenderSet) and creates the rendering sub-app. fn build(&self, app: &mut App) { app.add_asset::() .add_debug_asset::() .init_asset_loader::() .init_debug_asset_loader::(); let mut system_state: SystemState>> = SystemState::new(&mut app.world); let primary_window = system_state.get(&app.world); if let Some(backends) = self.wgpu_settings.backends { let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { backends, dx12_shader_compiler: self.wgpu_settings.dx12_shader_compiler.clone(), }); let surface = primary_window.get_single().ok().map(|wrapper| unsafe { // SAFETY: Plugins should be set up on the main thread. let handle = wrapper.get_handle(); instance .create_surface(&handle) .expect("Failed to create wgpu surface") }); let request_adapter_options = wgpu::RequestAdapterOptions { power_preference: self.wgpu_settings.power_preference, compatible_surface: surface.as_ref(), ..Default::default() }; let (device, queue, adapter_info, render_adapter) = futures_lite::future::block_on(renderer::initialize_renderer( &instance, &self.wgpu_settings, &request_adapter_options, )); debug!("Configured wgpu adapter Limits: {:#?}", device.limits()); debug!("Configured wgpu adapter Features: {:#?}", device.features()); app.insert_resource(device.clone()) .insert_resource(queue.clone()) .insert_resource(adapter_info.clone()) .insert_resource(render_adapter.clone()) .init_resource::(); let pipeline_cache = PipelineCache::new(device.clone()); let asset_server = app.world.resource::().clone(); let mut render_app = App::empty(); render_app.add_simple_outer_schedule(); let mut render_schedule = RenderSet::base_schedule(); // Prepare the schedule which extracts data from the main world to the render world render_app.edit_schedule(ExtractSchedule, |schedule| { schedule .set_apply_final_buffers(false) .add_system(PipelineCache::extract_shaders); }); // This set applies the commands from the extract stage while the render schedule // is running in parallel with the main app. render_schedule.add_system(apply_extract_commands.in_set(RenderSet::ExtractCommands)); render_schedule.add_system( PipelineCache::process_pipeline_queue_system .before(render_system) .in_set(RenderSet::Render), ); render_schedule.add_system(render_system.in_set(RenderSet::Render)); render_schedule.add_system(World::clear_entities.in_set(RenderSet::Cleanup)); render_app .add_schedule(CoreSchedule::Main, render_schedule) .init_resource::() .insert_resource(RenderInstance(instance)) .insert_resource(device) .insert_resource(queue) .insert_resource(render_adapter) .insert_resource(adapter_info) .insert_resource(pipeline_cache) .insert_resource(asset_server); let (sender, receiver) = bevy_time::create_time_channels(); app.insert_resource(receiver); render_app.insert_resource(sender); app.insert_sub_app(RenderApp, SubApp::new(render_app, move |main_world, render_app| { #[cfg(feature = "trace")] let _render_span = bevy_utils::tracing::info_span!("extract main app to render subapp").entered(); { #[cfg(feature = "trace")] let _stage_span = bevy_utils::tracing::info_span!("reserve_and_flush") .entered(); // reserve all existing main world entities for use in render_app // they can only be spawned using `get_or_spawn()` let total_count = main_world.entities().total_count(); assert_eq!( render_app.world.entities().len(), 0, "An entity was spawned after the entity list was cleared last frame and before the extract schedule began. This is not supported", ); // This is safe given the clear_entities call in the past frame and the assert above unsafe { render_app .world .entities_mut() .flush_and_reserve_invalid_assuming_no_entities(total_count); } } // run extract schedule extract(main_world, render_app); })); } app.add_plugin(ValidParentCheckPlugin::::default()) .add_plugin(WindowRenderPlugin) .add_plugin(CameraPlugin) .add_plugin(ViewPlugin) .add_plugin(MeshPlugin) .add_plugin(GlobalsPlugin); app.register_type::() .register_type::() .register_type::() .register_type::() .register_type::(); } } /// A "scratch" world used to avoid allocating new worlds every frame when /// swapping out the [`MainWorld`] for [`ExtractSchedule`]. #[derive(Resource, Default)] struct ScratchMainWorld(World); /// Executes the [`ExtractSchedule`] step of the renderer. /// This updates the render world with the extracted ECS data of the current frame. fn extract(main_world: &mut World, render_app: &mut App) { // temporarily add the app world to the render world as a resource let scratch_world = main_world.remove_resource::().unwrap(); let inserted_world = std::mem::replace(main_world, scratch_world.0); render_app.world.insert_resource(MainWorld(inserted_world)); render_app.world.run_schedule(ExtractSchedule); // move the app world back, as if nothing happened. let inserted_world = render_app.world.remove_resource::().unwrap(); let scratch_world = std::mem::replace(main_world, inserted_world.0); main_world.insert_resource(ScratchMainWorld(scratch_world)); } /// Applies the commands from the extract schedule. This happens during /// the render schedule rather than during extraction to allow the commands to run in parallel with the /// main app when pipelined rendering is enabled. fn apply_extract_commands(render_world: &mut World) { render_world.resource_scope(|render_world, mut schedules: Mut| { schedules .get_mut(&ExtractSchedule) .unwrap() .apply_system_buffers(render_world); }); }